
Best Practices for Convolutional Neural Networks
Applied to Visual Document Analysis

Patrice Y. Simard, Dave Steinkraus, John C. Platt
Microsoft Research, One Microsoft Way, Redmond WA 98052

{patrice,v-davste,jplatt}@microsoft.com

Abstract

 Neural networks are a powerful technology for
classification of visual inputs arising from documents.
However, there is a confusing plethora of different neural
network methods that are used in the literature and in
industry. This paper describes a set of concrete best
practices that document analysis researchers can use to
get good results with neural networks. The most
important practice is getting a training set as large as
possible: we expand the training set by adding a new
form of distorted data. The next most important practice
is that convolutional neural networks are better suited for
visual document tasks than fully connected networks. We
propose that a simple “do-it-yourself” implementation of
convolution with a flexible architecture is suitable for
many visual document problems. This simple
convolutional neural network does not require complex
methods, such as momentum, weight decay, structure-
dependent learning rates, averaging layers, tangent prop,
or even finely-tuning the architecture. The end result is a
very simple yet general architecture which can yield
state-of-the-art performance for document analysis. We
illustrate our claims on the MNIST set of English digit
images.

1. Introduction

After being extremely popular in the early 1990s,
neural networks have fallen out of favor in research in the
last 5 years. In 2000, it was even pointed out by the
organizers of the Neural Information Processing System
(NIPS) conference that the term “neural networks” in the
submission title was negatively correlated with
acceptance. In contrast, positive correlations were made
with support vector machines (SVMs), Bayesian
networks, and variational methods.

In this paper, we show that neural networks achieve
the best performance on a handwriting recognition task
(MNIST). MNIST [7] is a benchmark dataset of images
of segmented handwritten digits, each with 28x28 pixels.
There are 60,000 training examples and 10,000 testing
examples.

Our best performance on MNIST with neural networks
is in agreement with other researchers, who have found

that neural networks continue to yield state-of-the-art
performance on visual document analysis tasks [1][2].

The optimal performance on MNIST was achieved
using two essential practices. First, we created a new,
general set of elastic distortions that vastly expanded the
size of the training set. Second, we used convolutional
neural networks. The elastic distortions are described in
detail in Section 2. Sections 3 and 4 then describe a
generic convolutional neural network architecture that is
simple to implement.

We believe that these two practices are applicable
beyond MNIST, to general visual tasks in document
analysis. Applications range from FAX recognition, to
analysis of scanned documents and cursive recognition in
the upcoming Tablet PC.

2. Expanding Data Sets through Elastic
Distortions

Synthesizing plausible transformations of data is
simple, but the “inverse” problem – transformation
invariance – can be arbitrarily complicated. Fortunately,
learning algorithms are very good at learning inverse
problems. Given a classification task, one may apply
transformations to generate additional data and let the
learning algorithm infer the transformation invariance.
This invariance is embedded in the parameters, so it is in
some sense free, since the computation at recognition
time is unchanged. If the data is scarce and if the
distribution to be learned has transformation-invariance
properties, generating additional data using
transformations may even improve performance [6]. In
the case of handwriting recognition, we postulate that the
distribution has some invariance with respect to not only
affine transformations, but also elastic deformations
corresponding to uncontrolled oscillations of the hand
muscles, dampened by inertia.

Simple distortions such as translations, rotations, and
skewing can be generated by applying affine
displacement fields to images. This is done by computing
for every pixel a new target location with respect to the
original location. The new target location, at position
(x,y) is given with respect to the previous position. For
instance if ?x(x,y)=1, and ?y(x,y)=0, this means that the
new location of every pixel is shifted by 1 to the right. If

the displacement field was: ?x(x,y)= αx, and
?y(x,y)= αy, the image would be scaled by α, from the
origin location (x,y)=(0,0). Since α could be a non
integer value, interpolation is necessary.

Figure 1. How to compute new grey level for A, at
location (0,0) given a displacement ?x(0,0) = 1.75 and
?y(0,0) = -0.5. Bilinear interpolation yields 7.0.

