
Semantic Object Synchronous Understanding in SALT for
Highly Interactive User Interface

Kuansan Wang

Speech Technology Group, Microsoft Research
One Microsoft Way, Redmond, WA 98052 USA

http://research.microsoft.com/stg

Abstract
SALT is an industrial standard that enables speech in-
put/output for Web applications. Although the core design is
to make simple tasks easy, SALT gives the designers ample
fine-grained controls to create advanced user interface. The
paper exploits a speech input mode in which SALT would
dynamically report partial semantic parses while audio cap-
turing is still ongoing. The semantic parses can be evaluated
and the outcome reported immediately back to the user. The
potential impact for the dialog systems is that tasks conven-
tionally performed in a system turn can now be carried out in
the midst of a user turn, thereby presenting a significant de-
parture from the conventional turn-taking. To assess the
efficacy of such highly interactive interface, more user stud-
ies are undoubtedly needed. This paper demonstrates how
SALT can be employed to facilitate such studies.

1. Introduction
The Speech Application Language Tags (SALT) [1] was
introduced to enable speech as a viable input/output modality
for computer user interactions. The design goal for SALT is
to make common speech tasks simple to program, yet allow
advanced capabilities straightforward to be realized. SALT
was designed with many application scenarios in mind. An
important area, for example, is the telephone-based speech-
only applications where the computer interacts with the user
exclusively through spoken dialogs (e.g. [2][3][4]). Because
telephone users enjoy full duplex conversations among one
another, it is natural for human to expect the spoken dialog
systems to behave the same way. The computer is expected,
for example, to be able to manage the dialog turn-taking by
automatically end-pointing a user turn. As a result, the SALT
speech input and output objects, called listen and prompt,
respectively, both have a mode designed to incorporate tech-
nologies that can detect the start and the end of a user turn.
Except for the simple cases, however, automatically end-
pointing dialog turns is still an actively researched topic
[5][6][7][8]. Many speech applications today employ an
interface design that requires the user to signal the start of a
user turn by, for instance, pushing a button. Examples in-
clude wearable computers (e.g. [9][10]), speech enabled
portable or multimodal devices (e.g. [11] [12][13]), and other
eyes free applications (e.g. automobile). SALT objects are
equipped with rich controls that allow programmers to pro-
duce rich UI effects for these environments. But despite the
variations in the interface designs, these application areas all
seem to base on a framework that clearly defines the bounda-
ries of the user and the system turns. Many dialog evaluation
techniques are established on this notion as well [14][15].

In one SALT use case, however, we observe that the no-
tion of dialog turns may be ill defined. Specifically, we zoom

in on the so-called multiple mode of SALT recognition in
which the active listen object can raise events on partial un-
derstanding while the underlying audio capturing and speech
recognition are still in progress. Because SALT returns se-
mantic objects sufficient for dialog logic execution, this en-
ables the computer to immediately react and report outcomes
based on the partial utterance, even before the end of the user
turn. In a way, one can view the use case as one in which the
back channel communication is augmented to perform tasks
normally associated with a system turn, thereby blurring the
boundary of a user and a system turn. Most conventional
dialog studies, especially those based on human to human
dialogs, often view the back channel communications as
non-intrusive feedbacks that convey only simple signals such
as positive, negative, or neutral acknowledgement [16][17]
[18]. However, the feedbacks from the multiple mode in
SALT can potentially carry more information that, when
presented immediately to the user, may influence the ongo-
ing user utterance. This exploitation therefore seems to mani-
fest itself as a departure from the classical turn-taking view
of dialog management, and more studies, especially in the
area of usability, are undoubtedly needed to assess the viabil-
ity of this method. One purpose of this paper, however, is to
show how SALT can be programmed to perform semantic-
object synchronous decoding and report immediate partial
understanding so that prototypes for user experiments can be
quickly created.

The rest of the paper is organized as follows. In Section
2, we first describe our treatment of the speech understand-
ing problem using the speech recognition framework. The
technique we use is an enhanced context free grammar with
semantic tagging capability. Semantic tagging allows the
grammar creator to normalize the potentially complicated
syntactic variations the CFG is designed to cover. Moreover,
we demonstrate how the semantic tagging can even be ap-
plied to a semantic language model where N-gram is intro-
duced to model pre-terminals that are difficult to be covered
well by CFG rules. With these enhancements we show in
Section 3 how the SALT listen object can be configured to
perform speech understanding tasks in a semantic object
synchronous manner even though the object is primarily
designed for speech recognition purposes.

