
Semantic Object Synchronous Understanding in SALT for 
Highly Interactive User Interface 

Kuansan Wang 

Speech Technology Group, Microsoft Research 
One Microsoft Way, Redmond, WA 98052 USA 

http://research.microsoft.com/stg 
 

Abstract 
SALT is an industrial standard that enables speech in-
put/output for Web applications. Although the core design is 
to make simple tasks easy, SALT gives the designers ample 
fine-grained controls to create advanced user interface. The 
paper exploits a speech input mode in which SALT would 
dynamically report partial semantic parses while audio cap-
turing is still ongoing. The semantic parses can be evaluated 
and the outcome reported immediately back to the user. The 
potential impact for the dialog systems is that tasks conven-
tionally performed in a system turn can now be carried out in 
the midst of a user turn, thereby presenting a significant de-
parture from the conventional turn-taking. To assess the 
efficacy of such highly interactive interface, more user stud-
ies are undoubtedly needed. This paper demonstrates how 
SALT can be employed to facilitate such studies. 

1. Introduction 
The Speech Application Language Tags (SALT) [1] was 
introduced to enable speech as a viable input/output modality 
for computer user interactions. The design goal for SALT is 
to make common speech tasks simple to program, yet allow 
advanced capabilities straightforward to be realized. SALT 
was designed with many application scenarios in mind. An 
important area, for example, is the telephone-based speech-
only applications where the computer interacts with the user 
exclusively through spoken dialogs (e.g. [2][3][4]). Because 
telephone users enjoy full duplex conversations among one 
another, it is natural for human to expect the spoken dialog 
systems to behave the same way. The computer is expected, 
for example, to be able to manage the dialog turn-taking by 
automatically end-pointing a user turn. As a result, the SALT 
speech input and output objects, called listen and prompt, 
respectively, both have a mode designed to incorporate tech-
nologies that can detect the start and the end of a user turn. 
Except for the simple cases, however, automatically end-
pointing dialog turns is still an actively researched topic 
[5][6][7][8]. Many speech applications today employ an 
interface design that requires the user to signal the start of a 
user turn by, for instance, pushing a button. Examples in-
clude wearable computers (e.g. [9][10]), speech enabled 
portable or multimodal devices (e.g. [11] [12][13]), and other 
eyes free applications (e.g. automobile). SALT objects are 
equipped with rich controls that allow programmers to pro-
duce rich UI effects for these environments. But despite the 
variations in the interface designs, these application areas all 
seem to base on a framework that clearly defines the bounda-
ries of the user and the system turns. Many dialog evaluation 
techniques are established on this notion as well [14][15].  

In one SALT use case, however, we observe that the no-
tion of dialog turns may be ill defined. Specifically, we zoom 

in on the so-called multiple mode of SALT recognition in 
which the active listen object can raise events on partial un-
derstanding while the underlying audio capturing and speech 
recognition are still in progress. Because SALT returns se-
mantic objects sufficient for dialog logic execution, this en-
ables the computer to immediately react and report outcomes 
based on the partial utterance, even before the end of the user 
turn. In a way, one can view the use case as one in which the 
back channel communication is augmented to perform tasks 
normally associated with a system turn, thereby blurring the 
boundary of a user and a system turn. Most conventional 
dialog studies, especially those based on human to human 
dialogs, often view the back channel communications as 
non-intrusive feedbacks that convey only simple signals such 
as positive, negative, or neutral acknowledgement [16][17] 
[18]. However, the feedbacks from the multiple mode in 
SALT can potentially carry more information that, when 
presented immediately to the user, may influence the ongo-
ing user utterance. This exploitation therefore seems to mani-
fest itself as a departure from the classical turn-taking view 
of dialog management, and more studies, especially in the 
area of usability, are undoubtedly needed to assess the viabil-
ity of this method. One purpose of this paper, however, is to 
show how SALT can be programmed to perform semantic-
object synchronous decoding and report immediate partial 
understanding so that prototypes for user experiments can be 
quickly created. 

The rest of the paper is organized as follows. In Section 
2, we first describe our treatment of the speech understand-
ing problem using the speech recognition framework. The 
technique we use is an enhanced context free grammar with 
semantic tagging capability. Semantic tagging allows the 
grammar creator to normalize the potentially complicated 
syntactic variations the CFG is designed to cover. Moreover, 
we demonstrate how the semantic tagging can even be ap-
plied to a semantic language model where N-gram is intro-
duced to model pre-terminals that are difficult to be covered 
well by CFG rules. With these enhancements we show in 
Section 3 how the SALT listen object can be configured to 
perform speech understanding tasks in a semantic object 
synchronous manner even though the object is primarily 
designed for speech recognition purposes. 