Figure 1 illustrates how to apply a displacement field
to compute new values for each pixel. In this example,
the location of A is assumed to be (0,0) and the numbers
3, 7, 5, 9 are the grey levels of the image to be
transformed, at the locations (1,0), (2,0), (1,-1) and (2,-1)
respectively. The displacements for A are given by
?x(0,0) = 1.75 and ?y(0,0) = -0.5 as illustrated in the
figure the arrow. The new grey value for A in the new
(warped) image is computed by evaluating the grey level
at location (1.75,-0.5) from the original image. A
simple algorithm for evaluating the grey level is “bilinear
interpolation” of the pixel values of the original image.
Although other interpolation schemes can be used (e.g.,
bicubic and spline interpolation), the bilinear
interpolation is one of the simplest and works well for
generating additional warped characters image at the
chosen resolution (29x29). Interpolating the value
horizontally, followed by interpolating the value
vertically, accomplishes the evaluation. To compute the
horizontal interpolations, we first compute the location
where the arrow ends with respect to the square in which
it ends. In this case, the coordinates in the square are
(0.75, 0.5), assuming the origin of that square is bottom-
left (where the value 5 is located). In this example, the
new values are: 3 + 0.75 × (7-3) = 6; and 5 + 0.75 × (9-5)
= 8. The vertical interpolation between these values
yields 8 + 0.5 × (6-8) = 7, which is the new grey level
value for pixel A. A similar computation is done for all
pixels. If a displacement ends up outside the image, a
background value (e.g., 0) is assumed for all pixel
locations outside the given image.

Figure 2. Top left: Original image. Right and bottom:
Pairs of displacement fields with various smoothing,
and resulting images when displacement fields are
applied to the original image.

Affine distortions greatly improved our results on the
MNIST database. However, our best results were
obtained when we considered elastic deformations. The
image deformations were created by first generating
random displacement fields, that is ? x(x,y) = rand(-1,+1)
and ?x(x,y)=rand(-1,+1), where rand(-1,+1) is a random
number between -1 and +1, generated with a uniform
distribution. The fields ?x and ?y are then convolved
with a Gaussian of standard deviation σ (in pixels). If σ
is large, the resulting values are very small because the
random values average 0. If we normalize the
displacement field (to a norm of 1), the field is then close
to constant, with a random direction. If σ is small, the
field looks like a completely random field after
normalization (as depicted in Figure 2, top right). For
intermediate σ values, the displacement fields look like
elastic deformation, where σ is the elasticity coefficient.
The displacement fields are then multiplied by a scaling
factor α that controls the intensity of the deformation.

Figure 2 shows example of a pure random field (α
=0.01), a smoothed random field corresponding to the
properties of the hand (α =8), and a smoothed random
field corresponding to too much variability (α =4). We
use α=8 in our experiments. If α is larger than 8, the
displacements become close to affine, and if α is very
large, the displacements become translations.

3. Neural Networks Architectures for Visual
Tasks

We considered two types of architectures neural
network architectures for the MNIST data set. The
simplest architecture, which is a universal classifier, is a
fully connected network with two layers [4]. A more
complicated architecture is a convolutional neural

network, which has been found to be well-suited for
visual document analysis tasks [3]. The implementation
of standard neural networks can be found in textbooks,
such as [5]. Section 4 describes a new, simple
implementation of convolutional neural networks.

To test our neural networks, we tried to keep the
algorithm as simple as possible, for maximum
reproducibility. We only tried two different error
functions: cross-entropy (CE) and mean squared error
(MSE) (see [5, chapter 6] for more details). We avoided
using momentum, weight decay, structure-dependent
learning rates, extra padding around the inputs, and
averaging instead of subsampling. (We were motivated to
avoid these complications by trying them on various
architecture/distortions combinations and on a
train/validation split of the data and finding that they did
not help.)
Our initial weights were set to small random values
(standard deviation = 0.05). We used a learning rate that
started at 0.005 and is multiplied by 0.3 every 100
epochs.