2. Surface semantic extraction
The SALT listen object can be used to perform both speech
recognition and understanding tasks. This is possible because
the design follows the formulation of [13][19] that treats
speech understanding as a pattern recognition problem, just
like speech recognition: for speech recognition, the pattern to
be found is a string of words and, for understanding, a tree of
semantic objects. A traditional speech recognition task in-
structs the search process with a language model to compose

the likely word strings. In the similar fashion, the search en-
gine can be guided to compose the suitable semantic object
trees with a semantic model [13]. Like a language model that
often implies a lexicon and the rules of composing phrase
segments from the lexicon entries, a semantic model implies
a dictionary of all semantic objects and the rules of compos-
ing them. Many other works, such as the unified language
model [20] or a weighted finite state transducer [21], have
also demonstrated that recognition and understanding can
share the same search algorithm and engine implementation.

Although it is possible to extend N-gram to return a struc-
tured search outcome (e.g. [23]), we base our speech under-
standing framework on the probabilistic context free grammar
(PCFG) where the grammar rules for composing semantic
objects can be authored without massive tree-bank annotated
training data. One method of specifying such rules is to asso-
ciate each PCFG rule with instructions for the search engine
to transform the partial PCFG parse tree into a semantic ob-
ject tree [24][26]. An example written in Microsoft Speech
Application Interface (SAPI) XML format is shown below:

<rule name=”nyc”>
 <list>
 <phrase>new york ?city</phrase>
 <phrase>?the big apple</phrase>
 </list>
 <output>
 <city_location>
 <city>New York</city>
 <state>New York</state>
 <country>USA</country>
 </city_location>
 </output>
</rule>

<rule name=”NewMeeting”>
 <ruleref min=”0” name=”CarrierPhrase”/>
 <ruleref max=”inf” name=”ApptProperty”/>
 <output>

 <NewMeeting>
 <DateTime>

<xsl:apply-templates select=”//Date”/>
<xsl:apply-templates select=”//Time”/>
…

 </DateTime>
 <Invitees>
 <xsl:apply-templates select=”//Person”/>
 </Invitees>
 </NewMeeting>

 </output>
</rule>
<rule name=”ApptProperty”/>
 <list>

 <ruleref name=”Date”/>
 <ruleref name=”Duration”/>
 <ruleref name=”Time”/>
 <ruleref name=”Person” max=”inf”/>
 <ruleref name=”ApptSubject”/>
.. ..

 </list>
</rule>

The grammar segment contains three rules. The first one, a
pre-terminal named “nyc” lists the possible expressions for
New York City. The <output> tags in this example enclose
the rules for constructing semantic objects. They are invoked
when the search path exits the grammar node denoted by the
token immediately preceding it. In the case, a semantic ob-
ject, represented in XML with a <city_location> element,
is created when a search path exits the “nyc” rule. This se-
mantic object is in turn composed of three semantic objects:

the city name, state and country name abbreviation. The
composition of semantic objects can also be a dynamic proc-
ess, as demonstrated in the second rule used in MiPad [11]
for scheduling a new meeting. Here, a NewMeeting semantic
object will be produced when the user finishes specifying the
meeting properties such as date, time, duration and attendees.
The XSLT [25] apply-templates command is used to
paste other semantic objects as constituents into the New-
Meeting semantic object. As an example, an utterance
“schedule a meeting with Li Deng and Alex Acero on Janu-
ary first for one hour” will result in the following semantic
object:

<NewMeeting>

<DateTime>
 <Date>01/01/2003</Date>
 <Duration>3600</Duration>
</DateTime>
<Invitees>
 <Person>Li Deng</Person>
 <Person>Alex Acero</Person>
</Invitees>

</NewMeeting>

Generally, improving PCFG coverage is a daunting task. It is
therefore desirable that one can use the N-gram to model the
functional phrases, for example, that do not carry critical
semantic information but usually have sizeable variations in
the syntactic structure (e.g., “May I…”, “Could you show
me…”, “Please show me…”). We have utilized a technique,
called semantic language model [13], to combine PCFG with
N-gram. The technique is slightly different from the unified
language model work previously published in [20] although
both appear to integrate PCFG and N-gram into a single rec-
ognition process. The unified language model technique is a
natural extension to the conventional class N-gram except it
allows CFG fragments, not just a list of words, to be modeled
as an individual token in N-gram. The recognizer using this
model still produces text string that has to be subsequently
parsed. The unified language model thus is designed to incor-
porate certain linguistic structure to assist text transcription.

