
Monotone DAG Faithfulness: A Bad

Assumption

David Maxwell Chickering Christopher Meek

Technical Report
MSR-TR-2003-16

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Abstract

In a recent paper, Cheng, Greiner, Kelly, Bell and Liu (Artificial Intelligence 137:43-
90; 2002) describe an algorithm for learning Bayesian networks that—in a domain
consisting of n variables—identifies the optimal solution using O(n4) calls to a
mutual-information oracle. This seemingly incredible result relies on (1) the stan-
dard assumption that the generative distribution is Markov and faithful to some
directed acyclic graph (DAG), and (2) a new assumption about the generative
distribution that the authors call monotone DAG faithfulness (MDF). The MDF
assumption rests on an intuitive connection between active paths in a Bayesian-
network structure and the mutual information among variables. The assumption
states that the (conditional) mutual information between a pair of variables is a
monotonic function of the set of active paths between those variables; the more
active paths between the variables the higher the mutual information. In this pa-
per, we demonstrate the unfortunate result that, for any realistic learning scenario,
the monotone DAG faithfulness assumption is incompatible with the faithfulness
assumption. In fact, by assuming both MDF and faithfulness, we restrict the class
of possible Bayesian-network structures to one for which the optimal solution can
be identified with O(n2) calls to an independence oracle.

1 Introduction

Learning Bayesian networks from data has traditionally been considered a hard problem
by most researchers. Numerous papers have demonstrated that, under a number of
different scenarios, identifying the “best” Bayesian-network structure is NP-hard. In
a recent paper describing information-theoretic approaches to this learning problem,
however, Cheng, Greiner, Kelly, Bell and Liu (2002) (hereafter CGKBL) describe an
algorithm that runs in polynomial time when given a mutual-information oracle. In
particular, for a domain of n variables, CGKBL claim that the algorithm identifies
the generative Bayesian-network structure using O(n4) calls to the oracle, regardless
of the complexity of that generative network. The seemingly incredible result relies
on an assumption about the generative distribution that CGKBL call monotone DAG
faithfulness. Intuitively, the assumption states that in a distribution that is perfect with
respect to some Bayesian-network structure G, the (conditional) mutual information
between two variables is a monotonic function of the “active paths” between those
variables in G.

In this paper, we demonstrate that monotone DAG faithfulness is a bad assumption.
In particular, we show that the standard faithfulness assumption and the monotone DAG
faithfulness assumption are inconsistent with each other unless we restrict the possible
generative structures to an unreasonably simple class; furthermore, the optimal member
of this simple class of models can be identified using a standard independence-based
learning algorithm using only O(n2) calls to an independence oracle. Unfortunately,
our results cast doubt once again on the existence of an efficient and correct Bayesian-
network learning algorithm under reasonable assumptions.

The paper is organized as follows. In Section 2, we provide background material
and define the monotone DAG faithfulness assumption more rigorously. In Section 3,
we describe a family of independence-based and information-based learning algorithms,
consider the worst-case complexity of these algorithms, and show how the monotone
DAG faithfulness assumption can lead to the incredible result of CGKBL. In Section 4,
we provide simple examples that highlight the problems with the monotone DAG faith-

1

fulness assumption, and we prove that the assumption is incompatible with faithfulness
unless we impose severe restrictions on the generative structure. Finally, in Section 5,
we conclude with a discussion.

2 Background

In this section, we describe our notation and present relevant background material. We
assume that the reader has some basic familiarity with probability theory, graph theory,
and Bayesian networks.

A Bayesian network, which is used to represent a joint distribution over the variables
in a domain, consists of (1) a directed acyclic graph (or DAG for short) in which there
is a single vertex associated with each variable in the domain, and (2) a corresponding
set of parameters that defines the joint distribution. We use the calligraphic letter G
to denote a Bayesian-network structure. We use variable to denote both a random
variable in the domain and the corresponding vertex (or node) in the Bayesian-network
structure. Thus, for example, we might say that variable X is adjacent to variable Y
in Bayesian-network structure G. The parameters of a Bayesian network specify the
conditional distribution of each variable given its parents in the graph, and the joint
distribution for the variables in the domain is defined by the product of these conditional
distributions. For more information see, for example, Pearl (1988).

We use bold-faced Roman letters for sets of variables (e.g., X), non-bold-faced Ro-
man letters for singleton variables (e.g., X) and lower-case Roman letters for values of
the variables (e.g., X = x, X = x). To simplify notation when expressing probabili-
ties, we omit the name of the variables involved. For example, we use p(y|x) instead
of p(Y = y|X = x). For a distribution p, we use Indp(X;Y|Z) to denote the fact
that in p, X is independent of Y given conditioning set Z. When the conditioning set
is empty, we use Indp(X;Y) instead. To simplify notation, we omit the standard set
notation when considering a singleton variable in any position. For example, we use
Indp(X;Y |Z) instead of Indp({X}; {Y }|Z).

2.1 Independence Constraints of DAGs

Any joint distribution represented by a Bayesian network must satisfy certain indepen-
dence constraints that are imposed by the structure of the model. Because a Bayesian
network represents a joint distribution as the product of conditional distributions, the
joint distribution must satisfy the Markov conditions of the structure: each variable
must be independent of its non-descendants given its parents. The Markov conditions
constitute a basis for the independence facts that are true for all distributions that
can be represented by a Bayesian network with a given structure. The d-separation
criterion is a graphical criterion that characterizes all of these structural independence
constraints. In order to define the criterion, we first need to define an active path. We
provide two distinct definitions for an active path, both of which are adequate for defin-
ing the d-separation criterion. Both definitions are standard, and we include both to
highlight the sensitivity of the MDF assumption to the definition.

