PeerPressure: A Statistical Method for Automatic Misconfiguration Troubleshooting

Helen J. Wang
John Platt
Yu Chen

Ruyun Zhang

Yi-Min Wang

Microsoft Research

November 2003

Technical Report
MSR-TR-2003-80

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

PeerPressure: A Statistical Method for Automatic
Misconfiguration Troubleshooting

Helen J. Wang, John Platt, Yu Chen, Ruyun Zhang, Yi-Min Wang
Microsoft Research

Abstract— Technical support contributes 17% of the users to customize default handlers or appearances of
total cost of ownership of today’s desktop PCs [20]. An existing applications. They allow individual applications
important element of technical support is troubleshooting tg register with system services to reuse base functional-
misconfigured applications. Misconfiguration troubleshoot- jtiag. They permit individual components to register with

ing is particularly challenging, because configuration in- o oo hjications that provide an extensibility mechanism
formation is shared and altered by multiple applications. (e.g., toolbars in browsers)

In this paper, we present a novel troubleshooting al- . ! .
gorithm, PeerPressurewhich uses statistics from a set of Maintaining healthy configurations of a computer plat-

sample machines to diagnose the root-cause misconfiguraform with a large installed base and numerous third-party
tions on a sick machine. This is in contrast with methods Software packages has been recognized as a daunting
that require manual identification on a healthy machine task [13]. The considerable number of possible con-
for diagnosing misconfigurations [24]. The elimination of figurations and the difficulty in specifying the “golden
this manual (_)perat_ion makes a significz_;mt step towards gigte” [21], the perfect configuration, have made the
automated mlsconf|gurgt|on troubleshoqtlng. . ~ problem appear to be intractable.

In PeerPressure, we introduce a ranking metric for mis- In this paper, we address the problem of misconfigu-

configuration candidates. This metric is based on empirical tion troubleshooting. There are tw ntial Is in
Bayesian estimation . We have developed a PeerPressurd 210N troubleshooting. There are two essential goals

troubleshooting system and used a database of 87 machined€Signing such a troubleshooting system:

configuration snapshots to evaluate its performance. With 1) Troubleshooting effectiveness: the system should
20 real-world troubleshooting cases, PeerPressure can effectively identify asmallset of sick configuration
effectively pinpoint the root-cause misconfigurations for 12 candidates with a short response time;

of them. For the remaining ones, PeerPressure significantly 2) Automation: the system should minimize the num-
narrows down the number of root-cause candidates by ber of manual steps and the number of users
three orders of magnitude. involved P

. INTRODUCTION To diagnose misconfigurations of an application on a
sick machine, it is natural to find a healthy machine to

Today's desktop PCs have not only brought to the(':rompare against [24]. Then, the configurations that differ

USErs an enormous and ever-increasing number of f%%fween the healthy and the sick are misconfiguration
tures and services, but also an increasing amount of tr spects. However, it is difficult to identify a healthy

Elesho%tmg C?ﬁtta?d rr)]ro_dulctwlty Iosljses. ts.tll;dt'es [11;33/[2 chineautomatically Involving the user in confirming
thavf ts Iownt f ec n;:fa ?utpgor, an T(tu e;C 50 e correct application behavior seems unavoidable
e total cost of ownership of today's desktop PCs [20]. We can avoid extensive manual identification work by

frolalglgee r?orggﬁm of technical support time is spent O(r;'oserving thathe golden state is in the madea other
uoles 9. words, an application functions correctly onost of

. Many 'Froulc_)lesho_otmg _cas_es are due to mlsconf'gurl%hchines, therefore we can use the statistics from a large
tions. This misconfiguration is often caused by data th ough sample set as the "statistical golden state”. The

IS I Sh?‘red perS|ste_nt stores such as Windows rE"g'sé%istical golden state can be combined with Bayesian
and Unix resource files. Such stores may serve m

. : atistics to identify anomalous misconfigurations on sick
purposes. They include system-wide resources that

N) Schines. Then, the misconfigurations can be corrected
naturally shared by all applications (e.g., the file system).

T_hey allow applications irfSta”ed at different times to 1Different users may even have different views on what the correct
discover and integrate with each other. They enakigplication behaviors are.

2

by comforming to the majority of the samples. We name Figure 1 illustrates the architecture and the opera-
this statistical troubleshooting meth&gerPressure tions of a PeerPressure troubleshooting system. A trou-
We have prototyped a PeerPressure troubleshootltigshooting user first expresses the symptom of the sick
system which carries out the PeerPressure algorittnachine through the use of “App Tracer”. "App Tracer”
using samples from a database of 87 real-usage machieords the registry entries that are used as input to
configuration snapshots. And we have evaluated the stf& failed application execution. We term these mis-
tem with 20 real-world troubleshooting cases. PeerPresnfiguration candidatesuspectsThen, the user feeds
sure can effectively pinpoint the root-cause misconfigthe suspects into the PeerPressure troubleshooter which
rations for 12 of the cases. For the remaining ones, Pelegs three modules: a canonicalizer, a searcher/fetcher,
Pressure significantly narrows down the number of rognd a statistical analyzer. The canonicalizer turns any
cause candidates by three orders of magnitude. Theser- or machine-specific entries intocanonicalized
results have demonstrated PeerPressure as a promifngy. For example, user names and machine names are
troubleshooting method. all replaced with constant strings “USERNAME” and
To simplify our presentation, we will focus our discus“MACHINENAME”, respectively. Then, PeerPressure
sion on a particular type of important configuration datgearches for a sample set of machines that run the
the Windows Registry [19], which provides hierarchicsgtame application. The search can be performed over a
persistent storage for named, typed entries. The pringseneBank” database that consists of a large number of
ples and techniques are directly applicable to other typ@achine configuration snapshots or through a peer-to-
of configuration stores such as files and other platforrager troubleshooting community. (In this paper, we base
such as Unix. our discussions on the GeneBank database approach. For
We will first give an overview on the architecture anéhe peer-to-peer approach, we refer interested readers
operations of our PeerPressure troubleshooting systéhi23].) Next, PeerPressure fetches the respective values
in Section II. In Section Ill, we detail the formulationof the canonicalized suspects from the sample set ma-
and the analysis of the PeerPressure algorithm. \8hines. The statistical analyzer then performs statistical
discuss our prototype implementation in Section I\analysis, calculates the probability for each suspect to
Then, we present our empirical results in Section V. Wee sick, and outputs a ranking report based on the sick
compare and constrast our work with the related woRobability. Finally, PeerPressure conducts trial-and-error