The semantic language model, on the other hand, aims at
using the decoder to search for the semantic structure, which
is usually better captured by PCFG. Therefore, instead of
embedding CFG fragments into N-gram, we allow the PCFG
to model the pre-terminals with N-gram. In SAPI grammar
format, a special pre-terminal is specified with an XML
<dictation> tag, as in

LCFG <dictation max=”inf”/> RCFG

where LCFG and RCFG denote the left and right context of
the embedded N-gram. The PCFG search process treats the
<dictation> tag as a token and expands into the N-gram as
if entering a regular non-terminal. The max attribute on the
tag specifies the maximum number of words that can be
drawn from the N-gram. Inside this N-gram, the word string
probability is computed by constantly considering a backoff
to PCFG along side with staying with N-gram, namely




−−

−−

−−

−
=

,...),|()|()1(
,...),,|(

,...),|(

21

21

21

nnn

nnn

nnn

wwRCFGPRCFGwP
wwNgramwP

wwwP

λ
λ (1)

where λ is the N-gram weight and P(RCFG | wn-1,...) uses the
back-off probability of the N-gram, i.e., we treat wn as if it is
an out of grammar word. Currently, we make the term P(wn |

RCFG) to assume only binary value depending on whether
the maximum N-gram word string size is reached and the
word is in the coverage of the CFG fragment or not. When
words drawn from PCFG have a higher probability, paths that
really belong to be covered by PCFG have tendency to win
over their N-gram counterparts even the maximum N-gram
word count is set to infinite. In addition to functional phrases,
the embbeded N-gram can also be used to model semantic
object with a “dictation” like property. For example, the
meeting subject is model in our task as

<rule name=”ApptSubject”>
<p> <dictation max=”inf”/> </p>
<output>
 <ApptSubject>
 <xsl:apply-templates select=”.”/>
 </ApptSubject>
</output>
</rule>

3. Semantic Object Synchronous De-
coding in SALT

In contrast to other speech recognition or understanding
modes that only process the user utterances with end point-
ing, the multiple mode in the SALT listen object further pro-
vides a means for the search engines to expose more interac-
tive capabilities to the users by allowing them to report im-
mediately whenever a salient linguistic landmark is reached.
Search algorithms based on time synchronous decoding [22]
can be employed for this mode in a straightforward manner.
For speech recognition, the linguistic landmarks usually
correspond to word or phrase boundaries. A SALT multiple
mode recognition was designed to display the word string as
soon as they are recognized, a user interface effect com-
monly seen in the commercial dictation software. When
extended for speech understanding, however, the multiple
mode can treat the instantiations of semantic objects as lin-
guistic landmarks and report them immediately. This creates
an appearance as if SALT is performing a semantic object
synchronous understanding.

The apparent interactivity may have considerable amount
of impacts on human computer interactions. Take for exam-
ple the MiPad experiments where we employ a user interface
technique called tap-and-talk [11] that requires the user to
point and hold the stylus in an input field while speaking to
the device. Although the tap-and-talk design visualizes the
back channel communication by displaying the volume and a
progress bar of the underlying spoken language process, those
feedbacks provide only primitive clues to the quality of the
spoken language processing in terms of speed and accuracy.
This can be potentially more problematic for longer sentences
in which errors can propagate to a wider scope that eventually
requires more efforts in verifying and correcting the recogni-
tion and understanding outcomes. Since the usability studies
[11] seem to indicate that long sentences are a key differenti-
ating factor that demonstrates the utility of speech as more
than a keyboard enhancement or alternative, a satisfying UI
experience is absolutely necessary to the success of using
speech as a viable modality. A rule of thumb in UI design is
to give users more timely and informative feedbacks to pro-
mote the perception that the computer and the user are closely
collaborative partners in achieving a common goal. One way
to include in the back channel communications more indica-
tions about the quality of the underlying spoken language
processing is to utilize the timely nature of the semantic ob-
ject synchronous understanding and report the partial out-

comes of the spoken language processing as soon as they are
available.