3.1. Overall architecture for MNIST
As described in Section 5, we found that the
convolutional neural network performs the best on
MNIST. We believe this to be a general result for visual
tasks, because spatial topology is well captured by
convolutional neural networks [3], while standard neural
networks ignore all topological properties of the input.
That is, if a standard neural network is retrained and
retested on a data set where all input pixels undergo a
fixed permutation, the results would be identical.

The overall architecture of the convolutional neural
network we used for MNIST digit recognition is depicted
in Figure 3.

Figure 3. Convolution architecture for handwriting
recognition

The general strategy of a convolutional network is to
extract simple features at a higher resolution, and then
convert them into more complex features at a coarser
resolution. The simplest was to generate coarser
resolution is to sub-sample a layer by a factor of 2. This,
in turn, is a clue to the convolutions kernel's size. The

width of the kernel is chosen be centered on a unit (odd
size), to have sufficient overlap to not lose information (3
would be too small with only one unit overlap), but yet to
not have redundant computation (7 would be too large,
with 5 units or over 70% overlap). A convolution kernel
of size 5 is shown in Figure 4. The empty circle units
correspond to the subsampling and do not need to be
computed. Padding the input (making it larger so that
there are feature units centered on the border) did not
improve performance significantly. With no padding, a
subsampling of 2, and a kernel size of 5, each convolution
layer reduces the feature size from n to (n-3)/2. Since the
initial MNIST input size 28x28, the nearest value which
generates an integer size after 2 layers of convolution is
29x29. After 2 layers of convolution, the feature size of
5x5 is too small for a third layer of convolution. The first
feature layer extracts very simple features, which after
training look like edge, ink, or intersection detectors. We
found that using fewer than 5 different features decreased
performance, while using more than 5 did not improve it.
Similarly, on the second layer, we found that fewer than
50 features (we tried 25) decreased performance while
more (we tried 100) did not improve it. These numbers
are not critical as long as there are enough features to
carry the information to the classification layers (since the
kernels are 5x5, we chose to keep the numbers of features
multiples of 5).

The first two layers of this neural network can be
viewed as a trainable feature extractor. We now add a
trainable classifier to the feature extractor, in the form of
2 fully connected layers (a universal classifier). The
number of hidden units is variable, and it is by varying
this number that we control the capacity, and the
generalization, of the overall classifier. For MNIST (10
classes), the optimal capacity was reached with 100
hidden units. For Japanese 1 and 2 stroke characters
(about 400 classes), the optimal capacity was reached
with about 200 hidden units, with every other parameter
being identical.
4. Making Convolutional Neural Networks
Simple

Convolutional neural networks have been proposed for
visual tasks for many years [3], yet have not been popular
in the engineering community. We believe that is due to
the complexity of implementing the convolutional neural
networks. This paper presents new methods for
implementing such networks that are much easier that
previous techniques and allow easy debugging.

4.1. Simple Loops for Convolution
Fully connected neural networks often use the following
rules to implement the forward and backward
propagation:

1 1

,
L L L
j j i i

i

x w x+ += ∑

(1.1)

1 1
,gL L L

i j i j
j

w g+ += ∑

(1.2)

where L
ix and L

ig are respectively the activation and the

gradient of unit i

at layer L , and 1

,
L
j iw + is the weight

connecting unit i

at layer L

to unit j

at layer 1L + .

This can be viewed as the activation units of the higher
layer “pulling” the activations of all the units connected
to them. Similarly, the units of the lower layer are
pulling the gradients of all the units connected to them.
The pulling strategy, however, is complex and painful to
implement when computing the gradients of a
convolutional network. The reason is that in a
convolution layer, the number of connections leaving
each unit is not constant because of border effects.