in Section VI, address the future work in Section VIIfixing, by stepping down the ranking report and replacing
and finally conclude in Section VIII. the possibly sick value with the most popular value from

the sample set. The fixing step interacts with the user to
Il. PEERPRESSURETROUBLESHOOTINGSYSTEM determine whether the sickness is cured. This last step is
ARCHITECTURE not shown in the figure; and we will not further address
it for the rest of the paper.
As careful readers can see, there are still some manual
steps involved. The first one is that the user must run the

Registry Entry Suspects

T T sick application to record the suspects. The second one
HKLMSystemsetp. |0 is that the user is involved in determining whether the
“KC“‘%‘SMT"“ o sickness is cured for the last step. We argue that these
Peer-to-Peer manual steps are difficult to eliminate because only the
Troubleshooting user can recognize the sickness, and therefore has to be
| ey SommiiLy in the loop for those steps. Nonetheless, these manual
Troubleshooting Result \ steps only irjvolve the troubleshooting user, and not any
E:{L\Soﬂware\Msft\... ::b‘ Statistical Second partles
e e Analyzer [1l. THE PEERPRESSUREALGORITHM
PeerPressure In this section, we first illustrate the intuition and ob-

jectives for calculating the probability of a suspect being
sick. Then, we derive the sick probability formula. At

Fig. 1. PeerPressure Troubleshooting System Architecture andl@st, through our analysis, we show that our formulation
Operations achieves the objectives.

[[Name | Suspect [Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
el | .jpg/contentType| image/jpeg| imageljpeg | imagel/jpeg | image/jpeg | imagel/jpeg | image/jpeg
e2 || .htc/contentType|| not exist text/x-comp| text/x-comp| text/x-comp| text/x-comp| text/x-comp
e3 || url-visited yahoo hotmail nytimes SFGate google friendster
TABLE II
INTUITION BEHIND PEERPRESSURESICK PROBABILITY FORMULATION
N gample set size belongs to category II.
t uspect set size Therefore, the objective for the sick probability for-
i The index for the suspect (from [1 L
0 1) mulation is not only to capture the anomaly from the
V] The value of a suspect golden mass, but also to weed out the operational state

c The number of possible sample false positives.

values for a suspect .
P B. Formulation

m The number of samples that match
the suspect value Table | summarizes our notation.
P(S The prior probability that a suspect To estimate whether a suspect is sick, we need to
is sick estimateP(§V), the probability that a suspect is sick
PH) [1-P(S given its valueV. We estimate this probability for all
P(SV) | The probability that a suspect |s suspects independently. In the derivation below, let us
sick given its value consider only one suspeictall parameters are implicitly
P(V|S) | The probability that a sick suspect indexed byi.
has valuet According to Bayes rule [10], we have:
TABLE |
NOTATION PEV) = P PVISPS) 1)
(VISP(S) +P(V|H)P(H)

We need to estimate each of the terms on the right-
hand-side of Equation (1). We first assume that there is
only one sick entry amongst the suspects (leaving the
multiple sick entry case for future work). Before we

We use an example to illustrate the intuition andbserve any values, the prior probabilities of a suspect
objectives of formulating the sick probability calculatioeing sick and healthy are
for each suspect. Table Il shows three suspedisZ,e3) 1 1
and their respective values from a sample set of machine P(H)=1- n
configuration snapshots from the GeneBank. A curso\% . .

T . eret is the number of possible suspects.
examination of the sample set suggests #at proba- . - .
) . : We do not have an extensive training set of sick
bly healthy ande2 is more likely to be sick thar3. The . A
: . . suspects. Therefore, we make an assumption that a sick
suspeci? is more likely to be sick because all samples

have the same value, while the suspect value is differeenn.try has all possible values with equal probability:

In fact, we have seen two types of state in canonical- P(V|S) = 1
ized configuration entries: (I) application configuration c

states such agl and e2, (ll) operational states suchwherec is the cardinality of the suspect entry, the total

as timestamps, usage counts, caches, seeds for randamber of values that entry can take. Note that we
number generators, window positions, and MRU (Mosbmputec by counting the number of unique values for

Recently Used)-related information. For troubleshootirthat entry in the sample set (including “no entry”, if that

configuration failures, we are mostly concerned with typmccurs), then adding one to account for all entries that
| entries. Type Il entries constitute the “natural biologicalo not occur in the sample set.

diversity” among machines and are less likely to be For P(V|H), we leverage the observation from a sam-

root causes of configuration failures. In our examp®, ple set of machine configurations from the GeneBank.

