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Abstract

We address the problem of estimating the word error rate
(WER) of an automatic speech recognition (ASR) system
without using acoustic test data. This is an important problem
which is faced by the designers of new applications which use
ASR. Quick estimate of WER early in the design cycle can be
used to guide the decisions involving dialog strategy and
grammar design. Our approach involves estimating the
probability distribution of the word hypotheses produced by
the underlying ASR system given the text test corpus. A
critical component of this system is a phonemic confusion
model which seeks to capture the errors made by ASR on the
acoustic data at a phonemic level. We use a confusion model
composed of probabilistic phoneme sequence conversion
rules which are learned from phonemic transcription pairs
obtained by leave-one-out decoding of the training set. We
show reasonably close estimation of WER when applying the
system to test sets from different domains.

1. Introduction

The performance of an ASR system is closely tied to the
training data used to train the acoustic model and the
language model (LM). Consequently, in certain task domains,
the speech recognition system will perform better than in
other task domains. In order to determine how ASR system
will work in a particular task domain, transcribed acoustic test
data for that domain is needed, in addition to the dictionary
and LM for the domain. Collecting a sufficient amount of
transcribed acoustic test data to determine the error rate of the
system is expensive and time-consuming and forms a barrier
to developing speech enabled computer applications.

We assume that representative text data from the test
domain is available. Given this, one solution would be to use
lexical perplexity. However, lexical perplexity cannot be
directly translated into word error rate (WER). This could be
due the fact that it ignores the acoustic confusability of the
words in the text and the base WER of ASR. For a given LM,
it is possible to have poor correlation between WER and
perplexity as shown in [1].

Fig. 1 shows block diagram of ASR operation at a very
abstract level. Speaker speaks the intended word sequence W,
creating an acoustic realization A which is then decoded by
ASR into hypothesis W},

W, —» A —» ASR [—>» W,

Figure 1: High-level block diagram of ASR process

It should be noted that the mapping from W, to A is one-
to-many due to speaker and acoustic channel variation.
Mapping from A to Wy, is deterministic many-to-one mapping
for a given ASR system with fixed parameters. In other
words, many acoustic realizations get mapped to the same
word sequence but a given acoustic realization always gets
mapped to the same word sequence.

In this paper, we describe a system which we call “Text
Decoder” which can simulate ASR without acoustic data. Fig.
2 shows a block diagram of the Text Decoder. Text Decoder
therefore encapsulates the speech production and ASR
process as a black box.

W, —» TextDecoder [—» W,

Figure 2: High-level block diagram of text decoding

In order to faithfully simulate the mapping from W, to
W,,, Text Decoder needs to take into account all the acoustic
realizations which are possible and to estimate the mapping as
a probability distribution.

Being able to simulate ASR has other applications besides
WER estimation as well. Available acoustic training data is
typically a small fraction of the text training data.
Discriminative LM training can use the larger amount of text
data if the confusing word sequences which need to be
discriminated against can be predicted. Ability to predict the
errors made by ASR may also lead to quicker identification of
the parts of ASR system which need improvement.

Section 2 describes the framework which we use to
estimate WER. Section 3 describes the structure and training
of Confusion Model. Section 4 describes the search algorithm
of the Text Decoder. Section 5 contains the experimental
results followed by conclusions in Section 6.

2. WER estimation framework

Given the joint probability distribution P (W,,4,W,) for
ASR, WER can be calculated as:
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where, ErrCount(W,,W,)is the number of word errors

obtained by aligning the word sequences. For notational
convenience, we treat 4 as being discrete even though it is
actually a continuous variable. This can be re-written as:
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Here P (W.) is the distribution of the correct text sentences

from the test domain and,
P(Wi|We) =D P(W, | A)* P(A|W,) (3)
A

So P(Wi|W.) is the expected distribution of the

hypothesis Wi which would be generated by ASR given all
the possible acoustic realizations corresponding to the test
sentence text . . It should be noted that P(W, | 4)is not the
posterior probability of the word sequence but instead is the
probability that ASR will output Wi as the 1-Best hypothesis.
In other words,

P(W, | A) = 5(W,,argmax Score(W, | A)) “

",

We use Equation (2) as the basis for implementing the
Text Decoder. Since, P(VK) is not known, we use the relative

frequencies of the text data in the test corpus P(W.). P(W.)
will tend towards P (W) as the size of the test set grows if
the test text corpus is drawn according to P (W) .