Before proceeding, we provide standard definitions for a path, a simple path, and a
collider. A path π in a graph G is an ordered sequence of variables (X(1),X(2), . . . ,X(n))
such that for each {X(i),X(i+1)}, either the edge X(i) → X(i+1) or the edge X(i) ← X(i+1)

exists in G, where X(i) denotes the variable at position i on the path. A path is a simple

2

path if each variable occurs at most once in the path. Three (ordered) variables (X,Y,Z)
form a collider complex in G if the edges X → Y and Y ← Z are both contained in G.
A variable X(i) is a collider at position i in a path π = (X(1),X(2), . . . ,X(n)) in graph G
if 1 < i < n and (X(i−1),X(i),X(i+1)) is a collider complex in G. Note that a collider is
defined by not only a variable, but the position of that variable in a path; a particular
variable may appear both as a collider and as a non-collider within a path.

We now provide our two definitions:

Definition 1 (Compound Active Path) A path π = (X(1),X(2), . . . ,X(n)) is a com-
pound active path given conditioning set Y in DAG G if each variable X(i) in the path
has one of the two following properties: (1) X(i) is not a collider at position i and X(i)

is not in Y, or (2) X(i) is a collider at position i and either X(i) or a descendant of
X(i) in G is in Y.

Definition 2 (Simple Active Path) A path π is a simple active path given condi-
tioning set Y in DAG G if π is a compound active path given Y in G that is simple.

Note that the endpoints of a path cannot be colliders. This means that under
either definition of an active path, the endpoints cannot be in the conditioning set.
To emphasize the distinction between the two definitions above, consider the graph in
Figure 1. Given conditioning set D, there is exactly one simple active path between A
and B, namely, A → C ← B. Given this same conditioning set, there are additional
compound active paths including A→ C → D ← C ← B. In fact, there are an infinite
number of these additional paths as we can, for example, prepend A→ C ← A to any
compound active path and the result is a compound active path.

The following proposition, which is proved in the appendix, establishes a relationship
between simple and compound active paths that is important for the definition of d-
separation.

Proposition 1 There is a simple active path between X and Y given conditioning set Z
in G if and only if there is a compound active path between X and Y given conditioning
set Z in G.

Finally, we can define the d-separation criterion. Sets of variables X and Y are
d-separated given a set of variables Z in G if there does not exist a simple active path
between a variable in X and a variable in Y given conditioning set Z. From Proposi-
tion 1, we see that d-separation is equivalently defined by the absence of a compound
active path. We use DsepG(X;Y|Z) to denote that X is d-separated from Y given Z
in G.

The d-separation criterion provides a useful connection between a DAG and the
corresponding set distributions that can be represented with a Bayesian network with
that structure. In particular, Pearl (1988) shows that if DsepG(X;Y|Z), then for any
distribution p that can be represented by a Bayesian network with structure G, it must
be the case that Indp(X;Y|Z).1 Given this strong connection between d-separation and
representability in a Bayesian network, it is natural to define the following property for
a distribution.

1This is the soundness result for d-separation. Pearl (1988) also shows that d-separation is complete;
that is, if Indp(X;Y|Z) for every p that can be represented by a Bayesian network with structure G,
then DsepG(X;Y|Z).

3

Definition 3 (Markov Distribution) A distribution p is Markov with respect to G
if DsepG(X;Y|Z) implies Indp(X;Y|Z).

We use Markov(G) to denote the set of distributions that are Markov with respect to
G.

D

A B

C

Figure 1: A simple Bayesian-network structure.

If two DAGs G and G′ represent the same independence constraints, we say that
they are equivalent. Verma and Pearl (1991) shows that two DAGs are equivalent if and
only if (1) they have the same adjacencies and (2) for any collider complex (X,Y,Z) in
one of the DAGs such that X and Z are not adjacent, this “v-structure” also exists in
the other DAG.

2.2 Faithfulness

The Markov property provides a connection between the structure of a Bayesian network
and independence. Namely, the absence of an edge guarantees a set of independence
facts. The existence of an edge between variable X and Y in the structure G, however,
does not guarantee that a Bayesian network with structure G will exhibit a dependence
between X and Y . Without making assumptions connecting the existence of edges in
a generative structure and the joint distribution of a generative Bayesian network, it is
not generally possible to recover the generative Bayesian-network structure.

Most structure-learning algorithms that have large-sample correctness guarantees
assume that the distribution from which the data is generated is both Markov and
faithful with respect to some DAG. Functionally, the faithfulness assumption means that
every edge in this DAG can be identified by a lack of independence in the generative
distribution, for every conditioning set, between the corresponding endpoint variables.

Definition 4 (Faithful Distribution) A distribution p is faithful to G if
Indp(X;Y|Z) implies DsepG(X;Y|Z).

We use Faithful(G) to denote the set of distributions that are faithful to G. As
we see in the next section, the intersection Markov(G) ∩ Faithful(G) is an important
class of distributions for proving optimality results about learning algorithms; we use
Perfect(G) to denote this intersection. For a distribution p, if there exists a DAG G
such that p ∈ Perfect(G), we say that p is a DAG-perfect distribution, and that p is
perfect with respect to G.

The assumption of faithfulness might seem like an unjustifiably strong assumption,
but a joint distribution represented by a Bayesian network can fail to be faithful only by a

4

precise balancing of the parameters. This intuition is made more precise in Meek (1995)
and Spirtes, Glymour, and Scheines (2000) where it is shown that almost all distributions
that are Markov with respect to a structure G are also faithful to that structure. In other
words, if you put a smooth measure over the distributions representable by a Bayesian
network with structure G and choose a distribution at random, you will choose a faithful
distribution with probability one.

2.3 Information and Monotone DAG Faithfulness

The CGKBL algorithm uses the conditional-mutual information between sets of vari-
ables to recover the structure of a Bayesian network. The correctness claims of CGKBL
are based on an assumption that they call monotone DAG faithfulness. Similar to
the assumption of faithfulness, this assumption connects properties of the generative
Bayesian-network structure and the information relationships among sets of variables
in the generative distribution.