A. Intuition and Objectives

4

Let m denote the number of samples matchngand can replacem; with m, the number of samples that
N, the size of the sample set. If we assume #@at|H) matches the suspect entry. Furthermore, we can assume
is estimated via maximum likelihood, we get the estimatkat all valuesV; have the same priori probability

m (before looking at the sample set). Thug, can be
P(VIH) = N (2) replaced with some value and the sumy ;nj can be
N replaced withcn. Combining these assumptions with
PEV) = NFemi=1) (3) Equations (4) and (1) yields
However, maximum likelihood has undesirable proper- P(SV) = N+cn (5)
ties when the amount of sample data is limited. For N+cnt+cm(t —1)

example, when there are no matching value¥ @ the The parameten is proportional to the number of ob-
sample set, them= 0 andP(SV) = 1, which expresses servations that are required to overwhelm the prior and
complete certainty that is unjustified. For example, iy move the estimateB®(V|H) probabilities away from
Table IlI, maximum likelihood would claim tha and E(pj) = 1/c. In other words, the higher theis, the less
e3 are both sick with complete and equal confidence.confidence we have for the knowledge obtained from
Bayesian estimation [10] of probabilities is more aghe GeneBankn indicates the strength of the prior. A
propriate for the situation of small sample sitesuch as highern leads to a stronger prior, which requires more
our GeneBank scenario. Bayesian estimation uses a pagidence (observatiors) to change the posterior. Notice
over P(V|H), before the sample set is examined. Th@at Equation (5) never predicts a sick probability of 0
estimation then uses the posterior estimateP@f|H) or 1, even ifmis 0 or N.
after the sample set is examined. Therefd®/[H) is e choosen = 1 for our prior, which is equivalent to
never O or 1. a flat prior: all multinomial valuegp; are equally likely
We first assume tha®(V|H) is multinomial over all 3 priori. This is known as an “uninformative” prior.
possible value¥/. The multinomial has parameters. _ _
Eachp is the probability that the valug, is used. The C. Asymptotic analysis
pj sum to 1. To show that our Bayesian probability estimates in
Now, the p; have prior and posterior values whictEquation (5) produce sensible results, we illustrate the
we draw from a Dirichlet distribution [10]. Dirichlet asymptotic behavior of the estimates in various cases.
distributions are a natural prior for multinomials, because Given a suspect set of sizethere are four variables
they areconjugateto multinomials. That is, combining that affect the sick probability ranking for the suspects,
observations from a multinomial with a prior Dirichlethamely, the number of matches, the Dirichlet prior
yields a posterior Dirichlet. Thus, the Dirichlet distribustrengthn, the sample set sizd, and the cardinality.
tion is mathematically convenient. Please note thatl can vary among the suspects because
Dirichlet distributions are completely characterized byf the canonicalized entries. For example, for a user-
a count vectom;, which corresponds to the number ofpecific canonicalized entry, the number of samples is
possibe counts for each valyg. These counts do notthe number of users rather than the number of machines
need to reflect real observations: as we’ll see below, Wwethe GeneBank; and a machine can have multiple users.
can count phantom data, also. Now, we analyze on how each of these parameters affects
To perform Bayesian estimation &fV|H), we start the sick probability and whether the trend agrees with
with a prior set of countsn that reflect our prior our objectives (see Section IlI-A).
belief about the likelihood of various valueg. We Fixing N, ¢, and n, as the number of matchasn
then observe ouN samples of values for this suspectincreases, the sick probability decreases, as desired:
collecting countsm; for the different values. The mean

of the posterior Dirichlet yields the posterior estimate rLiL“wP(SV) =0
P(Vj|H) [10] Fixing N, ¢, andm, as the prior strength increases,
—_— m; 41 4 we have 1
MM =Rs @ lim P(SV) = T =P(9

We only need to estimate th(V;|H) for the value This means that conducting a statistical analysis over
that actually occurs in the suspect entry. Therefore, wach a sample set is useless in this case. This makes

5

Response Time Vs. Number of Suspects
sense, because whanreaches infinity, the prior has
infinite strength, and therefore observations offer no
additional knowledge.

For understanding the influence Nf we assume that
as N grows, m also grows asfN, for some fractionf
between 0 and 1. Therefore,

120.00 4

100.00 /S~

Response Time (Second)
—
/

. 1 40.00 “
POV =1 et ol)
Notice in the infinite data limit, the prior is completely ~ **¢ 2000 a0 w00 a0 oc0
“washed out”, and the highe, f, ort is, the less likely ot Suspects
an entry is to be sick. We also have, fdr=m= 0,
1 Fig. 2. Response Time Vs. Number of Suspects for 20 real-world
Hino P(SV) = n =P(9 troubleshooting cases.

This is also accurate. Since whéh= 0, we are unable
to make any observations. So, the suspect set is the only
factor that determines the sick probability.

To illustrate the impact of the cardinality, we first implemented the PeerPressure troubleshooter in C# [16],
note thatt — « impliesN — «. So, applying the analysiswhich issues queries to the GeneBank to fetch the sample

for N above, we have values and carries out the sick probability calculation
. . 1 (Section 1ll). We use a set of heuristics for canoni-

lim P(SV)=Ilm_—F—F—=0 o - : . ' :
c—0,N—s00 coo 14-cf(t—1) calizating user-specific, machine-specific configuration

. : . . entries in the suspect set. One obstacle we encountered
This is desirable because whernis large, it represents = . . . o
during our prototyping is that values for a specific

a higher level of “biological diversity”, and therefore, . .)
) . . . ; registry entry across different machines are the same
being different is less likely due to some sickness.

. . but with different representations. For example, 1, “#1”,
Now, we examine the case of operational state whereg, .

