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ABSTRACT

Energy constrained systems such as sensor networks can increase
their usable lifetimes by extracting energy from their environment.
However, environmental energy will typically not be spread homo-
geneously over the spread of the network. We argue that significant
improvements in usable system lifetime can be achieved if the task
allocation is aligned with the spatio-temporal characteristics of en-
ergy availability. To the best of our knowledge, this problem has
not been addressed before. We present a distributed framework for
the sensor network to adaptively learn its energy environment and
give localized algorithms to use this information for task sharing
among nodes. Our framework allows the system to exploit its en-
ergy resources more efficiently, thus increasing its lifetime. These
gains are in addition to those from utilizing sleep modes and resid-
ual energy based scheduling mechanisms. Performance studies for
an experimental energy environment show up to 200% improve-
ment in lifetime.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.2.2 [Computer-Communication Networks]: Network Pro-
tocols—routing protocols

General Terms
Algorithms, design

Keywords

energy harvesting, sensor networks, task scheduling, energy aware
routing

1. INTRODUCTION

Distributed autonomous systems such as sensor-actuator networks
are being envisioned to carry out complex task setswithout human
intervention [23, 21, 3]. The true autonomy of such systems de-
pends on their reliable operation for extended times without main-
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tenance. Energy supply is a major design constraint in these sys-
tems and the lifetime is limited by battery supplies. The size of
the battery exceeds most other system componentsin many sensor
nodes [12, 14]. One way to alleviate this problem is to provide the
network with capabilities to automatically feed itself from its envi-
ronment, which opens up the possibility of achieving significantly
longer lifetimes and reducing the battery size.

Mechanisms exist for compact devices to extract energy from
the environment, such as solar power, microbial fuel cells [9], vi-
brations and acoustic noise [13]. The naive approach would be
for each node to scavenge its own energy. Thisis not enough be-
cause the energy availability will typically not be homogeneous at
al nodes. There is a potential here to extract more work out of
the same energy environment if the task distribution among nodes
is adapted to the detailed characteristics of environmental energy
availability. We explore this challenge.

1.1 Key Contributions

First, we observe the need to design new algorithms for schedul-
ing and task allotment within the sensor network when nodes are
provided with recharging capabilities. Current energy aware task
allotment strategies base their decisions on residual energy at each
node and do not exploit the fact that energy replenishing capability
may be present at some nodes. As far as possible, tasks should be
carried out using the environmental energy (or energy from nodes
which have ample recharging opportunity) rather than consuming
energy from a battery which does not have any recharging opportu-
nity. Specifically, the spatio-temporal properties of the energy sup-
ply across the deployment terrain of the network must be exploited
for task allotment within the network. We refer to the problem of
extracting the maximum work out of a given energy environment
as the “harvesting problem.”

Second, we make the first step towards solving the harvesting
problem by providing a distributed framework, referred to as the
environmental energy harvesting framework (EEHF), to

o adaptively learn the energy properties of the environment and
the renewal opportunity at each node through local measure-
ments

e make the information available in a succinct form for usein
energy aware task assignment such as load balancing, |eader
elections for clustering techniques, and energy aware com-
munication.

We also suggest modifications to existing load balancing meth-
odsto exploit the information provided by EEHF. The details of the
energy environment can also be used for incremental deployment
in regions of scarcity and adjustment of performance constraints



expected from the deployed system. We illustrate EEHF applied to
a specific task, that of routing, in an example energy environment.

1.2 Related Work

To our knowledge no ongoing or previous work has addressed
the problem of learning the energy environment of a sensor net-
work for modifying the task sharing among network nodes. Here,
we mention previous work which helped in proposing a solution to
this new problem. Low power design techniques have been sug-
gested for all aspects of sensor network design [15, 10]. These
techniques attempt to minimize the energy usage at al levels of
system operation. The usability of the network does not depend
only on the total energy available in all its nodes but also on how
this energy is distributed among them. If a particular section of the
network dies, while the remaining sections have abundant energy,
the network may no longer be able to provide the service it was
deployed for. Thus, in addition to minimizing energy usage, the
system lifetime can be increased by modifying the task allotment
according to the energy available at network nodes. Some examples
of such techniques can be found in [19, 20, 25, 7, 24] for routing
and data gathering. The first requirement for these techniques is
to get the information about energy availability at the nodes.The
remaining energy in a battery can be estimated from its discharge
function and measured voltage supplied [20]. Network wide en-
ergy scans can be collected [26]. These methods report residual
battery sizes and do not include the characteristics of environmen-
tal energy. Methods to predict energy consumption [11] have been
proposed which can be exploited by EEHF. A method to transfer
energy from sources to depleted nodes was proposed in [16], using
mobile nodes. EEHF does not require mobile nodes and attempts
to distribute the tasks as per the energy availability. The algorithms
in [16] can help improve EEHF when mobile nodes are available.