The conditional mutual information between X and Y given Z is formally defined
as:

Infp(X;Y|Z) =
∑

x,y,z
p(x,y, z) log

p(x,y|z)
p(x|z)p(y|z)

. (1)

where ‘log’ denotes the base-two logarithm.
In the previous section we defined two types of active paths: simple active paths

and compound active paths. Active paths as defined by CGKBL are compound active
paths. We include the alternative simple definition because it is a standard definition of
active path and because it highlights the sensitivity of the monotone DAG faithfulness
assumption to the underlying definition of active path. We find it convenient to refer
to an active path in a DAG with the understanding that we have a specific definition—
either a simple active path or a compound active path—in mind.

We now provide a formal definition of monotone DAG faithfulness (MDF). Let
Actives

G(X;Y |Z) denote the set of simple active paths between X and Y given condi-
tioning set Z in G. Similarly, let Activec

G(X;Y |Z) denote the set of compound active
paths between X and Y given conditioning set Z in G. We use ActiveG(X;Y |Z) to
denote the set of active paths under one of the two definitions of active path when we
want to avoid specifying which definition of active path to use.

Definition 5 (Simple Monotone DAG Faithfulness) A distribution p is simple
monotone DAG faithful with respect to a DAG G if

Actives
G(X;Y |Z) ⊆ Actives

G(X;Y |Z′)⇒ Infp(X;Y |Z) ≤ Infp(X;Y |Z′)

Definition 6 (Compound Monotone DAG Faithfulness) A distribution p is com-
pound monotone DAG faithful with respect to a DAG G if

Activec
G(X;Y |Z) ⊆ Activec

G(X;Y |Z′)⇒ Infp(X;Y |Z) ≤ Infp(X;Y |Z′)

The property is called “monotone” because it states that information in p is a
monotonic function of active paths in G. More specifically, monotone DAG faithfulness
states that if we do not remove (or “block”) any active paths between two variables in
G by changing the conditioning set, then the information does not decrease. We see
that, depending on the definition of an active path, the property can have different

5

consequences. We use MDFs(G) and MDFc(G) to denote the set of distributions that
are monotone DAG faithful with respect to G using simple and compound active paths,
respectively. When we want to avoid specifying the definition of active path, we use
MDF(G) instead.

CGKBL define “monotone DAG faithfulness” only for DAG-perfect distributions,
which makes it unclear whether non-DAG-perfect distributions can satisfy this property.
In contrast, we define MDFs(G) and MDFc(G) without reference to other properties of
distributions (e.g., DAG-perfect or faithful) in order to analyze the relationship between
faithfulness and monotone DAG faithfulness (simple or compound). As previously de-
scribed, CGKBL use the compound definition of active paths, and thus their definition
of monotone DAG faithfulness is precisely our definition of compound monotone DAG
faithfulness restricted to distributions that are faithful.

3 Independence-Based and Information-Based

Learning Algorithms

In this section, we discuss independence-based and information-based algorithms for
learning Bayesian-network structures and discuss the corresponding worst-case running
times. Instead of providing formal complexity analyses, which would require us to
provide a detailed description of specific instances of these algorithms, we present simple
arguments that hopefully will provide the reader with an intuitive understanding of how
each type of algorithm handles the most difficult learning scenarios.

In practice, these learning algorithms take an observed set of data and perform
statistical tests to evaluate independence and/or mutual information. Thus we can
expect the running times of these algorithms to grow with the number of samples in
the data. For simplicity, our analysis avoids statistical-sampling issues by effectively
assuming that the algorithms have infinite data; each algorithm will have access to
an “oracle” that can evaluate independence and/or information as if it had access to
the generative distribution. The complexity for an algorithm is then evaluated by the
number of times the oracle is called.

3.1 Independence-Based Learning Algorithms

Structure-learning algorithms typically assume that training data is a set of independent
and identically distributed samples from some generative distribution p∗ that is perfect
with respect to some DAG G∗. The goal of the learning algorithm is then to identify G∗
or any DAG that is equivalent to G∗.

A large class of structure-learning algorithms, which we call independence-based
algorithms, use independence tests to identify and direct edges. If p∗ is DAG-perfect
and an independence oracle—that is, an oracle that provides yes/no answers to queries
about conditional independencies in p∗—is available, these algorithms can provably
identify a DAG that is equivalent to G (see, for example, Spirtes, Glymour and Scheines
2000 or Verma and Pearl 1991).

Although many different algorithms have been developed, the basic idea behind
independence-based algorithms is as follows. In a first phase, the algorithms identify
pairs of variables that must be adjacent in the generative structure. Under the assump-
tion that p∗ is DAG-perfect, variables that are adjacent in the generative structure have

6

the property that they are not independent given any conditioning set. The indepen-
dence oracle is used to check whether this property holds for each pair of variables.
Various algorithms provide improvements over an exhaustive search over all subsets of
variables. In the second phase, the identified edges are directed.

3.2 Why Independence-Based Learning is Hard

A worst-case scenario for the independence-based algorithms is when the generative
structure is as shown in Figure 2 in which all variables are adjacent except for A and
B. More specifically, (1) the variables in X = {X1, . . . ,Xn} are parents of A, B and all
variables in Y = {Y1, . . . , Ym}, (2) both A and B are parents of all the variables in Y,
(3) Xi is a parent of Xj for all i < j, and (4) Yi is a parent of Yj for all i < j. For this
structure the independence oracle will return “not independent” for any test other than
“is A independent of B given X?”. This extreme example demonstrates that—when
using an independence oracle—the only way to determine whether A and B are adjacent
is to enumerate and test all possible conditioning sets; using an adversarial argument,
we could have the oracle return “not independent” on all but the last conditioning set.
Because there are 2|X|+|Y| possible conditioning sets, identifying whether or not the
generative network contains an edge between A and B is intractable.