2. Surface semantic extraction 
The SALT listen object can be used to perform both speech 
recognition and understanding tasks. This is possible because 
the design follows the formulation of [13][19] that treats 
speech understanding as a pattern recognition problem, just 
like speech recognition: for speech recognition, the pattern to 
be found is a string of words and, for understanding, a tree of 
semantic objects. A traditional speech recognition task in-
structs the search process with a language model to compose 



the likely word strings. In the similar fashion, the search en-
gine can be guided to compose the suitable semantic object 
trees with a semantic model [13]. Like a language model that 
often implies a lexicon and the rules of composing phrase 
segments from the lexicon entries, a semantic model implies 
a dictionary of all semantic objects and the rules of compos-
ing them. Many other works, such as the unified language 
model [20] or a weighted finite state transducer [21], have 
also demonstrated that recognition and understanding can 
share the same search algorithm and engine implementation. 

Although it is possible to extend N-gram to return a struc-
tured search outcome (e.g. [23]), we base our speech under-
standing framework on the probabilistic context free grammar 
(PCFG) where the grammar rules for composing semantic 
objects can be authored without massive tree-bank annotated 
training data. One method of specifying such rules is to asso-
ciate each PCFG rule with instructions for the search engine 
to transform the partial PCFG parse tree into a semantic ob-
ject tree [24][26]. An example written in Microsoft Speech 
Application Interface (SAPI) XML format is shown below: 
 
<rule name=”nyc”> 
 <list> 
   <phrase>new york ?city</phrase> 
   <phrase>?the big apple</phrase> 
 </list> 
 <output> 
  <city_location> 
   <city>New York</city> 
   <state>New York</state> 
   <country>USA</country> 
  </city_location> 
 </output> 
</rule> 
 
<rule name=”NewMeeting”> 
 <ruleref min=”0”   name=”CarrierPhrase”/> 
 <ruleref max=”inf” name=”ApptProperty”/> 
 <output> 

 <NewMeeting> 
  <DateTime> 

<xsl:apply-templates select=”//Date”/> 
<xsl:apply-templates select=”//Time”/> 
… 

  </DateTime> 
  <Invitees> 
    <xsl:apply-templates select=”//Person”/> 
  </Invitees> 
 </NewMeeting> 

 </output> 
</rule> 
<rule name=”ApptProperty”/> 
 <list> 

  <ruleref name=”Date”/> 
  <ruleref name=”Duration”/> 
  <ruleref name=”Time”/> 
  <ruleref name=”Person” max=”inf”/> 
  <ruleref name=”ApptSubject”/> 
.. .. 

 </list> 
</rule> 
 
The grammar segment contains three rules. The first one, a 
pre-terminal named “nyc” lists the possible expressions for 
New York City. The <output> tags in this example enclose 
the rules for constructing semantic objects. They are invoked 
when the search path exits the grammar node denoted by the 
token immediately preceding it. In the case, a semantic ob-
ject, represented in XML with a <city_location> element, 
is created when a search path exits the “nyc” rule. This se-
mantic object is in turn composed of three semantic objects: 

the city name, state and country name abbreviation. The 
composition of semantic objects can also be a dynamic proc-
ess, as demonstrated in the second rule used in MiPad [11] 
for scheduling a new meeting. Here, a NewMeeting semantic 
object will be produced when the user finishes specifying the 
meeting properties such as date, time, duration and attendees. 
The XSLT [25] apply-templates command is used to 
paste other semantic objects as constituents into the New-
Meeting semantic object. As an example, an utterance 
“schedule a meeting with Li Deng and Alex Acero on Janu-
ary first for one hour” will result in the following semantic 
object: 
 
<NewMeeting> 

<DateTime> 
  <Date>01/01/2003</Date> 
  <Duration>3600</Duration> 
</DateTime> 
<Invitees> 
  <Person>Li Deng</Person> 
  <Person>Alex Acero</Person> 
</Invitees> 

</NewMeeting> 
 
Generally, improving PCFG coverage is a daunting task. It is 
therefore desirable that one can use the N-gram to model the 
functional phrases, for example, that do not carry critical 
semantic information but usually have sizeable variations in 
the syntactic structure (e.g., “May I…”, “Could you show 
me…”, “Please show me…”). We have utilized a technique, 
called semantic language model [13], to combine PCFG with 
N-gram. The technique is slightly different from the unified 
language model work previously published in [20] although 
both appear to integrate PCFG and N-gram into a single rec-
ognition process. The unified language model technique is a 
natural extension to the conventional class N-gram except it 
allows CFG fragments, not just a list of words, to be modeled 
as an individual token in N-gram. The recognizer using this 
model still produces text string that has to be subsequently 
parsed. The unified language model thus is designed to incor-
porate certain linguistic structure to assist text transcription.  