. 1" all represent the same value. Nonetheless, the first
m = 0 most likely, we have

one is an integer and the latter two are different string
N+cn
P(SV) =

_ representations. Such inconsistent representations of the
N+ten same data affect all parameter values needed by the sick
Fixing N, the sick probability decreases with increasegrobability calculation. We use heuristics to unify the
cardinality when there are no matches because tiéerent representations of the same data value. We call
derivative ofP(SV) with respective ta is negative when this procedure “data sanitization” for future reference.
t > 1; and whert =1, P(S|V) = 1 as desired. Therefore,For example, one such heuristic is to find all entries that
for our example in Table I, Formula 5 will rard2 sicker have more than one types. (Registry entries contain a
thane3, as desired. “type” field). For a registry entry that have both numeric-
In summary, our analysis demonstrates that Formulayped and string-typed values among different registry
achieves our objective of capturing anomalies and weeshapshots, all string values are converted into numbers.
ing out operational state false positives. Later, in Sec-
tion V, we further demonstrate through real-world trou- Our PeerPressure troubleshooter, although unopti-

bleshooting cases that our PeerPressure algorithm™Miged in its present form, is already fast. In average,
indeed effective. it takes less tham5 seconds to return a root-cause

ranking report for suspect sets of thousands of entries.

IV. IMPLEMENTATION OF PEERPRESSURE The response time generally grows with the number of
PROTOTYPE suspects because we issue one query per suspect entry.

We have prototyped the PeerPressure troubleshdeigure 2 shows the relationship between the response

ing system as shown in Figure 1. We have creatéithe and the number of suspects for the 20 troubleshoot-
a GeneBank database using Microsoft SQL Servieig cases under study . With aggressive database query
2000 [7], which now contains real-usage registry snapatching, we anticipate that the response time can be

shots from 87 Windows XP desktop PCs. We hawgeatly improved.

6

Maximum registry size 333,193 Cardinality
Minimum registry size 77,517 17

Average registry size 198,376 091
Median registry size 198,608 81
Distinct canonicalized registry entries in GeneBanl,476,665 o7
Common canonicalized registry entries 43,913 " zz
Distinct entries data-sanitized 1,820,706 © .,
TABLE Il o]

REGISTRY CHARACTERISTICS 01

0

2 . 6 s 10 2 M
Cardinality
CDF of the Registry Size

0.9 -

Fig. 4. Cardinality Distribution

0.8

0.7
0.6 q

é 0s 7 Cardinality is an essential parameter of our PeerPres-
04 7 sure formulation (Section 1ll). Because the GeneBank
o Vel may not contain all possible “genes” (entry values), we
Zj count all values that are unknown to the GeneBank as

‘ ‘ ‘ ‘ ‘ a single valuaunknown This effectively increments the
50000 100000 1s0000 20000 28000 00 3000 gpyserved cardinality from the GeneBank by one. There-
Number of Entries . .

fore, any entry from the GeneBank has a cardinality of
at least 2; and entries that do not exist in the GeneBank
have a cardinality of 1. Also, some entries may not exist
V. TROUBLESHOOTINGEFFECTIVENESS OF THE En sorrr:e salmple mach:ges. Fir S#Ch C‘er’_ thgbse_entrles

PEERPRESSURETROUBLESHOOTER ave the valueo entry Figure S oyvst e |_str| _utlon

_ . _ of the cardinality for all canonicalized entries in the
In this section, we evaluate the troubleshooting effegseneBank. 87% of the registry entries have a cardinality

tiveness of the PeerPressure prototype on the 20 reglo 949 no more than 3, and 97% no more than 4.
world troubleshooting cases. We first take a peek of the

registry characteristics based on the registry snapshBtsPeerPressure Performance with Real-World Trou-
from our GeneBank repository, then we present aieshooting Cases
analyze our troubleshooting results. Now, we present our empirical troubleshooting results
for PeerPressure.

We use the 20 cases listed in Table IV for our exper-
Windows registry contains most of the configuratioiments. They were all real-world failures that troubled
data for a desktop PC. Table Il summarizes sonsame users. And we have the knowledge of their root-
registry characteristics manifested from the GeneBardause misconfiguration a priori. Therefore, we use the
The sheer volume of configuration data is dauntinganking of the root-cause entry as our evaluation met-
Figure 3 shows the registry size distribution among thi. To allow parameterized experiments, we reproduced
registry snapshots in the GeneBank. Registry size ranglesse failures on a real-usage desktop using configuration
from 77,517 to 333,193 entries. The median is 198,6@8er interface (e.g., Control Panel applets) to inject the
entires. The total number of distinct canonicalized efailures whenever possible, and using direct editing of
tries in the GeneBank is as large as 1,476,665, whitlie Registry for the remaining cases. Then, we used “App
represents the total number of “genes” contained in tiieacer” to get the suspects (see Section Il). Finally, we

small world of 87 machines. Across all the machinesan PeerPressure to produce the ranking reports.

there are 43,913 common canonicalized entries. With ourl) Root Cause Ranking For each troubleshooting
canonicalization heuristics, an average of 68,126 entriggse, Table V shows the ranking of the root-cause
from each registry snapshot are canonicalized. With oemtry, the number of ties, the number of suspects, the
data sanitization (see Section V) heuristics, we haecardinality of the root-cause entry, the number of samples
sanitized as many as 1,820,706 entries in the GeneBamlatching the suspect’s root-cause entry value, and the

Fig. 3. Registry Size Distribution

A. A Peek of Registry Characteristics

7

[ID | Name | Description |

1 Systems Restore No available checkpoints are displayed because the calendar control object cannot be started due to
a missing Registry entry.

2 JPG Right-clicking on a JPG image and choosing the Send-Tdail Recipient option no longer offe
the resize option dialog box due to a missing Registry entry.

3 Outlook User is always asked upon exiting Outlook whether she wants to permanently delete all emails in
the Deleted Items folder, due to a hard-to-find setting.

4 IE Passwords Internet Explorer (IE) browser no longer offers to automatically save passwords; the option |to re-
enable the feature is difficult to find.