X1 Xn

Y1 Ym

A B

Figure 2: Worst-case scenario for independence-based learning algorithms.

3.3 Information-Based Learning Algorithms

CGKBL take a slightly different approach to learning Bayesian networks. Instead of
using conditional independence directly, they use conditional-mutual information both
to test for independence and to help guide the learning algorithm. Information can be
used to measure the degree of conditional dependence among sets of variables; the fol-
lowing well-known fact about information (e.g., Cover and Thomas, 1991) helps provide
insight into this relationship.

Fact 1 Infp(X;Y|Z) = 0 if and only if Indp(X;Y|Z).

Fact 1 demonstrates that any algorithm that utilizes an independence oracle can be
modified to use an information oracle. The potential for improvement lies in the fact
that we receive additional information when using an information oracle. With this

7

additional information and the MDF assumption, CGKBL claim that their algorithm
identifies the generative structure using a polynomial number of queries to the informa-
tion oracle in the worst case. It turns out that the worst-case scenario considered in the
previous section is also the key scenario for information-based algorithms. In particular,
it is reasonably easy to show that if we can identify the set X in Figure 2 efficiently,
then we can identify the entire generative structure efficiently.

Consider again the graph in Figure 2. We can use MDF to identify the set X using
the following greedy algorithm: start with the conditioning set S = X ∪ Y, and then
repeatedly remove from S the variable that results in the largest decrease in information
between A and B, until no removal decreases the information. If the resulting informa-
tion is zero, we know that there is no edge between A and B; otherwise, we conclude
that there is an edge.

A non-rigorous argument for why the greedy algorithm is correct for the example
is as follows. First, the algorithm never removes any element of X from S because
the removal of any such element—when the remaining elements of X are in S—cannot
“block” any active paths (under either definition of an active path) between A and B.
Thus, because the number of active paths has necessarily increased, we conclude by
MDF that the information in p∗ cannot decrease from such a removal. Second, it is
possible to show that the deepest variable Yi ∈ Y ∩ S (the variable with the largest
index) has the property that if it is removed from S, no active paths are created; thus,
because removing Yi from S will “block” the previously active path A → Yi ← B, we
conclude from MDF that the information cannot increase in p∗ from the removal. For
simplicity, we ignore the boundary cases where removing a member from either X or
Y does not change the information; under this scenario (1) the information increases
as a result of removing any variable from X, and (2) there is always a variable Yi from
Y∩S such that the information decreases by removing Yi from S. We conclude that the
greedy algorithm will terminate with the correct conditioning set S = X. Furthermore,
each iteration of the algorithm requires at most |S| = |X|+ |Y| calls to the information
oracle, and there will be |Y| such iterations. Thus, the greedy algorithm will terminate
after O(|Y|2 + |X| · |Y|) calls to the information oracle.

CGKBL define a specific information-based learning algorithm that overcomes the
worst-case exponential behavior described in the previous section by using a greedy
search as above to determine whether or not an edge should be present. Furthermore,
they provide a similar argument as above to claim that given p∗ ∈ Perfect(G∗) ∩
MDF(G∗), the algorithm will recover the generative structure (up to equivalence).

If MDF were a reasonable assumption, the result of CGKBL would be significant.
Because a mutual-information oracle can be approximated with increasing accuracy as
(1) the number training cases increases and (2) the number of variables in the query
decreases, we expect that in many real domains we might be able to learn the generative
structure—using finite data—in a reasonable amount of time. As we demonstrate in
the next section, however, MDF is generally not a reasonable assumption.

4 The Monotone DAG Faithfulness Assumption is not
Reasonable

Without studying the details of MDF, the assumption may seem intuitively appealing
at first: suppose that removing a variable from the conditioning set “deactivates” some

8

paths between A and B in the generative structure without simultaneously “activating”
any other paths. Then we might be tempted to believe that the mutual information
between A and B should decrease, or at least not increase. CGKBL state:

In real world situations most faithful models are also monotone
DAG-faithful. We conjecture that the violations of monotone DAG-
faithfulness only happen when the probability distributions are ‘near’
the violations of DAG-faithfulness.

If the CGKBL conjecture were true, it would have significant consequences for learn-
ing. First, most structure-learning algorithms assume faithfulness to prove correctness
and thus, by assuming a little bit more, we could obtain a polynomial-time algorithm.
Second, for a given structure G, almost all distributions in Markov(G) are faithful, and
thus we could be confident that our assumptions are not too limiting.

In this section, we show that in real-world situations, faithfulness and MDF are
incompatible with each other, and thus MDF is not a good assumption. Before proving
our main result, we find it useful to explore some examples that demonstrate some spe-
cific problems with MDF. In Section 4.1, we provide a simple example of a distribution
that violates MDF and is not simultaneously “close” to being non-faithful. In Section
4.2, we show a simple example where MDF leads to counterintuitive consequences. In
Section 4.3, we prove our main result: unless the generative structure comes from a
severely restricted class of models, MDF and faithfulness are incompatible.

4.1 A Simple Violation of MDF

In this section, we demonstrate that the distribution for a Bayesian network need not
satisfy the MDF assumption. Consider the Bayesian-network structure shown in Figure
3 and the corresponding set of parameters shown in Table 1. Note that the structure of
this example is a particular instance of the worst-case-scenario model from Section 3.2.

Y1 Y2

A B

Figure 3: Structure of a Bayesian network that violates the MDF assumption.

Under either definition of MDF, this Bayesian network provides an example of a
violation of MDF. In particular, under either definition of an active path, the set of
active paths between A and B given both Y1 and Y2 is a superset of the set of active
paths when only Y1 is in the conditioning set. Thus, for any distribution p contained in
either MDFs(G) or MDFc(G) we have

Infp(A;B|Y1 ∪ Y2) ≥ Infp(A;B|Y1).