Robust estimation of P(Wi|W.) directly at word sequence

level would be difficult given the sparseness of data for multi-
word sequences. Also, it would not generalize well in the
cases where the test domain vocabulary is different from the
vocabulary of the training set. It would, therefore, be better to
decompose it further using sub-word units such as phonemes.
Equation (5) gives a phoneme level decomposition using
chain rule and reasonable approximations.
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Here, ¢, and ¢, represent the phoneme sequences in the
correct and hypothesis word sequences respectively.
Approximation is due to the assumption that the correct
phoneme sequence captures all the relevant information in the
correct word sequence. In using, Equation (5), Text Decoder
gets P(g, |W,) from a dictionary or a pronunciation model.

We refer to P(g, |@,) as the Confusion Model. Since,
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a grammar or LM is required in addition to a dictionary to
disambiguate between the word sequences which result in
identical phoneme sequences such as “way to” and “weigh
two”. Text Decoder uses these components as depicted in Fig.

(6)

3. It takes test text as input, and predicts the probability
distribution of the ASR 1-Best hypotheses.

| Confusion Model |

v
| Word Seq.: W, |_»| Text Decoder |_»| P(Wy|W,)
f

| Language Model | | Dictionary |

Figure 3: Text decoder

2.1. Confusion model alternatives

The critical problem is how the acoustic confusion
complexity can be modeled and obtained. One possible way is

to use acoustic encoding probability P(x|w) proposed by

[2]. The expected log-likelihood of model x ’s acoustic
observation when evaluated by model w can be theoretically
analyzed. The desired probability can be derived from log-
likelihood. The advantage of this approach is that it works
directly from the trained acoustic model and does not need
access to the acoustic training data. A possible drawback is
that it makes the same assumptions that the acoustic model
makes. Some of the independence assumptions made by the
acoustic model may lead to a significant under-estimation of
the actual confusability of the models using real acoustic data.

An alternative is to learn the confusion model from the
training data. If training sentences and the corresponding
ASR hypotheses are taken as input string pairs, the edit
operation distribution can be learned with a certain criterion
and learning algorithm. [3] proposed an EM-algorithm to
learn stochastic model for string edit distance. String pair
probability is defined from edit operation probability and
Forward-Backward algorithm is employed to maximize
likelihood of training data.

Context dependent phoneme conversion rules with
probabilities were used in [4] for pronunciation modeling. We
decided to use a similar structure for the Confusion Model.
Other techniques in the field of pronunciation modeling may
also be useful for Confusion Model. [5] provides a good
overview of the field.

Tsai and Lee [6] use a framework similar to ours. They
address the different problem of minimizing WER for a given
domain by improving the pronunciation dictionary. They
choose to model the confusion entirely within the
pronunciation dictionary and not at a general phoneme
sequence level as we do. Consequently, our confusion model
is more general. It is independent of the training vocabulary
and the domain. It also allows us to model confusions at the
whole sentence level rather than at the word level alone.

3. Confusion model

3.1. Training data for confusion model

To obtain the phonemic string pairs needed for training
the confusion model, we start with acoustic training data
transcribed at word level. We divide acoustic training data
into multiple parts in order to use leave-one-out method.

In turn, all but one (the left-out) part of the data is used to
train a state-tied tri-phone acoustic model from scratch using



HTK toolkit [7]. The left out part is then decoded by ASR
using the acoustic model described above to get word
hypotheses. Reference and hypothesis phoneme sequences are
then obtained from reference (transcribed) and hypothesis
word sequences using forced alignment of the acoustic data
against the corresponding phoneme networks. These phoneme
sequence pairs serve as the training data for the confusion
model.

