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Abstract  

    Neural networks are a powerful technology for 
classification of visual inputs arising from documents. 
However, there is a confusing plethora of different neural 
network methods that are used in the literature and in 
industry. This paper describes a set of concrete best 
practices that document analysis researchers can use to 
get good results with neural networks. The most 
important practice is getting a training set as large as 
possible: we expand the training set by adding a new 
form of distorted data. The next most important practice 
is that convolutional neural networks are better suited for 
visual document tasks than fully connected networks. We 
propose that a simple “do-it-yourself” implementation of 
convolution with a flexible architecture is suitable for 
many visual document problems. This simple 
convolutional neural network does not require complex 
methods, such as momentum, weight decay, structure-
dependent learning rates, averaging layers, tangent prop, 
or even finely-tuning the architecture. The end result is a 
very simple yet general architecture which can yield 
state-of-the-art performance for document analysis. We 
illustrate our claims on the MNIST set of English digit 
images.  

1. Introduction  

After being extremely popular in the early 1990s, 
neural networks have fallen out of favor in research in the 
last 5 years.  In 2000, it was even pointed out by the 
organizers of the Neural Information Processing System 
(NIPS) conference that the term “neural networks” in the 
submission title was negatively correlated with 
acceptance.  In contrast, positive correlations were made 
with support vector machines (SVMs), Bayesian 
networks, and variational methods. 

In this paper, we show that neural networks achieve 
the best performance on a handwriting recognition task 
(MNIST).  MNIST [7] is a benchmark dataset of images 
of segmented handwritten digits, each with 28x28 pixels. 
There are 60,000 training examples and 10,000 testing 
examples. 

Our best performance on MNIST with neural networks 
is in agreement with other researchers, who have found 

that neural networks continue to yield state-of-the-art 
performance on visual document analysis tasks [1][2].  

The optimal performance on MNIST was achieved 
using two essential practices. First, we created a new, 
general set of elastic distortions that vastly expanded the 
size of the training set. Second, we used convolutional 
neural networks.  The elastic distortions are described in 
detail in Section 2. Sections 3 and 4 then describe a 
generic convolutional neural network architecture that is 
simple to implement. 

We believe that these two practices are applicable 
beyond MNIST, to general visual tasks in document 
analysis. Applications range from FAX recognition, to 
analysis of scanned documents and cursive recognition in 
the upcoming Tablet PC.   

2. Expanding Data Sets through Elastic 
Distortions  

Synthesizing plausible transformations of data is 
simple, but the “inverse” problem – transformation 
invariance – can be arbitrarily complicated.  Fortunately, 
learning algorithms are very good at learning inverse 
problems.  Given a classification task, one may apply 
transformations to generate additional data and let the 
learning algorithm infer the transformation invariance.  
This invariance is embedded in the parameters, so it is in 
some sense free, since the computation at recognition 
time is unchanged.  If the data is scarce and if the 
distribution to be learned has transformation-invariance 
properties, generating additional data using 
transformations may even improve performance [6].   In 
the case of handwriting recognition, we postulate that the 
distribution has some invariance with respect to not only 
affine transformations, but also elastic deformations 
corresponding to uncontrolled oscillations of the hand 
muscles, dampened by inertia.   

Simple distortions such as translations, rotations, and 
skewing can be generated by applying affine 
displacement fields to images.  This is done by computing 
for every pixel a new target location with respect to the 
original location.  The new target location, at position 
(x,y) is given with respect to the previous position.  For 
instance if ?x(x,y)=1, and ?y(x,y)=0, this means that the 
new location of every pixel is shifted by 1 to the right.  If 



the displacement field was: ?x(x,y)= αx, and 
?y(x,y)= αy, the image would be scaled by α, from the 
origin location (x,y)=(0,0).  Since α could be a non 
integer value, interpolation is necessary. 

 

Figure 1. How to compute new grey level for A, at 
location (0,0) given a displacement ?x(0,0) = 1.75 and 
?y(0,0) = -0.5.  Bilinear interpolation yields 7.0.  