EEHF is a significant development over the methods suggested
in the above works. It incorporates the harvesting capability, and
presents a unified framework for using these methods according to
the network environment.

1.3 Outline

The next section motivates why the framework is important and
discusses the issuesin its design. Section 3 describes our proposed
EEHF and presents modifications in known power management
strategies to incorporate its use. Section 4 studies the performance
of our framework for aparticular task allotment application—routing,
in a specific energy availability environment, based on data col-
lected from James Reserve [6]. Comparisons are made with aresid-
ual energy based scheme. Section 5 concludes the paper.

2. DESIGN CHALLENGES

We first discuss why there is a need to learn the environment. It
seems at thefirst glance that nodes which have higher environmen-
tal energy available will have higher residual battery supplies and
just looking at the battery should be sufficient for task allocation.
There are two reasons why the knowledge about the environmental
energy is explicitly needed.

The first is that the workload in the network may not follow
the replenishment cycles: over some time intervals it may happen
that the energy consumed at a node with recharging opportunity is
more that the energy gained from the environment, thus reducing
its residual battery to a smaller size than a node with no recharg-
ing. Thisisvery likely once we start allotting more work to nodes
with higher battery size. At the instant that their battery depletes
to the level of the battery in nodes without recharging opportunity,
knowing the environment becomes essential.

The second reason is that knowing only residua energy is not
sufficient to decide how much extra energy can be consumed at the
energy-rich nodes to save energy at the constrained nodes without
jeopardizing the richer node’'s own lifetime. Consider for example
the transmit energy used at every node for maintaining a connected
topology. It is clear that nodes with more environmental energy
should use higher transmit power to save energy at other nodes.
However, we need to know the environmental energy available at a
node to decide how much extratransmit energy can be used by this
node without unduely depleting its battery.

2.1 Design Issues

EEHF aimsto provide a scalable solution to the harvesting prob-
lem. The design challenges here involve learning the environment
locally, sharing the learnt information and scheduling tasks for op-
timal lifetime.

2.1.1 Learning the Environment

The environmental energy at any time will typicaly be unequal
at different points in space and will vary with time. In the case of
seismic energy for instance, the vibrations may occur at different
locations at different points in time, in an unknown pattern. So-
lar energy will display diurnal and seasonal patterns. The network
application is likely to cause non-uniform energy usage, leading to
energy discrepancies.

When taking a tasking decision, a node which is more likely to
have excess energy in the future has to be used. Hence, based on
the availability (and consumption on tasks beyond the control of
the scheduler) till the present time, the future availability in terms
of amount of energy and the time duration over which it will be
available, need to be predicted. Depending on the patternsin avail-
able energy, the algorithm may determine aperiod over which good
predictions can be made. When no useful predictions can be made,
the scheme should reduce to residual energy based methods.

2.1.2 Sharing Network-wide Information

The system wide space-time characteristics of both the environ-
mental energy and activity cannot be learnt by a single node. The
information has to be gathered and used in a distributed fashion.

The complete environment observed by the network can be de-
scribed by a set of curves giving time variation of the energy avail-
ability at al nodes, for all times. However, considering the band-
width limitations of low power nodes and scalability issues in net-
works with a large number of nodes this description would be too
large to communicate to and store at all nodes. Thus, appropriate
metrics, retaining just the amount of information required for the
task sharing methods, are required.

These metrics have to be spread and updated in the network to
the extent required for useful task allotment.

After learning the environmental characteristics, the framework
has to take scheduling decisions such that the system lifetime is
maximized. Apart from redistributing tasks, the framework may
provide for redistribution of energy itself, such as through methods
in [16] when mobility is available; this is not considered in the
present work.