5 Media Player Windows Media Player “Open Url” function would fail if the EnableAutodial Registry entry| is
changed from 0 to 1 on a corporate desktop.

6 IM MSN Instant Messenger (IM) would significantly slow down if the firewall client is disabled an a
corporate desktop.

7 IE Proxy IE on a machine with a corporate proxy setting would fail when the machine is connected to a home
network.

8 IE Offline IE “Work Offline” option may be automatically turned on without user knowledge; user would then
be presented with a cached offline page instead of the default start page when launching IE.

9 Taskbar IE windows would be unexpectedly grouped under the Windows Explorer taskbar group, due|to the

addition of a Registry entry.

10 | Network Connections Control Panel— Network Connections showed nothing, due to a missing Registry key.
11 | Folder Double-Clicking | Double-clicking any folder in the right pane of Windows Explorer would incorrectly bring up|the
“Search Results” window.
12 | Outlook Express Microsoft Outlook could not be started because the Outlook Express installation appeared to be
missing, due to a missing Registry key.

13 | Cannot Start Executables Double-clicking any EXE file would not launch the application.

14 | Shortcut Double-clicking any shortcut would not launch the application.

15 | IE Menu Bar IE menu bar disappeared due to a corrupted Registry key name.

16 | IE Favorites IE used the “unknown file type icon” for some of the links in the Favorites.

17 | Sound Problem Warning sound was missing when an invalid command was typed into Start-¢,Run.

18 | IE New Window Right-clicking a link inside IE and choosing “Open in New Window” would show nothing.

19 | Yahoo Toolbar Yahoo Companion per-user installation affects all users.

20 | Media Player Windows Media Player "Open URL” function would fail if the EnableAutodial Registry entry is

changed from 0 to 1 on a corporate desktop.

TABLE IV
20 REAL-WORLD TROUBLESHOOTINGCASESUSED FORPEERPRESSUREEVALUATION

number of samples. The non-zero values for the “# of 2) The Causes of False PositivesNow, we give an
Matches” column indicate that the GeneBank contaiasalysis on the causes of false positives. The sick prob-
registry snapshots with the same sickness. Nonetheledslity metric essentially ranks on the conformance level
our assumption that the golden state is in the mass is stilla suspect entry to the samples from the GeneBank.
correct, since there are indeed only very small percentaljee more conforming a suspect is in comparing with
of the sick machines in the GeneBank. other suspects, the larger its rank number is (i.e., the
As we can see from the table, the number of suspe&tore healthy the suspect is).
is large: ranging from 8 to 26,308, with a median of One source of false positives is due to the nature of
1,171, and an average of 2,506. Therefore, PeerPressheeroot-cause entry. If the root-cause entry has a large
is an indispensible step of troubleshooting since sieviegrdinality, it likely receives a larger rank number based
through these large suspect sets for root-cause entriesrisour sick probability formula in Section 1ll. Case 20
like finding a needle in a haystack. falls into this category. The root-cause entry for Case 20
For 12 out of the 20 cases, PeerPressure ranks m a hlgh cardinality of 65 while the rest of the cases
root-cause entry as number one without any ties. For thave low cardinalities (Table V).
remaining cases, PeerPressure narrows down the rooffhe nature of the root-cause entry is only one factor.
cause candidates in the suspect set by three ordersTloé ranking also depends on how the root-cause entry
magnitude for most cases. There is only one case, caslates to other entries in the suspect set. A highly
19, which our GeneBank cannot help because only twastomized machine likely produces more noise, since
machines in the GeneBank have the sick application aifg unique customizations can be even less conforming
they happen to have the same sick values as well. than a sick entry value. Case 11, 12, and 16 fall in this

category. | Cases | Machine 1 [Machine 2 [Machine 3 |

. Lastly, GeneBank is not pristine. The non-zero valu,sg: ;\]/lPeGdi a Player ie(é?)/ /1379 i(20§2/)5/61§72 14((%))/ /1;;2

in Column “# of Matches” in Table IV indicates the g v 1(0) 7 2789 | 12(0) 7 1777 | 12 (0) / 2017

number of machines in the GeneBank that have the sanié. ShortCut 1(0) / 105 1(0)/ 84 1 (0)/ 64

sickness. This affected the ranking of Case 2, 6, and 1@6. [E Favoriates| 1 (0) /302 | 2(0) /3209 | 1 (3)/1908
3) The Impact of the Sample Set Sizelt is intuitive TABLE V|