We recreate some of the MiPad UI screens with SALT-
enabled HTML pages that can be displayed in a Web
browser. MiPad was designed so that the users have the ulti-
mate choice for interaction modalities appropriate for the task
at hand. When the speech modality is not used, all MiPad
interactions are just like a regular graphical user interface
realized in HTML. A new meeting request page, for example,
utilizes the HTML input object to acquire necessary infor-
mation, such as date, time, location, subject, and meeting
attendees, etc., for creating a new meeting:

<input id=”subject” …>

<input id=”date” …>

<input id=”start_time” …>

<input id=”end_time” …>

<input id=”duration” …>

<input id=”attendees” …>

MiPad’s typical tap-and-talk interaction can be implemented
with specialized recognition objects, one for each field, e.g.

<listen id=”rec_subject” …>
 <grammar src=”subject.grm”/>
 <bind targetElement=”subject”
 value=”//ApptSubject”/>
</listen>

By default, a SALT listen object completes the recognition
by automatically detecting the end of a user utterance. When
a recognition event occurs, the SALT bind directive is trig-
gered to extract relevant portions of the recognition result
and assign them to the proper HTML fields. With the excep-
tion of time fields, the assignment target is often a single
field in the tap-and-talk interaction model. We note that, in
order to account for user initiative actions (e.g., speak
ahead), it is sometimes necessary to include grammars for
multiple field in MiPad. Extending it further, we include all
the recognition grammars into a single listen object, and
assign their outcomes immediately using the following
SALT program:

<listen mode=”multiple” …>
 <grammar src=”subject.xml”/>
 <grammar src=”date.xml”/>
 <grammar src=”time_duration.xml”/>
 <grammar src=”attendees.xml”/>
 <bind targetElement=”subject”

value=”//ApptSubject”/>
 <bind targetElement=”date”
 value=”//DateTime”/>
 <bind targetElement=”start_time”
 value=”//start_time”
 targetElement=”end_time”
 value=”//end_time”
 targetElement=”duration”
 value=”//DateTime/duration”/>
 …
</listen>

The multiple grammars compose a parallel search space for
the recognition with a null transition looping back to starting
point. With the declaration of mode=”multiple”, the SALT
listen object raises a recognition event as soon as a grammar
reaches the exit state. The event forks a parallel process to
invoke the bind directives in sequence while the underlying
audio collection and recognition are ongoing, thus creating
the effect to the user that relevant fields on the form are be-
ing filled while a spoken command is still being uttered. For
the eyes-free applications, speech outputs might be desired.
In that case, SALT prompt objects can be used to give im-
mediate feedbacks. For example, the following SALT

prompt object can be used to synthesize response based on
the dynamic contents in the date field, and the speech syn-
thesis can be triggered with additional SALT bind directives
as follows:

<prompt id=”say_date”>
 on <value targetElement=”date”/>
</prompt>

<listen …>
 …
 <bind targetElement=”date”
 value=”//date”
 targetElement=”say_date”
 targetMethod=”Start”/>

…
</listen>

The net effect is the human feels like talking to another party
that jots down and repeats what he hears, as in “Schedule a
meeting (new meeting) at two (starting at two o’clock PM)
next Tuesday (on 10/29/02) for two hours (duration: two
hours).” Note that SALT allows designers to attach custom-
ized recognition event handlers that perform sophisticated
computations beyond the simple assignments as with the
SALT bind directives. In the above example, the date nor-
malization can be accomplished in the semantic grammar
which, however, cannot facilitate advanced reference resolu-
tion (e.g., “Schedule a meeting with Li Deng and his man-
ager”). For such cases, reference resolution algorithms as
proposed in [19] may be implemented as script objects ac-
cessible to proper event handlers.

4. Summary
This article demonstrates a method to implement semantic
object synchronous understanding using SALT. The essential
components include a recognizer that utilizes unified lan-
guage model to produce semantic objects based on frame
synchronous decoding, and a SALT listen object capable of
reporting partial hypothesis before the recognizer reaches the
end of an utterance. As the semantic objects in the partial
hypothesis can trigger dialog actions, applying semantic
object synchronous understanding to a dialog system seems
to blur the conventional definition of a dialog turn. More
studies are needed to assess the viability of immediate feed-
backs for the dialog designs. We have found SALT provides
sufficient capabilities to implement experimental prototypes.