For the joint distribution q obtained from the conditional distributions in the table,
however, we have Infq(A;B|Y1 ∪ Y2) = 0.33 and Infq(A;B|Y1) = 0.35. If we consider

9

A p(A)
0 0.5
1 0.5

B p(B)
0 0.5
1 0.5

A B Y1 p(Y1|A,B)
0 0 0 0.38
0 0 1 0.62
0 1 0 0.01
0 1 1 0.99
1 0 0 0.20
1 0 1 0.80
1 1 0 0.99
1 1 1 0.01

A B Y1 Y2 p(Y2|A,B, Y1)
0 0 0 0 0.96
0 0 0 1 0.04
0 0 1 0 0.22
0 0 1 1 0.78
0 1 0 0 0.35
0 1 0 1 0.65
0 1 1 0 0.91
0 1 1 1 0.09
1 0 0 0 0.89
1 0 0 1 0.11
1 0 1 0 0.99
1 0 1 1 0.01
1 1 0 0 0.05
1 1 0 1 0.95
1 1 1 0 0.50
1 1 1 1 0.50

Table 1: Parameters of a Bayesian network that violates the MDF assumption.

the equivalent structure in which the edge between Y1 and Y2 is reversed, we obtain the
inequality

Infp(A;B|Y1 ∪ Y2) ≥ Infp(A;B|Y2).

Using the same distribution q (which is Markov with respect to the modified structure)
we have Infq(A;B|Y1 ∪ Y2) = 0.33 and Infq(A;B|Y2) = 0.40. Thus in both cases, the
distribution q is not contained in either MDFs(G) or MDFc(G).

Our example is particularly interesting because it illustrates that violations can
occur during crucial phases of the CGKBL learning algorithm. Namely, in order for
the algorithm to learn that there is no edge between A to B, it must successfully
identify the marginal independence. To get to the point where this independence test
is made, the algorithm must first find that either Infp(A;B|Y1 ∪ Y2) > Infp(A;B|Y1)
or Infp(A;B|Y1 ∪ Y2) > Infp(A;B|Y2), neither of which is true in this example. This
failure would lead the algorithm to learn incorrectly that there is an edge between A
and B.

CGKBL provide their own counterexample to MDF by first specifying an unfaithful
distribution, and then considering slight modifications to the parameters so that the
distribution is no longer unfaithful, but it is “close” to being unfaithful. Our example,
on the other hand, is not “close” to being unfaithful in the following sense: the impor-
tant information values above (i.e., 0.33, 0.35 and 0.40) indicate significant dependence
according to the threshold used by CGKBL. In particular, CGKBL deem two variables
conditionally independent only if the corresponding mutual information is less than
either 0.01 or 0.0025 (depending on the experiment).2 In addition, the pair-wise infor-

2CGKBL do not define the base of the logarithm that they use, but two is standard when calculating

10

A p(A)
0 0.5
1 0.5

B p(B)
0 0.6
1 0.4

A B C p(C|AB)
0 0 0 0.99
0 0 1 0.01
0 1 0 0.5
0 1 1 0.5
1 0 0 0.99
1 0 1 0.01
1 1 0 0.99
1 1 1 0.01

C D p(D|C)
0 0 0.9
0 1 0.1
1 0 0.01
1 1 0.99

Table 2: Parameters of a Bayesian network—whose structure is given in Figure 1—for
which MDF leads to counterintuitive conclusions.

mation values corresponding to all of the edges in the structure also indicate significant
dependence.

4.2 Counterintuitive Consequences of MDF

Consider the DAG model shown in Figure 1. The two definitions of MDF (simple
and compound) correspond to two different sets of distributions for this example.
In particular, for the simple definition, we have Actives

G(A;B|C) = Actives
G(A;B|D)

and thus Infp(A;B|C) = Infp(A;B|D) for any distribution p in MDFs(G). For
the compound definition, we have Activec

G(A;B|C) ⊆ Activec
G(A;B|D) and thus

Infp(A;B|C) ≤ Infp(A;B|D) for any distribution p in MDFc(G).
The equality of the information for distributions in MDFs(G) is a priori unrea-

sonable. The inequality for distributions in MDFc(G), on the other hand, seems to
be counterintuitive. That is, it seems plausible that there should be more dependence
between A and B when given C than when given D, and thus we might expect an
information inequality in the opposite direction than what holds in MDFc(G). Rather
surprising, this inequality can be satisfied using the conditional distributions in Table 2.
For this distribution, the difference Infp(A;B|C)− Infp(A;B|D) = −0.006.

To help understand how often the information inequality implied by the compound
version of MDF occurs, we performed a simple simulation study in which we randomly
sampled distributions that are Markov with respect to the structure in Figure 1—where
each variable was binary—and computed Infp(A;B|C)−Infp(A;B|D) for each sampled
distribution p. We defined “zero” to be (a conservative) 0± 10−8 to make sure we did
not miss any equalities due to numerical imprecision. Our experiment using 100,000
sampled distributions yielded the following results for the information differences: (a)
positive in 99, 969 samples, (b) negative in 31 samples, and (c) “zero” in 0 samples. For
this experiment, most of the sampled distributions violate both versions of the MDF
assumption. We were surprised by both the existence and the frequency of sampled
distributions in which the difference Infp(A;B|C)− Infp(A;B|D) was negative.

information. The other natural candidate bases are e and 10, both of which lead to significant differences
according to the CGKBL thresholds.

11

4.3 Incompatibility of MDF and Faithfulness

In this section, we prove that MDF and faithfulness are incompatible. Before proceeding,
we present the following “axiom” that follows from MDF for DAG-perfect distributions,
the proof of which is given in the appendix.

Theorem 1 Let G be any DAG and let p be any distribution in MDF(G)∩Perfect(G),
where MDF(G) is defined using either of the two definitions of an active path.