Leave-one-out method is essential to avoid bias in the
phoneme pairs. Otherwise, acoustic model used to obtain the
hypotheses phoneme sequences will make substantially less
mistakes on the acoustic data which it has already seen during
training. If acoustic data transcriptions are used for LM
training, then a similar leave-one-out procedure is also
necessary for LM training.

The phonemic string pairs are expected to be able to fully
expose internal acoustic confusion. However, it is not clear
how ASR LM should be configured. By intuition, a weaker
LM would do a better job in terms of exposing the underlying
acoustic confusability. The learned model will thus be
influenced less by the training domain specific language
patterns. The results in section 5 confirm this intuition.

3.2. Phoneme conversion rules

We characterize the mapping from reference phoneme
sequence to hypothesis phoneme sequence by learning
probabilistic rules similar to those described in [4]. Each rule
provides the probability of conversion from zero or one
phoneme in the reference to zero, one, or more than one
phoneme in the hypothesis sequence within a certain context.

Let Q be the phoneme set including the silence phoneme
sil which we also use to mark word boundaries. Let ¢ denote
an empty phoneme sequence. Then, each rule has the
form: L-F+R—F' , p, which means the focus

phoneme F e{¢}UQ would be replaced by F'eQ" with

probability p when it occurs in the context of phoneme
sequence L to its left and phoneme sequence R to its right. We
constrain the context phoneme sequences L and R to be of
length 2 or less. In other words , L and R belong

to{e}UQuUQ’. The probability p associated with each rule

is P(F'|L-F+R) . The rules of this form can model
insertion, deletion and substitution through the appropriate
use of ¢ for F or F'.

To learn the probability rules, we examine the alignment
between the ASR decoded phoneme sequence and the
reference phoneme sequence. For each phoneme in the
reference sequence, we create a rule of the form indicated
above, using the alignment and all possible contexts of length
2 or less. We also create rules with ¢ as the focus for every
position in the reference phoneme sequence to model
insertions. The probability associated with each rule is simply
the relative frequency: C(L—F +R,F)/C(L-F+R'). We
use count-cutoffs to prune the rule set to ensure robustness
and efficiency.

4. Text decoding

For a task domain, the Text Decoder will take test text as
input, apply dictionary and LM for the test domain that would

also be used by ASR, and output the estimated distribution of
hypotheses that would be generated by ASR.

For simplicity of implementation, we assume that there is
a unique pronunciation @. for a given reference test text
sentence. Given @c , we insert si/ word boundary marker

between words. The Text Decoder then finds out all possible
rules that could apply to every position within ¢ by matching
left hand sides (LHS) of all the rules against ¢ . If multiple
LHS match at a particular position, Text Decoder selects a
single LHS with the largest context length. Linear
interpolation is also possible, although we did not experiment
with it. Application of the selected rules to ¢. creates a
network which represents the set of paths representing all the
possible hypothesis phoneme sequences ¢» that would be

generated using the Confusion Model i.e. P(gph |(p(). Fig. 4

shows an example of a partial phoneme network. Notice that
sil (word boundary) between ey and ¢ can be deleted with
probability 0.18, leading to the possible errors caused by the
replacement of the word way with wait or weight.

CHOCCASTICACES

Figure 4: Partial phoneme network for reference phrase
“way to”

To generate hypothesis words Wi , the Text Decoder
explores the paths in the ¢» network by traversing the
network using standard depth-first-search strategy. To
increase the efficiency and to restrict the number of paths
explored, the Text Decoder prunes partial paths whose partial
likelihood falls below certain threshold from the best
complete path explored so far. Also, partial paths which do
not correspond to a valid word sequence as indicated by the
dictionary are also pruned.

Due to the presence of word boundary si/, different paths
in the hypothesis phoneme network may correspond to the
same pronunciation. The Text Decoder uses Equations (5)
and (6) simplified using the single pronunciation per word
assumption to estimate P (W, |W,) .

Correct Word Sequence: Probability
What is the cheapest way to fly from ...