3. DETAILED FRAMEWORK DESIGN

EEHF is a distributed framework for aligning the task distribu-
tion with energy availability. Finding the optimal set of parameters
to describe the environment from a scheduling perspective and the
methods to utilize them is a difficult problem. To obtain initial in-
sights on the feasibility of EEHF, we work with a heuristic set and
evaluate its performance.
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Figure 1. Interactions between various EEHF algorithms

The following parameters are used to track the characteristics of
energy availability:

T time epoch over which availability prediction is made
E,,: mean energy expected in subsequent 7' duration

E.,: energy consumed in every T interval on tasks not in control
of the scheduler

n: prediction confidence, a number between 0 and 1

¢: information regarding when the next recharging opportunity is
expected within next T' time

E: current battery remaining

B: maximum battery size, beyond which environmentally avail-
able energy cannot be stored

The challenge is now reduced to finding a single cost C' at each
node based on the above parameters:

C=f(T,Em,Ecm,7],¢,Eb,B) (l)

where f(.) is a function to be specified by EEHF. This function
£(.) should be such that scheduling decisions based on C' automat-
ically select nodes with higher environmental energy to the max-
imum extent required for optimizing the lifetime. For instance,
when E. — E.,, and n are high at a node the scheduler may use
this node even to its last joule as this node will become alive within
next T', to save energy at nodes with low E..

3.1 EEHF Description

Figure 1 presents the EEHF block diagram. We discuss the pur-
pose of each block for a general environment. As an example, the
specific algorithm used to fulfill this purpose in the case of solar
power is presented for each block.

3.1.1 Spectral Estimation

Thisisthefirst step in attempting to detect a pattern in the avail-
ability. The function of this block isto learn the key spectral com-
ponents in the availability waveform and generate the parameter
T, the time duration over which E,, is predicted. If only one key
spectral component, f, dominates (is 3dB above the next highest
component), we may take T" = 1/ f. The waveform approximately
repeats every T' duration and the average energy earned in this pe-
riod can be predicted. Spectral estimation is a developed field and

numerous spectral estimation algorithms are available [22] for a
wide variety of signals. For the solar energy environment we use
the fast fourier transform. This block also keeps track of the phase
within the major cycle discovered in the avail ability waveform. The
phase, ¢, givesinformation regarding when recharging opportunity
is available within the T' duration.

3.1.2 Prediction Filter

Given T, we attempt to predict E,, for the duration 7" in future.
For this, the value of E,,, inthe previous K intervals of duration T'
may be used. A large variety of adaptive filters such as least mean
squares (LMS) filter, normalized LMS [5], and fixed coefficient
filters based on autoregressive methodsis available for this purpose.
For solar energy, we use an autoregressive filter with order K =
1, to predict the average E,,, for the T' learnt. This block also
tracks the error in prediction and assigns a confidence value, 7 to
the prediction. Here, weusen = 1 — |A|/Ey, if |A| < En, and
n = 0 otherwise, where A isthe error in prediction in the previous
interval.

3.1.3 Sochastic Consumption Predictor

This block tracks the average consumption, E., in every T'. Al-
gorithms from [11] may be used here.

3.1.4 Parameterize

This block combines the parameters learnt by the above blocks
and the remaining battery E} into one cost metric. The choice of
the function f(.) in equation 1 used for this parametrization is crit-
ical.

For solar energy environment, we expect 7' to be same for al
nodes and assume B, the battery size, is aso same for all nodes.
When all nodes are deriving energy from the same source, ¢ within
T would have only small variations based on location which we
neglect. Thus, an effective battery, E, and the cost C' can be calcu-
lated as:

E =wi(Em — Eem)+ waEy 2

C=1/E 3)
where w; and w, are assigned so asto give amuch higher weight to
replenishable energy. The formulafor C is based the one proposed
in[20] for residual energy based schemes, C = 1/(1 — G), where
G isthe amount of battery already used. Thisblock may be omitted
if the scheduler uses the various parameters learnt by the previous
blocks directly for its decisions.