that the larger the sample set is, and better the root-cause
ranking will be. However, our evaluation results indicateSICK MACHINE SENSITIVITY EVALUATION . EACH ENTRY HAS
that this is notentirely true. THE FORMAT OF ROOTCAUSERANKING (NUMBEROFTIES) /
We have experimented with sample sets of size 5, 10, NUMBEROFSUSPECTS
20, 30, 50, and 87. For each sample set 8lzave pick machines that belong to different users, and evaluated the
N samples from the GeneBank randomly for 5 timesick machine sensitivity with 5 cases. Table VII shows
then we average the root-cause ranking of the randehat the troubleshooting results on these sick machines
sample sets. Table VI shows root-cause ranking trend e mostly consistent. In some cases, such as Case 6,
various sample set sizes. The average number of tiestire is this phenomenon that a larger suspect set leads
each sample set size is indicated in the paretheses. feobetter ranking rather than introducing more noise as
the first three cases in the table, the root-cause rankimge may expect. This is simply because the larger suspect
is perfect regardless of the sample set size. One reaseton one machine is not necessarily a superset of the
is that there is a strong conformance of values in thegnaller suspect set on the other machine.
GeneBank for the root-cause entry (e.g., all samples take
the same value). And such strong conformance manifests VI
in any subset of the GeneBank samples. In addition,There are two general approachs in system manage-
no other suspects become noise when the sample sehént: the white-box [4][3][6][15][11][22] and the black-
small. box approach [24]. In the former, languages and tools are
The cases belonging to the middle portion of Table \designed to allow developers or system administrators
do not show a clear trend as a function of the sample setspecify "rules” of proper system behavior and con-
size. For Case 20, the root-cause entry has a scattdrgdrations for monitoring, and "actions” to correct any
value distribution and a high cardinality of 65. Sogetected deviation. The biggest challenge for the white-
drawing any subset of the samples reflects the same vdbos approach is in the accuracy and the completeness of
diversity, and therefore the ranking does not improube rule specification.
with larger sample set. For the other cases, although ther&trider [24] exemplifies the black-box approach for
is strong comformance in their value distributions, themisconfiguration troubleshooting: problems are diag-
rankings are affected by other entries in the suspect seitssed and corrected in the absence of specification of
For the third category of the cases in the bottororrect behavior. In Strider, the troubleshooting user first
part of Table VI, the root-cause ranking improves witldentifies a healthy machine on which the application
larger sample set. For the first 4 cases, they have ndanctions correctly. This can be done by finding a healthy
perfect root-cause ranking. Nonetheless, the numberooihfiguration snapshot in the past on the same machine
ties decreases quickly as the sample set size increasedy finding a different healthy machine. Next, Strider
For most of the cases belonging to this category, we cparforms configuration state differencing between the
see that the GeneBank has polluted entries accordsigk and the healthy, the difference is then further nar-
to the “# of Matches” column in Table V. In thisrowed down by intersecting with suspects obtained from
situation, enlarging the sample set reduces the impa&pp Tracer” (Section Il). Finally, Strider uses noise-
of the polluted entries and therefore contributes to tfiiélering techniques to further narrow down the root-
decreasing trend of the rankings. cause candidate set. Noise-filtering uses a metric called
4) Sick Machine Sensitivity Evaluation So far, we Inverse Change Frequenayhich looks at the change
have only presented results from one sick machindiequency of a registry entry. The more frequent an entry
vantage point. In fact, the troubleshooting results ddhanges, the more likely it is a piece of operational state
depend on how uniquely the sick machine is customizedich is unlikely a root cause.
and configured. To understand how our results vary with PeerPressure also takes the general black-box ap-
different sick machines, we have picked three real-usageach. PeerPressure differs from Strider in the following

RELATED WORK

9

ROOT-CAUSE RANKING RESULTS

Case Rank | Ties | # of Suspects Cardinality | # of Matches| # of Samples
1. System Restore 1 0 1350 3 1 87
2. JPG 16 0 1779 3 5 87
3. Outlook 1 0 37 4 7 566
4. |E Passwords 1 0 135 4 1 566
5. Media Player 1 0 182 6 1 566
6. IM 12 0 1777 4 8 87
7. IE Proxy 1 0 1171 16 0 566
8. IE Offline 1 0 1230 4 1 566
9. Taskbar 1 0 64 4 2 566
10. Network Connections 2 0 354 2 1 87
11. Folder Double-Click 2 1 26308 2 0 87
12. Outlook Express 3 0 482 2 0 87
13. Cannot Start Executables 1 0 237 2 0 87
14. ShortCut 1 0 105 2 0 87
15. IE Menu bar 1 2 3590 2 0 87
16. |IE Favoriates 2 0 3209 3 0 87
17. Sound Problem 1 0 8 1 0 566
18. IE New Window 1 0 853 2 0 87
19. Yahoo Tool bar n/a

20. MediaPlayer in IE 9 0 5483 65 0 566

TABLE V

Case

| 5 Samples (Ties] 10 (Ties) [20 (Ties) [30 (Ties) | 50 (Ties) [87 (Ties) | # of matches|

Perfect ranking regardless of
the sample set size
5. Media Player 1(0) 1(0) 1(0) 1(0) 1(0) 1 (0) 1
14. Invalid ShortCut 1(0) 1(0) 1(0) 1(0) 1(0) 1 (0) 0
17. Sound Problem 1(0) 1(0) 1(0) 1(0) 1(0) 1 (0) 0
Ranking Trend not solely dependent
on the sample set size
10. Network Connections 16 (1) | 1.4(0.6) 2(0.2)| 14 (0.2 1.4 (0) 2 (0) 1
20. Media Player in IE 6.2 (0.2) 6.2 (0) 8 (0) 11 (0) | 11.2 (0) 9 (0) 0
2. JPG 8.4 (0.2)| 134 (0.4)| 146 (0.2)| 13(0.2)| 14.2(0) 16 (0) 5
6. 1M 15.6 (1.6) | 104 (0.2) 20(0) | 15.4(0)| 14.6 (0) 8 (0) 8
Larger Sample Set improves ranking
8. IE Offline 1(0.2) 1 (0) 1 (0) 1 (0) 1 (0) 1(0) 1
13. Cannot Start Executables 1(0.4) 1 (0) 1 (0) 1(0) 1(0) 1(0) 0
1. System Restore 1(0) 1(0.2) 1(0.2) 1(0.2) 1(0) 1 (0) 1
9. Taskbar 1.6 (5) 1(0) 1(0) 1(0) 1(0) 1 (0) 2
3. Outlook 22(04)| 14(0.8)| 1.6(0.8)| 1.4(0.8) 1 (0) 1(0) 7
4. |E Passwords 58(8.2)| 3.2(24)| 3.2(2.4) 1 (0) 1 (0) 1(0) 1
7. IE Proxy 34(18)| 2.2(0.2) 2 (0.8) 3(3.2) 1(0) 1(0) 0
15. IE No Menu Bar 6.4 (10.8)| 3.2(3.6)| 2.2(2.6)| 1.6 (2.4) 1(2) 12 0
16. IE Favorites 182 (1)| 3.8(1.8)| 3.2(0.8) 3.8 (0) 2.8 (0) 2 (0) 0
18. IE New Window 7 (0.8) | 3.8(0.8) 2.2 (0) 1.6 (0) 1 (0) 1(0) 0
TABLE VI