What is the cheapest way to fly from ... 0.80
What is the cheapest way to flight from ... 0.12
What is the cheapest way to fly from ... 0.04
What is the cheapest weight fly from ... 0.02
What is the cheapest wait fly from ... 0.02

Table 1: Word sequences predicted by the Text
Decoder with associated probabilities

Table 1 shows a typical example of hypothesis
distribution. As pointed out in Section 2, this is not an N-Best



list with posterior probability but an estimate of ASR one-best
hypothesis probabilities.

5. Experimental results

ATIS data was used for building confusion models. ASR
system to be predicted used Viterbi decoder with state-tied tri-
phone acoustic model trained using all ATIS training data.

We used 5-way leave-one-out training on acoustic model
and LM to obtain phonemic transcription pairs described in
section 3.1. We tried three types of LMs during the process of
generating hypothesis phoneme sequences by decoding the
left-out part of the training data. The LMs were: phone-
bigram LM, word unigram LM, and word trigram LM. These
resulted in three sets of phoneme transcription pairs. We then
built a confusion model from each set of phoneme
transcription pairs. We will refer to these confusion models as
phone-bigram, word unigram and word trigram confusion
models respectively.

5.1. WER estimation within training domain

Since the acoustic model of ASR was built from all ATIS
training data, naturally one would like to know how close the
predictions on ATIS test task would be.

We created 3 different test conditions within ATIS
domain by using ASR with unigram, bigram, and trigram LM
to decode the test data. We will refer to LM used in each test
condition as a Test LM. For every test condition, the Text
Decoder and ASR used the same test LM. For each test
condition, we compare the WER predicted by each of the 3
confusion models described above with the actual WER of
ASR. The results are shown in Table 2 with the closest
matching Text Decoder prediction for each test condition in
boldface.

It is clear that confusion model generated using phone-
bigram and word-unigram estimates ASR WER much better
than the confusion model generated using word-trigram. This
confirms the intuition that a weaker LM would be better at
discovering acoustic confusion.

Text Decoder with
Confusion Model generated using
Test LM ASR Phone- Word- Word-
Bigram | Unigram | Trigram
Unigram 15.4 9.8 9.0 6.2
Bigram 4.8 5.6 4.6 1.9
Trigram 3.9 54 4.5 1.7

Table 2: Comparison of WER estimate by Text
Decoder with real ASR WER

5.2. WER estimation for new domains

We of course want the confusion model to be able to
estimate WER for applications in new test domains. Our
confusion models were trained from ATIS corpora. We
applied the models to predict ASR WER in other test domains
such as: Wall Street Journal dictation task (WSJ5K) and TI
Digits. The results in Table 3 show that the predictions are
reasonably close.

What deserves mention here is the prediction on WSJSK
task which has a much larger vocabulary size and certainly
contains more acoustic phenomena than the training corpus.
Yet the estimation is pretty close.

TI _DIGITS
WSISK MALE | FEMALE
Vocabulary size |V]| 4986 11 11
Test LM Bigram | Uniform | Uniform
# of test utterance. 318 4K 4K
ASR 18.3 3.8 1.6
W Phone-Bigram
E | Confusion Model 19:3 27 27
R Word-Unigram
Confusion Model 15.1 13 1.2

Table 3: Comparison of WER estimate by Text
Decoder with real ASR WER in New Domains

6. Conclusion and future work

In order to estimate ASR WER in a task domain without
acoustic data, we proposed a Text Decoder architecture which
estimates the distribution of ASR 1-best hypotheses using
only a text test corpus. We showed how a phoneme-level
confusion model based on context-dependent phoneme
conversion rules can be used to capture acoustic model
confusion. We experimentally validated Text Decoder by
showing reasonably close ASR WER prediction results both
on the training domain on which the confusion models were
built and for new domains.

There are other potential areas of application of the
proposed Text Decoder such as: a development tool which
will allow the designer of ASR enabled application to identify
parts of the application grammar which are likely to lead to
high WER; and discriminative LM training, where the LM
model parameters can be estimated while taking into account
the potentially confusable competing word sequences that are
discovered by the Text Decoder without requiring acoustic
data for the LM training corpus.
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