3.1.5 Scalability-friendly Information Exchange

The above blocks learnt the temporal characteristics of the en-
ergy availability at each node, locally. However, lifetime optimal
scheduling requires global decisionsto be made based on thisinfor-
mation. This block triesto provide the spatial characteristics of the
availability. The exact procedure used will depend on the schedul-
ing algorithm which uses the energy availability information. We
propose two approaches for sharing thelocal information which are
both scalable with increasing network size and node density:

1. In-network Averaging: A load balancing scheduler may want
to assign loads in proportion to the effective batteries at the
nodes. For this, the E calculated at each node involved in
the task being scheduled needs to be known to the sched-
uler. Rather than explicitly transferring the E or C calcu-
lated at each node to a central scheduling entity, we propose
to circulate the information about the average E' and max-
imum of E among al nodes, E... throughout the group
among which load balancing is to be performed. Scalable
methods for calculating the network-wide averages or max-
imaviain-network processing exist [8]. The nodes can then
volunteer to accept a workload proportional to L = (E —
E.v)/(Emaz — Eqv), When L is positive and go to sleep
mode otherwise. Scalability is achieved because instead of
distributing thelocal E learnt at every node, only the network-
wide average and maximais cal culated and scal able methods
exist for this.

2. Distributed Scheduler: Certain tasking algorithms learn the
local costs on their own asrequired. For arouting algorithm,
for instance, we assign the cost C' calculated at each node to
al one-hop links coming into that node. A distributed route
discovery agorithm, such as distributed Bellman-Ford [2],
then chooses a minimum cost route without the framework
having to explicitly provide for the sharing of information.
Such an approach can only be used when the scheduler itself
is distributed.

For the case of solar power and the example application studied
in simulations — routing, we use the second approach.

These methods put together provide a framework for utilizing
the energy harvesting capacity in a distributed fashion.

3.2 Usingthe Framework

Weillustrate the use of EEHF in several classes of schedulers be-
low. The existing versions either do not consider the energy prop-
erties of nodes or use only the residual battery information. We
modify these to use EEHF for exploiting the harvesting capability
of the network.

1. Topology Management: One topology management scheme,
STEM [18] duty cyclesthe node radios between sleep and ac-
tive states. The connection set-up delay at each hop along a
route depends on the duty cycle of the radio, since the sender
must wait for the receiver to become active. STEM allotsthe
same duty cycle to each node, dividing the tolerable latency
equally among the number of hops. However, it is possible
to achieve the same latency if some radios sleep for longer
durations and others, with higher E, compensate by sleep-
ing shorter durations. Thus, atopology management scheme
like STEM can use the E provided by EEHF to adjust sleep
durations, to save batteries at energy constrained nodes.

2. Clustering Algorithms/Load Balancing: Somealgorithmsform
nodesinto groups and keep one node active within each group,

based on theresidual energy. One exampleis GAF [24]. Ex-
tending this to use EEHF is straightforward — instead of
using the residua energy, GAF can choose the active node
depending on the E calculated by EEHF. Hence when avail-
able, only the nodes with environmental availability will be
used within each group, increasing the lifetime.

3. Routing: Methods to choose routes based on residual energy
can be modified to use the effective battery calculated by
EEHF; detailed discussion in section 4.

4. Transmission Power Control: Transmit power of radios can
be changed [17] to modify thetopol ogy to minimize the max-
imum power transmitted by any radio. Such agorithms can
use EEHF to minimize the maximum power transmitted by
nodes having lower E by allowing transmit power to increase
at nodes with larger E, thusincreasing lifetime.

5. Leader Electiong/Hierarchies. Data aggregation algorithms
such as [4] form hierarchies within the network where nodes
higher up in the hierarchy process more data. EEHF can help
decide which nodes should be used for heavier computations.

4. ANEXAMPLEAPPLICATIONAND PER-
FORMANCE STUDY

4.1 TheEnergy Environment

We present the use of EEHF for a solar energy based sensor
network. We recorded the light intensity variations in a possible
deployment region using a CCD camera. These recordings were
made in a small region of James Reserve [6] for 39 days (January
6 to February 15, 2003). Intensity variation waveforms, sampled
at 10 minute interval, for 2 of these points are plotted in the first
two subplotsin Figure 2 for 5 days. The time axisisin days. The
maximum value is normalized to 1 and this value is assumed to
correspond to the charging intensity of the solar cells at noon.
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Figure 2: Energy availability waveforms and spectral analysis

The third subpl ot gives the magnitude spectrum of the first wave-
formfor thefirst 50 indices. The frequency axis has been converted
to day ™. Neglecting the zero frequency, a dominating frequency
component is found a f = 1(day™'). ThisgivesT = 1/f =
1(day), for usein prediction.