DsepG(X;Y |V)⇒ Indp(X;Y)

In other words, if two variables are d-separated given any conditioning set in G, then
for all distributions in MDF(G) ∩Perfect(G), those variables are marginally indepen-
dent. To understand the implication of this result, we define what it means for a DAG
to have a chain:

Definition 7 (DAG G has a chain) A DAG G has a chain if one of the following
three sub-graphs occurs in G
• X → Z → Y

• X ← Z → Y

• X ← Z ← Y .

In other words, a graph has a chain if there is a length-two path between non-
adjacent variables that is not a “v-structure” X → Z ← Y . The following result,
proved by Verma and Pearl (1991), will be useful for proving our main result.

Lemma 1 (Verma and Pearl, 1991) Let X and Y be non-adjacent variables in DAG
G, and let Z denote the union of their parents. Then DsepG(X;Y |Z).

For the convenience of the interested reader, we provide a proof of Lemma 1 in the
appendix. We now prove the main result of this paper:

Theorem 2 The following statements are jointly inconsistent:

• G has a chain

• p ∈ Perfect(G)
• p ∈MDF(G).

where MDF(G) is defined using either of the two definitions of an active path.

Proof: Suppose G has a chain, and let p be any distribution in MDF(G)∩Perfect(G).
By definition of a chain, there exists a non-adjacent pair of variables X and Y in G that
are connected by a length-two path through Z, where Z is a parent of either X or Y (or
both). From Lemma 1, we know DsepG(X;Y |Z) where Z is the union of the parents
of X and Y in G. From Theorem 1, this implies that Indp(X;Y). But the length-two
path between X and Y through Z constitutes a simple (and compound) active path

12

in G given the empty conditioning set, and we conclude that p is not faithful to G,
contradicting the supposition that p ∈ Perfect(G).

One possible “fix” in light of this negative result would be to weaken the requirement
that p be faithful. As described in Section 2.2, however, almost all distributions in
Markov(G) are also in Faithful(G), so we can conclude that for generative structures
that have chains, the MDF assumption is not reasonable. The only hope for the MDF
assumption is that it proves to be useful in some (unrealistic) learning scenario where
we can assume that the generative distribution is perfect with respect to some DAG
with no chain. As we saw in Section 4.1, the assumption can be violated for such
a distribution, but given the O(n4) result of CGKBL it might be worth restricting
the possible generative distributions. In this scenario, however, it is easy to derive an
independence-based learning algorithm that (1) does not need to assume MDF and
(2) identifies the optimal structure in just O(n2) calls to an independence oracle! In
particular, because we know ahead of time that only marginal independence facts hold
in the generative distribution, we can identify all of them by testing, for each pair of
variables A and B, whether Indp(A;B). After all the independence facts have been
identified, we direct all the edges using standard approaches. Thus there seems to be
no benefit from assuming MDF.

5 Discussion

In this paper, we demonstrated that the monotone DAG faithfulness assumption is in-
compatible with the faithfulness assumption unless we are in an unrealistic learning
scenario where the optimal structure can be identified with O(n2) calls to an indepen-
dence oracle. Unfortunately, this means that the optimality guarantees of the CGKBL
algorithm are valid only in unrealistic situations where a faster learning algorithm is
also optimal. Furthermore, because an independence oracle can be implemented with
an information oracle, the faster algorithm requires a less powerful oracle.

Given the unreasonable consequences of MDF, it is intriguing that the assumption
is so intuitively appealing. We believe that the source of the misguided intuition stems
from the fact that—assuming faithfulness—information is zero if and only if there are
no active paths. In particular, this fact implies that for any faithful distribution, the
“information flow” between two variables necessarily increases when the set of active
paths changes from the empty set to something other than the empty set. The mistake
is to extrapolate from this base case and conclude that a non-zero “information flow”
does not decrease when we add (zero or more elements) to the set of active paths.

Our study of MDF has led to a surprising result about the structure in Figure 1. In
distributions faithful to that structure, the conditional mutual information between A
and B can be larger when given D than when given C. Although we found that such
distributions were not common given our sampling scheme, they occurred regularly
enough that they cannot be discarded as anomalous.

Although MDF is a bad assumption, CGKBL have brought up an interesting ques-
tion: can we make some connection between active paths and information that might
lead to more efficient learning algorithms? Perhaps a modified definition of an ac-
tive path—that is equivalent to the ones discussed here in terms of the d-separation
criterion—would yield more realistic constraints on distributions and yet still lead to an

13

efficient algorithm.

References

[Cheng et al., 2002] Cheng, J., Greiner, R., Kelly, J., Bell, D., and Liu, W. (2002).
Learning Bayesian networks from data: An information-theory based approach. Ar-
tificial Intelligence, 137:43–90.

[Cover and Thomas, 1991] Cover, T. M. and Thomas, J. A. (1991). Elements of Infor-
mation Theory. John Wiley and Sons, Inc., New York.

[Meek, 1995] Meek, C. (1995). Strong-completeness and faithfulness in belief networks.
In Hanks, S. and Besnard, P., editors, Proceedings of the Eleventh Conference on Un-
certainty in Artificial Intelligence, Montreal, QU, pages 411–418. Morgan Kaufmann.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, San Mateo, CA.

[Spirtes et al., 2000] Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation,
Prediction, and Search (second edition). The MIT Press, Cambridge, Massachussets.

[Verma and Pearl, 1991] Verma, T. and Pearl, J. (1991). Equivalence and synthesis of
causal models. In Henrion, M., Shachter, R., Kanal, L., and Lemmer, J., editors,
Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pages
220–227.

Appendix: Proofs

In this appendix, we prove Proposition 1, Lemma 1, and Theorem 1. We begin by
proving three propositions about active paths, the first of which is Proposition 1.