IMPACT OF THE SAMPLE SET SIZE

10

ways: related work in this category [8][12][9] first use statistics
1) With statistical analysis, PeerPressure eliminatsbuild a correct behavior model which is used to detect
the manual step of the troubleshooting user ideanomalies. Then, the number of false positives is min-
tifying a healthy machine. This also eliminategmized as much as possible. Engler et al. [8] use static
the involvement of any second parties in crosshalysis on the source code to derive likely invariants
machine troubleshooting scenarios. based on the statistics on some pre-defined rule templates
2) PeerPressure generalizes the state-differencing &suich as a call tdunction g) must be paired with a call
noise-filtering steps with one step of statisticdb function k)). Then, potential bugs are recognized
analysis. as deviant behaviors from these invariants. Engler et al.

3) Strider uses order ranking which means that th@ve discovered hundreds of bugs in Linux and FreeBSD

final ordering of suspects are based on the de- date. Later, they further improved the false positive
guence of their usage during application executiorate in [12]. Forrest et al.'s seminal work on host-based
The later the root-cause entry appears during tirgrusion detection system [9] builds a normal-behaving
execution, the more false positives there are. Bystem call sequence database by observing system calls
contrast, PeerPressure is not sensitive to the $ervarious processes. Then, the intrusions with abnormal
guence of suspect entry usage. Nonetheless, #ystem call sequence can be caught. Apap et al. [2]
larger the suspect set is, the more likely there adesigned a host-based intrusion detection system that
entries which are more unique than the root-caubgilds a model of normal Registry behavior through
entry. training and showed that anomaly detection against the

4) On the measure of root-cause ranking, PeerPresdel can identify malicious activities with relatively

sure’s yields better ranking for most of the casesigh accuracy and low false positive rate.

Another interesting work that also takes the black- Another way of using statistics is to correlate the
box approach is that of Aguilera et al. [1]. They addres#served service failure with root-cause software com-
the problem of black-box performance debugging fqonent or source code for the purpose of debugging.
distributed systems. They developed and compared twiblit et al. [14] uses statistical sampling combined with
algorithms for inferring the dominant causal paths. Oree number of elimination heuristics to analyze program
uses the timing information from RPC messages. Thehaviors. Program failures, such as crashes, are corre-
other uses signal processing techniques. The significkated with specific features or even specific variables in
finding of this work is that traces gathered with littlea program.
or no knowledge of application design or message se-The PinPoint root-cause analysis framework [5] is
mantics are sufficient to make useful attributions of the a debugger for component based systems. PinPoint
sources of system latency. Therefore, their techniques atfentifies individual faulty components that causes ser-
applicable to almost any distributed systems. vice failures in a distributed system. PinPoint uses

In a recent position paper, Redstone et al. [17] ddata clustering analysis on a large number of multi-tier
scribed a vision of an automated problem diagnosis syequest-response traces that are tagged with perceived
tem that automatically captures aspects of a computesisccess/failure status. The clustering determines the root-
state, behavior, and symptoms necessary to charactegag@se subset component(s) for the service failures.
the problem, and matches such information against prob-
lem reports stored in a structured database. Redstone’s VIl. FUTURE WORK
work addresses the troubles wikmown root causes.

PeerPressure complements this work with the technique$Ve have much future work ahead of us. In this
that identify the root causes of unsolved troubleshootimp@per, we assume that there is only one sick entry
cases. among the suspects. However, it is possible that multiple

The concept of using statistical techniques for probleamtries contribute to the sickness collectively. We call
identification has emerged in several areas in recdhe process of identifying multiple root-cause entries,
years. One way of using statistics is to build a statisticalulti-genetroubleshooting. Determining the number of
model of healthy machines, and compare a sick machigenes involved in a troubleshooting case as well as
against the statistical model. PeerPressure falls into tlasmulating the multi-gene sick probability are non-
category and is the first to apply Bayesian techniquesttwvial tasks because the sick probability of each entry
the problem of misconfiguration troubleshooting. Othés no longer independent of one another.

11

Another open question is GeneBank maintenance. The ACKNOWLEDGEMENT

GeneBank currently has a one-time machine configu-\\e inherited the “App Tracer” that was implemented
ration snapshots from 87 volunteers. Without furthq{y Chad Verbowski for the Strider toolkit [24]. Chad
maintenace, these configuration snapshots will be essglg also given us valuable feedback and discussions on
tially out-of-date because of numerous software and Qs GeneBank DB schema design as well as on canoni-
upgrades. Effectively managing the evolving GeneBanlyjization heuristics for Registry entries. Emre Kiciman
is a challenge. Further, we have not yet addressggs also contributed to the canonicalization heuristics
the privacy issue. The privacy for both the users whgssign. We received much advice from our Database
contribute their configuration snapshots to the GeneBa@}gperts on the same floor for the GeneBank design and
and the users who troubleshoot their computers with tBStimizations. They are Venki Ganti, Zhiyuan Chen, and
GeneBank need to be protected for real deployment. Afico Bruno. This work also benefited from numerous
alternative to the GeneBank approach is to “search agdcyssions with Chun Yuan and Zheng Zhang. Zheng
fetch” in a peer-to-peer troubleshooting community (Sf?_ﬁhang has given us great support and encouragement on