Figure 1 illustrates how to apply a displacement field 
to compute new values for each pixel.  In this example, 
the location of A is assumed to be (0,0) and the numbers 
3, 7, 5, 9 are the grey levels of the image to be 
transformed, at the locations (1,0), (2,0), (1,-1) and (2,-1) 
respectively.  The displacements for A are given by 
?x(0,0) = 1.75 and ?y(0,0) = -0.5 as illustrated in the 
figure the arrow.  The new grey value for A in the new 
(warped) image is computed by evaluating the grey level 
at location (1.75,-0.5) from the original image.     A 
simple algorithm for evaluating the grey level is “bilinear 
interpolation” of the pixel values of the original image.  
Although other interpolation schemes can be used (e.g., 
bicubic and spline interpolation), the bilinear 
interpolation is one of the simplest and works well for 
generating additional warped characters image at the 
chosen resolution (29x29).  Interpolating the value 
horizontally, followed by interpolating the value 
vertically, accomplishes the evaluation.  To compute the 
horizontal interpolations, we first compute the location 
where the arrow ends with respect to the square in which 
it ends.  In this case, the coordinates in the square are 
(0.75, 0.5), assuming the origin of that square is bottom-
left (where the value 5 is located).  In this example, the 
new values are:  3 + 0.75 × (7-3) = 6; and 5 + 0.75 × (9-5) 
= 8.  The vertical interpolation between these values 
yields 8 + 0.5 × (6-8) = 7, which is the new grey level 
value for pixel A.   A similar computation is done for all 
pixels.  If a displacement ends up outside the image, a 
background value (e.g., 0) is assumed for all pixel 
locations outside the given image.  

                    

   

Figure 2. Top left: Original image.  Right and bottom: 
Pairs of displacement fields with various smoothing, 
and resulting images when displacement fields are 
applied to the original image.  

Affine distortions greatly improved our results on the 
MNIST database.  However, our best results were 
obtained when we considered elastic deformations.  The 
image deformations were created by first generating 
random displacement fields, that is ? x(x,y) = rand(-1,+1) 
and ?x(x,y)=rand(-1,+1), where rand(-1,+1) is a random 
number between -1 and +1, generated with a uniform 
distribution.  The fields ?x and ?y are then convolved 
with a Gaussian of standard deviation σ (in pixels).  If σ 
is large, the resulting values are very small because the 
random values average 0.  If we normalize the 
displacement field (to a norm of 1), the field is then close 
to constant, with a random direction.  If σ is small, the 
field looks like a completely random field after 
normalization (as depicted in Figure 2, top right).  For 
intermediate σ values, the displacement fields look like 
elastic deformation, where σ is the elasticity coefficient.  
The displacement fields are then multiplied by a scaling 
factor α that controls the intensity of the deformation.  

Figure 2 shows example of a pure random field (α 
=0.01), a smoothed random field corresponding to the 
properties of the hand (α =8), and a smoothed random 
field corresponding to too much variability (α =4). We 
use α=8 in our experiments. If α is larger than 8, the 
displacements become close to affine, and if α is very 
large, the displacements become translations.   

3. Neural Networks Architectures for Visual 
Tasks     

We considered two types of architectures neural 
network architectures for the MNIST data set. The 
simplest architecture, which is a universal classifier, is a 
fully connected network with two layers [4]. A more 
complicated architecture is a convolutional neural 



network, which has been found to be well-suited for 
visual document analysis tasks [3].  The implementation 
of standard neural networks can be found in textbooks, 
such as [5]. Section 4 describes a new, simple 
implementation of convolutional neural networks. 

To test our neural networks, we tried to keep the 
algorithm as simple as possible, for maximum 
reproducibility. We only tried two different error 
functions: cross-entropy (CE) and mean squared error 
(MSE) (see [5, chapter 6] for more details). We avoided 
using momentum, weight decay, structure-dependent 
learning rates, extra padding around the inputs, and 
averaging instead of subsampling. (We were motivated to 
avoid these complications by trying them on various 
architecture/distortions combinations and on a 
train/validation split of the data and finding that they did 
not help.) 
Our initial weights were set to small random values 
(standard deviation = 0.05). We used a learning rate that 
started at 0.005 and is multiplied by 0.3 every 100 
epochs.  

3.1. Overall architecture for MNIST 
As described in Section 5, we found that the 
convolutional neural network performs the best on 
MNIST. We believe this to be a general result for visual 
tasks, because spatial topology is well captured by 
convolutional neural networks [3], while standard neural 
networks ignore all topological properties of the input. 
That is, if a standard neural network is retrained and 
retested on a data set where all input pixels undergo a 
fixed permutation, the results would be identical. 
    
The overall architecture of the convolutional neural 
network we used for MNIST digit recognition is depicted 
in Figure 3. 