Proposition 1 There is a simple active path between X and Y given conditioning set Z
in G if and only if there is a compound active path between X and Y given conditioning
set Z in G.
Proof: Because a simple active path is also a compound active path, we need only
show the existence of a simple active path between X and Y given a compound active
path π between X and Y . We establish this result by showing that any sub-path of
π that begins and ends with the same variable W may be “skipped” by replacing the
entire sub-path with the single variable W , such that the resulting path π′ remains
active; after repeatedly removing all such sub-paths, the resulting (active) path will
necessarily be simple. It is easy to see that after removing the sub-path from W to
itself from π, the two properties of an active path in Definition 1 continue to hold for
all variable/positions other than the variable W at the position where the sub-path was
removed.

To complete the proof, we consider the following three cases:
(a) If W ∈ Z, then W must be a collider at every position along π, and therefore

in π′ both edges incident to W at the position where the sub-path was removed are

14

directed into W ; thus, because W is a collider at this position in π, it satisfies condition
(2) of an active path in Definition 1.

(b) If W
∈ Z, and W is not a collider in π′ at the position where the sub-path was
removed, then W at this point satisfies condition (1) of Definition 1.

(c) The final case to consider is if W
∈ Z and W is a collider in π′ at the position the
sub-path was removed. Consider a traversal of the sub-path from W to itself that was
removed from π to produce π′. If either the first or the last edge in this path is directed
toward W , then W is a collider at that point in π, from which we conclude that W has a
descendant in Z and thus W satisfies condition (2) of Definition 1. Otherwise, the first
and last edge of this W to W path are both directed away from W . This means that at
some point along the traversal, we must hit some collider on π that satisfies condition
(2) of Definition 1. Because the first such collider is a descendant of W , condition (2)
of Definition 1 is satisfied for W at this position in π′, and thus the proposition follows.

Proposition 2 For either definition of an active path, if π ∈ ActiveG(Z;Y |W) but
π
∈ ActiveG(Z;Y |W ∪X) then X occurs as a non-collider at some position in π.

Proof: We know that π is active when the conditioning set is W, but if we add X to
the conditioning set, π is no longer active. Therefore, from Definition 1, after adding
X to the conditioning set either (1) there is a non-collider on the path that is now in
the conditioning set, or (2) there is a collider on the path that—after the addition—is
not in the conditioning set and has no descendants in the conditioning set. Because no
variables were removed from the conditioning set, we know that only (1) is possible and
that X is a non-collider at some position on π.

Proposition 3 Let π = {A(1), . . . , A(n)} be any path in Activec
G(Z;Y |W). Then

for any A(i) and A(j) such that i < j, A(i)
∈ W and A(j)
∈ W, the sub-path
π′ = {A(i), . . . , A(j)} is in Activec

G(A(i);A(j)|W).

Proof: From Definition 1, all variables in π′ satisfy one of the two necessary conditions,
with the possible exception of the endpoints; these variables can be colliders in the
original path, but are necessarily non-colliders (see the definition of a collider at a
position in Section 2.1) in π′. Because neither endpoint is in W, condition (1) in
Definition 1 is satisfied for the endpoints and the proposition follows.

Proposition 3 simply asserts that any sub-path of an active path between two vari-
ables that are not in the conditioning set is itself active. Because a simple path is a
compound path, the proposition also holds for simple active paths.

Lemma 1 (Verma and Pearl, 1991) Let X and Y be non-adjacent variables in DAG
G, and let Z denote the union of their parents. Then DsepG(X;Y |Z).

Proof: Suppose that X and Y are not adjacent in DAG G but that there is a simple
active path π between X and Y given Z. Because Z contains the parents of both X and
Y , the variable immediately following X (proceeding Y) must be a descendant of X
(Y). It follows that there must be a collider at some position on path π. Furthermore,
the collider at the position nearest to X on π is a descendant of X and, similarly, the

15

collider at the position nearest to Y on π is a descendant or Y . For the path π to be
active, however, these colliders must be in Z or have descendants in Z, which would
imply the existence of a directed cycle and thus a contradiction.

Note that the next lemma is relevant to simple active paths.

Lemma 2

DsepG(X;Y |W ∪ Z)⇒ Actives
G(Z;Y |W) ⊆ Actives

G(Z;Y |W ∪X)

Proof: If either X or Y is an element of W, the lemma follows easily; for the re-
mainder of the proof we assume that neither variable is contained in the conditioning
set. Suppose DsepG(X;Y |W ∪ Z) and there exists a path π in Actives

G(Z;Y |W) that
is not in Actives

G(Z;Y |W ∪X). From Proposition 2, we conclude that X must be a
non-collider at some position i along π. We now consider the sub-path π′ of π that
starts at variable X in position i, and continues to variable Y . Because neither X nor
Y is in W, we know from Proposition 3 that π′ ∈ ActiveG(X;Y |W). Furthermore,
because π is a simple path that starts at Z, we know that π′ does not contain Z and
consequently must be contained in ActiveG(X;Y |W ∪ Z). But this contradicts the
supposition DsepG(X;Y |W ∪ Z).

We find it convenient to use PaG
X to denote the set of parents of variable X in DAG

G.

Lemma 3 Let X and Y be any pair of variables that are not adjacent in G, and for
which X is not an ancestor of Y , and let D be any non-empty subset of {PaG

X ∪PaG
Y }

such that DsepG(X;Y |D). Let W = D \Z, for any variable Z ∈ D. Then under either
of the two definitions of an active path

ActiveG(Z;Y |W) ⊆ ActiveG(Z;Y |W ∪X)

Proof: Because DsepG(X;Y |W ∪ Z), the lemma follows immediately from Lemma 2
for the simple definition of an active path. For the remainder of the proof, we consider
only the compound definition of an active path.