0
0g 0

1g 0
2g 0

3g 0
4g

1
0g 1

1g 1
2g

Figure 3. Convolutional neural network (1D)

This is easy to see on Figure 1, where all the units labeled
0
ig have a variable number of outgoing connections. In

contrast, all the units on the upper layer have a fixed
number of incoming connections. To simplify
computation, instead of pulling the gradient from the
lower layer, we can “push” the gradient from the upper
layer. The resulting equation is:

1 1L L L
j i i jg w g+ +
+ + = (1.3)

For each unit j in the upper layer, we update a fixed
number of (incoming) units i from the lower layer (in the
figure i is between 0 and 4). Because in convolution the
weights are shared, w does not depend on j. Note that
pushing is slower than pulling because the gradients are
accumulated in memory, as opposed to in pulling, where
gradient are accumulated in a register. Depending on the
architecture, this can sometimes be as much as 50%
slower (which amounts to less than 20% decrease in
overall performance). For large convolutions, however,
pushing the gradient may be faster, and can be used to
take advantage of Intel’s SSE instructions, because all the
memory accesses are contiguous. From an
implementation standpoint, pulling the activation and
pushing the gradient is by far the simplest way to
implement convolution layers and well worth the slight
compromise in speed.

4.2. Modular debugging
Back-propagation has a good property: it allows neural
networks to be expressed and debugged in a modular
fashion. For instance, we can assume that a module M
has a forward propagation function which computes its
output M(I,W) as a function of its input I and its
parameters W. It also has a backward propagation
function (with respect to the input) which computes the
input gradient as a function of the output gradient, a
gradient function (with respect to the weight), which
computes the weight gradient with respect to the output
gradient, and a weight update function, which adds the
weight gradients to the weights using some updating rules
(batch, stochastic, momentum, weight decay, etc). By
definition, the Jacobian matrix of a function M is defined

to be k
ki

i

M
J

x

∂≡
∂

(see [5] p. 148 for more information on

Jacobian matrix of neural network). Using the backward
propagation function and the gradient function, it is
straightforward to compute the two Jacobian matrices

(,) (,)

and
I W

M I W M I W

∂ ∂

∂ ∂ by simply feeding the

(gradient) unit vectors ∆Mk(I,W) to both of these
functions, where k indexes all the output units of M, and
only unit k is set to 1 and all the others are set to 0.
Conversely, we can generate arbitrarily accurate

estimates of the Jacobians matrices
(,)M I W

I

∂

∂

and

(,)M I W

W

∂

∂
by adding small variations ε to I and W and

calling the M(I,W) function. Using the equalities:

() ()

and

T T
M M

F F
I W

I W

M M

∂ ∂
= =

∂ ∂

∂ ∂

∂ ∂

where F is a function which takes a matrix and inverts
each of its elements, one can automatically verify that the
forward propagation accurately corresponds to the
backward and gradient propagations (note: the back-
propagation computes F(∂ I/ ∂ M(I,W)) directly so only a
transposition is necessary to compare it with the Jacobian
computed by the forward propagation. In other words, if
the equalities above are verified to the precision of the
machine, learning is implemented correctly. This is
particularly useful for large networks since incorrect
implementations sometimes yield reasonable results.
Indeed, learning algorithms tend to be robust even to
bugs. In our implementation, each neural network is a
C++ module and is a combination of more basic modules.
A module test program instantiates the module in double
precision, sets ε=10−12 (the machine precision for double is
10−16), generates random values for I and W, and performs

a correctness test to a precision of 10−10. If the larger
module fails the test, we test each of the sub-modules
until we find the culprit. This extremely simple and
automated procedure has saved a considerable amount of
debugging time.

5. Results
For both fully connected and convolutional neural

networks, we used the first 50,000 patterns of the MNIST
training set for training, and the remaining 10,000 for
validation and parameter adjustments. The result
reported on test set where done with the parameter values
that were optimal on validation. The two-layer Multi-
Layer Perceptron (MLP) in this paper had 800 hidden
units, while the two-layer MLP in [3] had 1000 hidden
units. The results are reported in the table below:
Algorithm Distortion Error Ref.
2 layer MLP
(MSE)

affine 1.6% [3]

SVM affine 1.4% [9]
Tangent dist. affine+thick 1.1% [3]
Lenet5 (MSE) affine 0.8% [3]
Boost. Lenet4 MSE affine 0.7% [3]
Virtual SVM affine 0.6% [9]
2 layer MLP (CE) none 1.6% this paper
2 layer MLP (CE) affine 1.1% this paper
2 layer MLP
(MSE)

elastic 0.9% this paper

2 layer MLP (CE) elastic 0.7% this paper
Simple conv (CE) affine 0.6% this paper
Simple conv (CE) elastic 0.4% this paper

Table 1. Comparison between various algorithms.