The semantic language model, on the other hand, aims at 
using the decoder to search for the semantic structure, which 
is usually better captured by PCFG. Therefore, instead of 
embedding CFG fragments into N-gram, we allow the PCFG 
to model the pre-terminals with N-gram. In SAPI grammar 
format, a special pre-terminal is specified with an XML 
<dictation> tag, as in  
 
LCFG <dictation max=”inf”/> RCFG 
 
where LCFG and RCFG denote the left and right context of 
the embedded N-gram. The PCFG search process treats the 
<dictation> tag as a token and expands into the N-gram as 
if entering a regular non-terminal. The max attribute on the 
tag specifies the maximum number of words that can be 
drawn from the N-gram. Inside this N-gram, the word string 
probability is computed by constantly considering a backoff 
to PCFG along side with staying with N-gram, namely 
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where λ is the N-gram weight and P(RCFG | wn-1,...) uses the 
back-off probability of the N-gram, i.e., we treat wn as if it is 
an out of grammar word. Currently, we make the term P(wn | 



RCFG) to assume only binary value depending on whether 
the maximum N-gram word string size is reached and the 
word is in the coverage of the CFG fragment or not. When 
words drawn from PCFG have a higher probability, paths that 
really belong to be covered by PCFG have tendency to win 
over their N-gram counterparts even the maximum N-gram 
word count is set to infinite. In addition to functional phrases, 
the embbeded N-gram can also be used to model semantic 
object with a “dictation” like property. For example, the 
meeting subject is model in our task as 
 
<rule name=”ApptSubject”> 
<p>  <dictation max=”inf”/> </p> 
<output> 
  <ApptSubject> 
    <xsl:apply-templates select=”.”/> 
  </ApptSubject> 
</output> 
</rule> 

3. Semantic Object Synchronous De-
coding in SALT 

In contrast to other speech recognition or understanding 
modes that only process the user utterances with end point-
ing, the multiple mode in the SALT listen object further pro-
vides a means for the search engines to expose more interac-
tive capabilities to the users by allowing them to report im-
mediately whenever a salient linguistic landmark is reached. 
Search algorithms based on time synchronous decoding [22] 
can be employed for this mode in a straightforward manner.  
For speech recognition, the linguistic landmarks usually 
correspond to word or phrase boundaries. A SALT multiple 
mode recognition was designed to display the word string as 
soon as they are recognized, a user interface effect com-
monly seen in the commercial dictation software. When 
extended for speech understanding, however, the multiple 
mode can treat the instantiations of semantic objects as lin-
guistic landmarks and report them immediately. This creates 
an appearance as if SALT is performing a semantic object 
synchronous understanding. 

The apparent interactivity may have considerable amount 
of impacts on human computer interactions. Take for exam-
ple the MiPad experiments where we employ a user interface 
technique called tap-and-talk [11] that requires the user to 
point and hold the stylus in an input field while speaking to 
the device. Although the tap-and-talk design visualizes the 
back channel communication by displaying the volume and a 
progress bar of the underlying spoken language process, those 
feedbacks provide only primitive clues to the quality of the 
spoken language processing in terms of speed and accuracy. 
This can be potentially more problematic for longer sentences 
in which errors can propagate to a wider scope that eventually 
requires more efforts in verifying and correcting the recogni-
tion and understanding outcomes. Since the usability studies 
[11] seem to indicate that long sentences are a key differenti-
ating factor that demonstrates the utility of speech as more 
than a keyboard enhancement or alternative, a satisfying UI 
experience is absolutely necessary to the success of using 
speech as a viable modality. A rule of thumb in UI design is 
to give users more timely and informative feedbacks to pro-
mote the perception that the computer and the user are closely 
collaborative partners in achieving a common goal. One way 
to include in the back channel communications more indica-
tions about the quality of the underlying spoken language 
processing is to utilize the timely nature of the semantic ob-
ject synchronous understanding and report the partial out-

comes of the spoken language processing as soon as they are 
available.  