We prove the lemma by contradiction. In particular, we show that if there exists
an active path in Activec

G(Z;Y |W) that is not in Activec
G(Z;Y |W ∪X), then there

exists some W ∈ W that is a descendant of X in G. Identifying such a W yields a
contradiction by the following argument: if W is a parent of X, then we have identified
a directed cycle in G, and if W is a parent of Y , then X is an ancestor of Y .

The remainder of the proof demonstrates the existence of W ∈W that is a descen-
dant of X in G. Let π = {A(1), . . . , A(n)}—where A(1) = Z and A(n) = Y —be any path
in Activec

G(Z;Y |W) such that π
∈ Activec
G(Z;Y |W ∪X). From Proposition 2, X must

appear as a non-collider at some position i along π; that is, Ai = X and π must contain
one of the following three sub-paths:

1. A(i−1) → X → A(i+1)

2. A(i−1) ← X ← A(i+1)

3. A(i−1) ← X → A(i+1)

16

We now consider any path π′ that starts at X and then follows the edges in π (toward
either A(1) or A(n)) such that the first edge is directed away from X. That is, if π
contains sub-path (1) above we have

π′ = X → A(i+1) − . . . −A(n)

where ‘−’ denotes an edge in the path without specifying its direction. Similarly, if π
contains sub-path (2) above we have

π′ = X → A(i−1) − . . .−A(1)

Finally, if π contains sub-path (3) above, π′ can be defined as either of the previous two
paths.

To simplify our arguments, we rename the elements of π′ as follows:

π′ = X → B(1) − . . .−B(m)

Consider a traversal of π′, starting at the first element X and continuing through each
element B(i) for increasing i. If the traversal ever encounters variable Y , it must first
encounter variable Z; if not, the sub-path from X to Y would constitute an active path
that remains active when Z is in the conditioning set, which contradicts the fact that
DsepG(X;Y |D). Because the last element of the path (B(m)) is by definition either Z
or Y , we conclude there exists a sub-path π′′ of π′

π′′ = X → B(1) − . . .−B(r) − Z

that does not pass through variable Y . We know that there must be some edge in π′′

that is directed as B(j) ← B(j+1). Otherwise, there would be a directed path from X to
Z in G; if Z is a parent of X this would mean G contains a cycle, and if Z is a parent of
Y this would mean X is an ancestor of Y . Without loss of generality, let B(j) ← B(j+1)

be the first edge so directed:

π′′ = X → B(1) → . . .→ B(j−1) → B(j) ← B(j+1) −B(j+2) − . . .−B(r) − Z

Because π′′ is a sub-path of π—and because neither endpoint X nor endpoint Z is an
element in W—we know from Proposition 3 that it is active given conditioning set
W, and thus because it contains the collider B(j−1) → B(j) ← B(j+1), we know from
Definition 1 that there is a W ∈W such that either B(j) = W or B(j) is an ancestor of
W . Because B(j) is a descendant of X, it follows that W is also a descendant of X, and
the proof is complete.

The following three facts about mutual information are well-known. See, for exam-
ple, Cover and Thomas (1991).

Fact 1 Infp(X;Y|Z) = 0 if and only if Indp(X;Y|Z).

Fact 2 For any p, Infp(X;Y|Z) ≥ 0 for all X, Y, Z.

The last fact is known as the chain rule for mutual information.

17

Fact 3

Infp(Y ;X1 ∪ . . . ∪Xn|W) =
n∑

i=1

Infp(Y ;Xi|X1 ∪ . . . ∪Xi−1 ∪W).

Lemma 4 Let p be any distribution. Then

Indp(X;Y |W ∪ Z)⇒ Infp(Z;Y |W)− Infp(Z;Y |W ∪X) = Infp(X;Y |W)

Proof: We expand the quantity Infp(Y ;X ∪ Z|W) using the chain rule with two
different orders for the variables to obtain

Infp(Z;Y |W) + Infp(X;Y |W ∪ Z) = Infp(X;Y |W) + Infp(Z;Y |W ∪X)

From the independence assumption and Fact 1 we have Infp(X;Y |W ∪ Z) = 0 and the
lemma is established.

Finally, we can prove the theorem.

Theorem 1 Let G be any DAG and let p be any distribution in MDF(G)∩Perfect(G),
where MDF(G) is defined using either of the two definitions of an active path.

DsepG(X;Y |V)⇒ Indp(X;Y)

Proof: Suppose this is not the case, and that DsepG(X;Y |V) but there exists some
p ∈MDF(G)∩Perfect(G) in which X and Y are not marginally independent. Because
X and Y are d-separated given V, we know that X and Y are not adjacent in G and
thus by Lemma 1 they are d-separated given PaG

X ∪PaG
Y . Let D be any minimal subset

of PaG
X ∪PaG

Y for which DsepG(X;Y |D); by minimal we mean no proper subset of D
also satisfies this property. We know that D has at least one element because otherwise,
by virtue of the fact that p ∈ Perfect(G) ⊆Markov(G), X and Y would be marginally
independent.

Because G is a DAG, we know that X and Y cannot be ancestors of each other and
thus, without loss of generality, we assume that X is not an ancestor of Y . Let Z be
any element of D. From Lemma 3, we know that for W = D \ Z, we have

ActiveG(Z;Y |W) ⊆ ActiveG(Z;Y |W ∪X)

and thus because p ∈ MDF(G), it follows that Infp(Z;Y |W) ≤ Infp(Z;Y |W ∪X),
or equivalently, Infp(Z;Y |W) − Infp(Z;Y |W ∪X) ≤ 0. From Lemma 4, however,
it follows that this difference is equal to Infp(X;Y |W); because information is non-
negative (Fact 2), it follows that Infp(X;Y |W) = 0 and we conclude from Fact 1 that
Indp(X;Y |W). Because W is a proper subset of D, we know from the minimality of
D that p cannot be perfect, yielding a contradiction.

18