The simulation parameters mirror MICA motes [12] and a mote
sized solar-cell, Panasonic BP 376634C [1]. This cell generates
about 100mW at noon-time intensity on a clear day. We linearly
scale the charging capacity for variations in light intensity, as the
charging current varies approximately linearly with intensity for a
solar cell, while the voltage stays approximately constant above
a certain intensity threshold. Energy is supplied to nodes as per
the intensity waveforms recorded above and consumed in data-
forwarding. Motes consume 36 mW in active mode and are pow-
ered by AA sized batteries having a storage capacity of 1850 mWh,
about 50 hours of motes active time.

4.2 Example Application: Routing

We compare the performance of EEHF and a residua energy
based scheme, for routing. The simulated sensor network has N =
100 nodes in a 100m x 100m region, with nodes having a radio
range of 20m. The nodes are assumed randomly placed in the re-
gion for which light intensity variations have been collected, dis-
tributing afraction p in well-lit regionsand (1 — p) in dark regions.
The light intensity waveforms at these randomly chosen pixels are
picked up from the CCD data mentioned in section 4.1.
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Figure 3: Lifetime improvement with EEHF, over residual en-
ergy based routing, p = 0.25.

Energy received in every T' (value of T asfound in section 4.1) is
recorded. The autoregressive prediction filter used to estimate E,,
iISEm(n+1) = aEmm(n)+ (1 —a)En(n) withfilter coefficient
a = 0.9, where E,,,,,, (n) isthe measured value of energy received
in the current interval, and n is the discrete time index (initial con-
dition: E,,(0) = 0). In equation 2, wa = 0.1 and w1 = 2,40.
These weights cause nodes with more environmental energy to be
used more frequently in EEHF. E. is assumed same for all nodes
across the network and hence not used in calculating the cost for
routing.

Traffic sources and destinations are chosen uniformly randomly
among the nodes. A traffic flow lasts between a chosen pair for a
fixed duration. This duration is much smaller than the maximum
flow duration feasible with the battery size as we expect battery
sizes to be chosen to support more than one flow in most applica-
tions. Therouteis chosen at the start of the flow and is not changed
during the flow.

Theresidua energy based scheme [20] uses Bellman-Ford rout-
ing with costs assigned inversely proportional to residual batteries.
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Figure 4: Lifetime improvement with EEHF, over residual en-
ergy based routing, p = 0.5.
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Figure5: Lifetime improvement with EEHF, over residual en-
ergy based routing, p = 0.75.

Thus, nodes with high residual energy have lower cost and are used
more often. EEHF uses the same routing scheme but chooses nodes
based on the E from equation 2 instead of residual energy.

Figure 3, 4 and 5 present the simulation resultsfor p = 0.25, 0.5
and 0.75 respectively. The results are averaged over 20 random
topologies, to suppress any artifacts due to a particular topology.
We assume that the network loses utility after the first d% nodes
are dead, where d depends on the application. We plot the life-
time in days for d € (0,25). It can be observed that lifetime is
more than doubled at low p, as EEHF is able to select nodes with
higher environmental energy. The increase in lifetime here is due
to the first reason for the need of harvesting presented in the be-
ginning of section 2. At high p (Figure 5), after (1 — p) nodes
die, EEHF and residual energy based scheme perform similar asall
then nodes have similar environmental energy and residual batter-
ies dominates. These simulations are a sanity check for EEHF and
illustrate that using environmental energy aware algorithms hasthe
potential to increase lifetimes significantly.



5. CONCLUSIONS

This paper introduced the problem of energy harvesting in sensor
networks. A framework was presented for handling the major chal-
lenges involved and an example study showed that the proposed
framework is able to utilize the extra knowledge about the environ-
ment to increase system lifetime.

EEHF makes the first step towards the development of an opti-
mal set of methods to completely align the task distribution in the
network with the energy availability. Future work includes deter-
mining the maximum work that can be extracted from a given en-
ergy environment and estimating achievable bounds on quality of
servicein termsof communication delay, sensing fidelity, and other
performance measures, if the network has to survive eternally on
the available energy resources. Then, to solve the harvesting prob-
lem, distributed methods to achieve the maximum lifetime need to
be developed and tested on area system implementation. Facili-
tiesto redistribute energy apart from tasks may also be incorporated
into EEHF.
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