Section 1I). Drawing the sample set in a peer-to-pegfis work. We thank everyone for their generous help.
fashion is essentially treating all computer configuration

snapshots from all the peer-to-peer participants as a dis- REFERENCES

tributed database that is always up-to-date and requir@ AcuiLErA, M. K., MocuL, J. C., WENER, J. L.,
no maintenance. Nonetheless, the peer-to-peer approach REYNOLDS, P., AND MUTHITACHAROEN, A. Performance
does result in longer search and response time. Further, E:et’oﬁ?‘g's“%ffgroggggg;ed Systems of Black Boxes. Rro-
ensuring the integrity of the troubleshooting result is @) apap, F., HoniG, A., HERSHKOR S., ESKIN, E., AND
challenge in the face of unreliable or malicious peers. StoLFo, S. J. Detecting Malicious Software by Monitoring

We have a proposal for a pnvacy and |ntegr|ty_perserv|ng Anomalous Windows Registry Accesses. thoceedings of

peer-to-peer troubleshooting system. For details, pleaf,ﬁ E'ifé&ggg),'waximum RPM. 1997
see [23]. [4] BURGESS M. A Site Configuration Engine. IrComputer
Systemg1995).
VIII. CONCLUSIONS [5] CHEN, M., KicIMAN, E., FRATKIN, E., FOX, A., AND

BREWER, E. Pinpoint: Problem Determination in Large,
We have presented PeerPressure, a novel troubleshoot- Dynamic, Internet Services. IRroceedings of International

ing algorithm which uses statistics from a set of sample Conference on Dependable Systems and Networks (IPDS Track)
machines as the golden state to diagnose the root cause (2002).
misconfigurations on a sick machine. In PeerPressure, W& SOUCH. A., AND GILFIX, M. It's Elementary, Dear Watson:
. Applying Logic Programming to Convergent System Manage-
introduce a ranking metric based on Bayesian estimation ment processes. IRroceedings of LISA1999).
of the probability of a suspect candidate being sick, give[y] DeLANEY, K. Inside Microsoft SQL Server 200(Microsoft
the value of that suspect candidate. Press, 2001.

We have developed a PeerPressure troubleshootera{ ENGLER, D., CHEN, D. Y., HALLEM, S., GiOU, A., AND

P - . ” CHELF, B. Bugs as Deviant Behavior: A General Approach

used a database of 87 real-usage machine configuration to Inferring Errors in Systems Code. Rroceedings of ACM
snapshots to evaluate its performance. With 20 real- Symposium on Operating Systems Principles (SGSBjober
world troubleshooting cases, PeerPressure can effectively 2001)-

. . 9 ! . . FORREST S., HOFMEYR, S. A., SOMAYAJI, A., AND
pinpoint the root-cause misconfigurations for 12 of th LONGSTAFE T. A. A Sense of Self for UNIX Processes. In
cases. For the remaining cases, PeerPressure significantly Proceedings of the IEEE Symposium on Research in Security

narrows down the number of root-cause candidates bx and Privacy(1996).
three orders of magnitude [10] GELMAN, A., CARLIN, J., STERN, H., AND RuUBIN, D.

... .. . Bayesian Data AnalysisChapman, 1995.
In addition to achieving the goal of effective trou{11] kecLLer, A., AND ENSEL, C. An Approach for Managing

bleshooting, PeerPressure also makes a significant step Service Dependencies with XML and the Resource Description
towards automation in misconfiguration troubleshooting ~Framework. InJournal of Network and Systems Management
. . (June 2002).

_by using a stgtlstlcal golden state, rather than manuallbé] KREMENEK, T., AND ENGLER, D. Z-Ranking: Using Sta-
identifying a single healthy state. tistical Analysis to Counter the Impact of Static Analysis

Future work includes multi-gene troubleshooting Approximations. InProcgedings of 10th Annual International
where there are multiple root-cause entries instead o Static Analysis Symposiuf@une 2003).

. . . é] LARSSON M., AND CRNKOVIC, |. Configuration Management

one, as well as privacy-preservation mechanisms for real’ o component-based Systems. Rroceedings of International
deployment. Conference on Software Engineering (IC§E)ay 2001).

12

[14]

[15]
[16]

[17]

(18]
[19]
[20]
[21]

[22]
(23]

[24]

LiBLIT, B., AIKEN, A., ZHENG, A. X., AND JORDAN, M. I.
Bug Isolation via Remote Program Sampling. Rrmoceedings

of Programming Language Design and Implementation (PLDI)
(2003).

OSTERLUND, R. PIKT: Problem Informant/Killer Tool. In
Proceedings of LISA2000).

PETZOLD, C. Programming Windows with C# (Core Reference)
. Microsoft Press, 2002.

REDSTONE J. A., SWIFT, M. M., AND BERSHAD, B. N. Us-

ing Computers to Diagnose Computer Problem$roceedings

of HotOS(2003).

SILVER, M., AND FIERING, L. Desktop and Notebook TCO
Updated for the 21st Century.

SOLOMON, D. A., AND RUSSINOVICH, M. Inside Microsoft
Windows 20003rd ed. Microsoft Press, September 2000.
Web-to-Host: Reducing the Total Cost of Ownership, The Tolly
Group.

TRAUGOTT, S., AND HUDDLESTON, J. Bootstrapping an
Infrastructure. InProceedings of LISA1998).

Tripwire. http://www.tripwire.com/.

WANG, H. J., Hy, Y.-C., YUAN, C., ZHANG, Z., AND MIN
WANG, Y. Friends Troubleshooting Network, Towards Privacy-
Preserving Automatic Troubleshooting. Tech. Rep. MSR-TR-
2003-81, Microsoft Research, Redmond, WA, Nov 2003.
WANG, Y. M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. STRIDER: A
Black-box, State-based Approach to Change and Configuration
Management and Support. Proceedings of LISA2003).

13