 

Figure 3. Convolution architecture for handwriting 
recognition 

The general strategy of a convolutional network is to 
extract simple features at a higher resolution, and then 
convert them into more complex features at a coarser 
resolution.  The simplest was to generate coarser 
resolution is to sub-sample a layer by a factor of 2.  This, 
in turn, is a clue to the convolutions kernel's size.  The 

width of the kernel is chosen be centered on a unit (odd 
size), to have sufficient overlap to not lose information (3 
would be too small with only one unit overlap), but yet to 
not have redundant computation (7 would be too large, 
with 5 units or over 70% overlap).  A convolution kernel 
of size 5 is shown in Figure 4.  The empty circle units 
correspond to the subsampling and do not need to be 
computed.    Padding the input (making it larger so that 
there are feature units centered on the border) did not 
improve performance significantly.  With no padding, a 
subsampling of 2, and a kernel size of 5, each convolution 
layer reduces the feature size from n to (n-3)/2.  Since the 
initial MNIST input size 28x28, the nearest value which 
generates an integer size after 2 layers of convolution is 
29x29.   After 2 layers of convolution, the feature size of 
5x5 is too small for a third layer of convolution.  The first 
feature layer extracts very simple features, which after 
training look like edge, ink, or intersection detectors.  We 
found that using fewer than 5 different features decreased 
performance, while using more than 5 did not improve it.  
Similarly, on the second layer, we found that fewer than 
50 features (we tried 25) decreased performance while 
more (we tried 100) did not improve it.  These numbers 
are not critical as long as there are enough features to 
carry the information to the classification layers (since the 
kernels are 5x5, we chose to keep the numbers of features 
multiples of 5).      

The first two layers of this neural network can be 
viewed as a trainable feature extractor.  We now add a 
trainable classifier to the feature extractor, in the form of 
2 fully connected layers (a universal classifier).  The 
number of hidden units is variable, and it is by varying 
this number that we control the capacity, and the 
generalization, of the overall classifier.  For MNIST (10 
classes), the optimal capacity was reached with 100 
hidden units.  For Japanese 1 and 2 stroke characters 
(about 400 classes), the optimal capacity was reached 
with about 200 hidden units, with every other parameter 
being identical.   
4. Making Convolutional Neural Networks 
Simple 

Convolutional neural networks have been proposed for 
visual tasks for many years [3], yet have not been popular 
in the engineering community. We believe that is due to 
the complexity of implementing the convolutional neural 
networks. This paper presents new methods for 
implementing such networks that are much easier that 
previous techniques and allow easy debugging.  

4.1. Simple Loops for Convolution 
Fully connected neural networks often use the following 
rules to implement the forward and backward 
propagation: 
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This can be viewed as the activation units of the higher 
layer “pulling” the activations of all the units connected 
to them.  Similarly, the units of the lower layer are 
pulling the gradients of all the units connected to them.  
The pulling strategy, however, is complex and painful to 
implement when computing the gradients of a 
convolutional network.  The reason is that in a 
convolution layer, the number of connections leaving 
each unit is not constant because of border effects. 
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Figure 3. Convolutional neural network (1D) 

This is easy to see on Figure 1, where all the units labeled 
0
ig have a variable number of outgoing connections.  In 

contrast, all the units on the upper layer have a fixed 
number of incoming connections.  To simplify 
computation, instead of pulling the gradient from the 
lower layer, we can “push” the gradient from the upper 
layer.  The resulting equation is:  

1 1L L L
j i i jg w g+ +
+ + = (1.3) 

For each unit j in the upper layer, we update a fixed 
number of (incoming) units i from the lower layer (in the 
figure i is between 0 and 4).  Because in convolution the 
weights are shared, w does not depend on j.  Note that 
pushing is slower than pulling because the gradients are 
accumulated in memory, as opposed to in pulling, where 
gradient are accumulated in a register.  Depending on the 
architecture, this can sometimes be as much as 50% 
slower (which amounts to less than 20% decrease in 
overall performance).  For large convolutions, however, 
pushing the gradient may be faster, and can be used to 
take advantage of Intel’s SSE instructions, because all the 
memory accesses are contiguous.  From an 
implementation standpoint, pulling the activation and 
pushing the gradient is by far the simplest way to 
implement convolution layers and well worth the slight 
compromise in speed.   