5. Acknowledgements
The technique of embedding N-gram into PCFG described in
Section 2 was independently conceived and first imple-
mented into Microsoft SAPI Reference Engine Version 5 by
Fil Alleva.

6. References
[1] K. Wang, “SALT: An XML application for Web-based

multimodal dialog management”, in Proc. 2nd NLP and
XML Workshop, Taipei, Taiwan, August 2002.

[2] V. Zue et al., “Jupiter: A telephone-based conversational
interface for weather information,” IEEE Trans. Speech
and Audio Processing, 8(1), January 2000.

[3] B. Souvignier et al., “The thoughtful elephant: strategies
for spoken dialog systems.” IEEE Trans. Speech and
Audio Processing, 8(1), January 2000.

[4] A. Gorin et al., “How may I help you?” Speech Comm.,
vol. 23, pp. 113-127, 1997.

[5] R. Sato et al., “Learning decision trees to determine

turn-taking by spoken dialog systems,” in Proc. ICSLP-
2002, Denver, Co., September 2002.

[6] L. Ferrer et al., “Is the speaker done yet? Faster and
more accurate end-of-utterance detection using pros-
ody,” in Proc. ICSLP-2002, Denver Co., September
2002.

[7] Q. Li et al., “A robust real-time endpoint detector with
energy normalization,” in Proc. ICASSP-2001, vol. 1,
Salt Lake City, UT, May 2001.

[8] L. Huang, C. Yang, “A novel approach to robust speech
endpoint detection in car environments,” in Proc.
ICASSP-2000, vol. 3, Istanbul, Turkey, June 2000.

[9] N. Sawhney, C. Schmandt, “Nomad radio: speech and
audio interaction for contextual messaging in nomadic
environments,” ACM Trans. Computer-Human Interac-
tion, 7(3), pp. 353-383, September 2000.

[10] A. Rudnicky et al., “SpeechWear: a mobile speech
system,” in Proc. ICSLP-96, Philadelphia, PA., October
1996.

[11] X. Huang et al., “MiPad: A next generation PDA proto-
type,” in Proc. ICSLP-2000, Beijing, China, October
2000.

[12] S. L. Oviatt, “Multimodal interactive maps: designing
for human performance.” Human Computer Interac-
tions, vol. 12, pp. 93-129, 1997.

[13] K. Wang, “Semantic modeling for dialog systems in a
pattern recognition framework,” in Proc. ASRU-2001,
Trento Italy, 2001.

[14] M. A. Walker et al., “DARPA Communicator Evalua-
tion: Progress from 2000 to 2001,” in Proc. ICSLP-
2002, Denver, Co., September 2002.

[15] M. A. Walker, et al., “PARADISE: A framework for
evaluating spoken dialog systems,” in Proc. 35th ACL,
1997.

[16] H. H. Clark, E. F. Schaefer, “Contribution to Discourse,”
Cognitive Science, vol. 13, pp. 259-294, 1989.

[17] L. Bell, J. Gustafson, “Positive and negative user feed-
back in spoken dialog corpus,” in Proc. ICSLP-2000,
Beijing, China, October 2000.

[18] L. Cerrato, “A comparison between feedback strategies
in human-to-human and human-machine communica-
tion,” in Proc. ICSLP-2002, Denver, Co., September
2002.

[19] K. Wang, “A plan based dialog system with probabilistic
inferences”, in Proc. ICSLP-2000, Beijing China, 2000.

[20] Y. Wang et al., “A unified context free grammar and N-
gram model for spoken language processing,” in Proc.
ICASSP-2000, Istanbul, Turkey, June 2000.

[21] M. Mohri et al., “Weighted automata in text and speech
processing,” in Proc. ECAI-96 Workshop, Budapest,
Hungary, 1996.

[22] H. Ney, S. Ortmanns, “Dynamic programming search
for continuous speech recognition,” IEEE Signal Proc-
essing Magazine, pp. 64-83, 1999.

[23] C. Chelba, “A structured language model,” in Proc.
EACL-97, Madrid, Spain, July 1997.

[24] K. Wang, “Natural language enabled Web applications,”
in Proc. 1st NLP and XML Workshop, Tokyo, Japan,
November 2001.

[25] XSL Transformations, http://www.w3.org/TR/xslt.
[26] K. Wang, http://www.w3.org/Voice/Group/2000/MS-

SemanticTag.html