We recreate some of the MiPad UI screens with SALT-
enabled HTML pages that can be displayed in a Web 
browser. MiPad was designed so that the users have the ulti-
mate choice for interaction modalities appropriate for the task 
at hand. When the speech modality is not used, all MiPad 
interactions are just like a regular graphical user interface 
realized in HTML. A new meeting request page, for example, 
utilizes the HTML input object to acquire necessary infor-
mation, such as date, time, location, subject, and meeting 
attendees, etc., for creating a new meeting: 

 
<input id=”subject” …> <br> 
<input id=”date” …> <br> 
<input id=”start_time” …> <br> 
<input id=”end_time” …> <br> 
<input id=”duration” …> <br> 
<input id=”attendees” …> <br> 

 
MiPad’s typical tap-and-talk interaction can be implemented 
with specialized recognition objects, one for each field, e.g.  
 

<listen id=”rec_subject” …> 
  <grammar src=”subject.grm”/> 
  <bind targetElement=”subject” 
 value=”//ApptSubject”/> 
</listen> 

 
By default, a SALT listen object completes the recognition 
by automatically detecting the end of a user utterance. When 
a recognition event occurs, the SALT bind directive is trig-
gered to extract relevant portions of the recognition result 
and assign them to the proper HTML fields. With the excep-
tion of time fields, the assignment target is often a single 
field in the tap-and-talk interaction model. We note that, in 
order to account for user initiative actions (e.g., speak 
ahead), it is sometimes necessary to include grammars for 
multiple field in MiPad. Extending it further, we include all 
the recognition grammars into a single listen object, and 
assign their outcomes immediately using the following 
SALT program: 
 

<listen mode=”multiple” …> 
  <grammar src=”subject.xml”/> 
  <grammar src=”date.xml”/> 
  <grammar src=”time_duration.xml”/> 
  <grammar src=”attendees.xml”/> 
  <bind targetElement=”subject” 

value=”//ApptSubject”/> 
  <bind targetElement=”date” 
 value=”//DateTime”/> 
  <bind targetElement=”start_time” 
 value=”//start_time” 
 targetElement=”end_time” 
 value=”//end_time” 
 targetElement=”duration” 
 value=”//DateTime/duration”/> 
  … 
</listen> 

 
The multiple grammars compose a parallel search space for 
the recognition with a null transition looping back to starting 
point. With the declaration of mode=”multiple”, the SALT 
listen object raises a recognition event as soon as a grammar 
reaches the exit state. The event forks a parallel process to 
invoke the bind directives in sequence while the underlying 
audio collection and recognition are ongoing, thus creating 
the effect to the user that relevant fields on the form are be-
ing filled while a spoken command is still being uttered. For 
the eyes-free applications, speech outputs might be desired. 
In that case, SALT prompt objects can be used to give im-
mediate feedbacks. For example, the following SALT 



prompt object can be used to synthesize response based on 
the dynamic contents in the date field, and the speech syn-
thesis can be triggered with additional SALT bind directives 
as follows: 
 

<prompt id=”say_date”> 
  on <value targetElement=”date”/> 
</prompt> 

 
<listen …> 
  … 
  <bind targetElement=”date” 
 value=”//date” 
 targetElement=”say_date” 
 targetMethod=”Start”/> 

… 
</listen> 
 

The net effect is the human feels like talking to another party 
that jots down and repeats what he hears, as in “Schedule a 
meeting (new meeting) at two (starting at two o’clock PM) 
next Tuesday (on 10/29/02) for two hours (duration: two 
hours).” Note that SALT allows designers to attach custom-
ized recognition event handlers that perform sophisticated 
computations beyond the simple assignments as with the 
SALT bind directives. In the above example, the date nor-
malization can be accomplished in the semantic grammar 
which, however, cannot facilitate advanced reference resolu-
tion (e.g., “Schedule a meeting with Li Deng and his man-
ager”). For such cases, reference resolution algorithms as 
proposed in [19] may be implemented as script objects ac-
cessible to proper event handlers. 

4. Summary 
This article demonstrates a method to implement semantic 
object synchronous understanding using SALT. The essential 
components include a recognizer that utilizes unified lan-
guage model to produce semantic objects based on frame 
synchronous decoding, and a SALT listen object capable of 
reporting partial hypothesis before the recognizer reaches the 
end of an utterance. As the semantic objects in the partial 
hypothesis can trigger dialog actions, applying semantic 
object synchronous understanding to a dialog system seems 
to blur the conventional definition of a dialog turn. More 
studies are needed to assess the viability of immediate feed-
backs for the dialog designs. We have found SALT provides 
sufficient capabilities to implement experimental prototypes. 
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