There are several interesting results in this table. The
most important is that elastic deformations have a
considerable impact on performance, both for the 2 layer
MLP and our convolutional architectures. As far as we
know, 0.4% error is best result to date on the MNIST
database. This implies that the MNIST database is too
small for most algorithms to infer generalization properly,
and that elastic deformations provide additional and
relevant a-priori knowledge. Second, we observe that
convolutional networks do well compared to 2-layer
MLPs, even with elastic deformation. The topological
information implicit in convolutional networks is not
easily inferred by MLP, even with elastic deformation.
Finally, we observed that the most recent experiments
yielded better performance than similar experiments
performed 8 years ago and reported in [3]. Possible
explanations are that the hardware is now 1.5 orders of
magnitude faster (we can now afford hundreds of epochs)
and that in our experiments, CE trained faster than MSE.

6. Conclusions
We have achieved the highest performance known to

date on the MNIST data set, using elastic distortion and
convolutional neural networks. We believe that these
results reflect two important issues.

Training set size: The quality of a learned system is
primarily dependent of the size and quality of the training
set. This conclusion is supported by evidence from other
application areas, such as text[8]. For visual document
tasks, this paper proposes a simple technique for vastly
expanding the training set: elastic distortions. These
distortions improve the results on MNIST substantially.

Convolutional Neural Networks: Standard neural
networks are state-of-the-art classifiers that perform about
as well as other classification techniques that operate on
vectors, without knowledge of the input topology.
However, convolutional neural network exploit the
knowledge that the inputs are not independent elements,
but arise from a spatial structure.

Research in neural networks has slowed, because
neural network training is perceived to require arcane
black magic to get best results. We have shown that the
best results do not require any arcane techniques: some of
the specialized techniques may have arisen from
computational speed limitations that are not applicable in
the 21st Century.

7. References
[1] Y. Tay, P. Lallican, M. Khalid, C. Viard-Gaudin, S.
Knerr, “An Offline Cursive Handwriting
Word Recognition System”, Proc. IEEE Region 10 Conf.,
(2001).
[2] A. Sinha, An Improved Recognition Module for the
Identification of Handwritten Digits, M.S. Thesis, MIT,
(1999).
[3] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner,
“Gradient-based learning applied to document
recognition” Proceedings of the IEEE, v. 86, pp. 2278-
2324, 1998.
[4] K. M. Hornik, M. Stinchcombe, H. White, “Universal
Approximation of an Unknown Mapping and its
Derivatives using Multilayer Feedforward Networks”
Neural Networks, v. 3, pp. 551-560, (1990).
[5] C. M. Bishop, Neural Networks for Pattern
Recognition, Oxford University Press, (1995).
[6] L. Yaeger, R. Lyon, B. Webb, “Effective Training of
a Neural Network Character Classifier for Word
Recognition”, NIPS, v. 9, pp. 807-813, (1996).
[7] Y. LeCun, “The MNIST database of handwritten
digits,” http://yann.lecun.com/exdb/mnist.
[8] M. Banko, E. Brill, “Mitigating the Paucity-of-Date
Problem: Exploring the Effect of Training Corpus Size on
Classifier Performance for Natural Language Processing,”
Proc. Conf. Human Language Technology, (2001).

http://yann.lecun.com/exdb/mnist

[9] D. Decoste and B. Scholkopf, “Training Invariant
Support Vector Machines”, Machine Learning Journal,
vol 46, No 1-3, 2002.