4.2. Modular debugging 
Back-propagation has a good property: it allows neural 
networks to be expressed and debugged in a modular 
fashion.  For instance, we can assume that a module M 
has a forward propagation function which computes its 
output M(I,W) as a function of its input I and its 
parameters W.  It also has a backward propagation 
function (with respect to the input) which computes the 
input gradient as a function of the output gradient, a 
gradient function (with respect to the weight), which 
computes the weight gradient with respect to the output 
gradient, and a weight update function, which adds the 
weight gradients to the weights using some updating rules 
(batch, stochastic, momentum, weight decay, etc).  By 
definition, the Jacobian matrix of a function M is defined 
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Jacobian matrix of neural network). Using the backward 
propagation function and the gradient function, it is 
straightforward to compute the two Jacobian matrices 
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where F is a function which takes a matrix and inverts 
each of its elements, one can automatically verify that the 
forward propagation accurately corresponds to the 
backward and gradient propagations (note: the back-
propagation computes F( ∂ I/ ∂ M(I,W)) directly so only a 
transposition is necessary to compare it with the Jacobian 
computed by the forward propagation.  In other words, if 
the equalities above are verified to the precision of the 
machine, learning is implemented correctly.  This is 
particularly useful for large networks since incorrect 
implementations sometimes yield reasonable results.  
Indeed, learning algorithms tend to be robust even to 
bugs.  In our implementation, each neural network is a 
C++ module and is a combination of more basic modules.  
A module test program instantiates the module in double 
precision, sets ε=10−12 (the machine precision for double is 
10−16), generates random values for I and W, and performs 



a correctness test to a precision of 10−10.  If the larger 
module fails the test, we test each of the sub-modules 
until we find the culprit.  This extremely simple and 
automated procedure has saved a considerable amount of 
debugging time.  

5. Results 
For both fully connected and convolutional neural 

networks, we used the first 50,000 patterns of the MNIST 
training set for training, and the remaining 10,000 for 
validation and parameter adjustments.  The result 
reported on test set where done with the parameter values 
that were optimal on validation.  The two-layer Multi-
Layer Perceptron (MLP) in this paper had 800 hidden 
units, while the two-layer MLP in [3] had 1000 hidden 
units.  The results are reported in the table below: 
Algorithm Distortion Error Ref. 
2 layer MLP 
(MSE) 

affine 1.6% [3] 

SVM affine 1.4% [9] 
Tangent dist. affine+thick 1.1% [3] 
Lenet5 (MSE) affine 0.8% [3] 
Boost. Lenet4 MSE affine 0.7% [3] 
Virtual SVM affine 0.6% [9] 
2 layer MLP (CE) none 1.6% this paper 
2 layer MLP (CE) affine 1.1% this paper 
2 layer MLP 
(MSE) 

elastic 0.9% this paper 

2 layer MLP (CE) elastic 0.7% this paper 
Simple conv (CE) affine 0.6% this paper 
Simple conv (CE) elastic 0.4% this paper 

Table 1. Comparison between various algorithms. 

There are several interesting results in this table.  The 
most important is that elastic deformations have a 
considerable impact on performance, both for the 2 layer 
MLP and our convolutional architectures.  As far as we 
know, 0.4% error is best result to date on the MNIST 
database.   This implies that the MNIST database is too 
small for most algorithms to infer generalization properly, 
and that elastic deformations provide additional and 
relevant a-priori knowledge.  Second, we observe that 
convolutional networks do well compared to 2-layer 
MLPs, even with elastic deformation.  The topological 
information implicit in convolutional networks is not 
easily inferred by MLP, even with elastic deformation.  
Finally, we observed that the most recent experiments 
yielded better performance than similar experiments 
performed 8 years ago and reported in [3].  Possible 
explanations are that the hardware is now 1.5 orders of 
magnitude faster (we can now afford hundreds of epochs) 
and that in our experiments, CE trained faster than MSE.  

6. Conclusions 
We have achieved the highest performance known to 

date on the MNIST data set, using elastic distortion and 
convolutional neural networks. We believe that these 
results reflect two important issues. 

Training set size: The quality of a learned system is 
primarily dependent of the size and quality of the training 
set. This conclusion is supported by evidence from other 
application areas, such as text[8]. For visual document 
tasks, this paper proposes a simple technique for vastly 
expanding the training set: elastic distortions. These 
distortions improve the results on MNIST substantially. 

Convolutional Neural Networks: Standard neural 
networks are state-of-the-art classifiers that perform about 
as well as other classification techniques that operate on 
vectors, without knowledge of the input topology. 
However, convolutional neural network exploit the 
knowledge that the inputs are not independent elements, 
but arise from a spatial structure. 

Research in neural networks has slowed, because 
neural network training is perceived to require arcane 
black magic to get best results. We have shown that the 
best results do not require any arcane techniques: some of 
the specialized techniques may have arisen from 
computational speed limitations that are not applicable in 
the 21st Century.  
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