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Abstract 
Using an 802.11 wireless client as a location sensor is 
an increasingly popular way of enabling location-based 
services. Triangulation on signal strengths from 
multiple access points can be used to pinpoint location 
down to a few meters. However, this level of accuracy 
comes at the price of a manual, tedious, spatially high-
density calibration of signal strength as a function of 
location. This paper presents a new 802.11 location 
algorithm based on a relatively coarse calibration. This 
helps answer the question of how accurate location can 
be computed based on a realistic level of calibration 
effort. The algorithm uses an interpolation function that 
gives location as a function of signal strength. As such, 
it is suited to maintaining some degree of performance 
in spite of reduced calibration data. We use this feature 
to test the effect of reducing the number of calibration 
readings per location and the number of locations 
visited during calibration. Our experiments show that 
calibration effort can be significantly reduced with only 
a minor reduction in spatial accuracy. This effectively 
diminishes one of the most daunting practical barriers 
to wider adoption of this type of location measurement 
technique. 

1 Introduction 
Knowing the locations of users and devices inside a 
building is an important prerequisite for location-based 
services and aspects of ubiquitous computing. 
Applications including printing on the nearest printer, 
walking directions, and inferring context for messaging. 
One promising approach to measuring location is 
triangulation from 802.11 signal strength on wireless 
devices. Given radio signal strength measurements on 
the client from a few different access points, researchers 
have shown how to compute location down to a few 
meters. This type of location measurement is especially 
attractive because it uses the building’s and user’s 
existing devices and because it works indoors where 
GPS and cell phone location often break down. 

However, the accuracy of such systems usually 
depends on a meticulous calibration procedure that 
consists of physically moving a wireless client to many 
different known locations, and sometimes orientations, 
inside a building. It may be unrealistic to expect anyone 
to spend the resources on such work. When presented 
with this prospect as part of a new product, software 
product planners sometimes balk, complaining that 
system administrators are reluctant to even keep the 
locations of printers updated, much less create and 
maintain a high-resolution table of 802.11 signal 
strengths. 

One alternative to manual calibration is to 
analytically predict signal strengths based on a physical 
simulation of the building and radio frequency 
propagation. There is work on predicting signal 
strengths for wireless networking (e.g. [1, 2]), but 
mostly aimed as a guide to the placement of access 
points and not location measurement. Bahl and 
Padmanabhan’s RADAR[3] system was one of the first 
and most comprehensive studies of 802.11 location, and 
they considered the question of physical simulation 
versus manual calibration of signal strengths. They 
discovered, for their chosen simulation method, that 
physically simulating signal strengths increased their 
median location error by about 46% (from 2.94 meters 
to 4.3 meters) over manual calibration. Moreover, a 
good physical simulation usually requires a more 
detailed model of the building than is normally 
available. 

While we cannot yet say that manual calibration will 
always give more accuracy than physical simulation, the 
evidence thus far suggests so. We can also assume that 
people’s propensity for performing tedious calibration 
will not grow. Assuming we have to live with manual 
calibration for the time being, this paper attempts to 
answer two questions: 

1. How much spatial accuracy can we get from an 
802.11 location system whose calibration 
requirements are not terribly tedious? 

2. How much can we reduce the calibration effort 
before accuracy is significantly compromised? 

We answer the first question by developing a new 
802.11 location algorithm based on the relatively easy 
calibration procedure of recording signal strengths from 
one location in every office-sized space in a building. 
Offices are a natural spatial fiducial in buildings, so our 
technique does not require measuring points on the floor 
as long as a floor map is available. 

We answer the second question by testing our system 
with different amounts of calibration data, shortening 
the time spent at each calibration location and skipping 
some of the locations altogether. 

Our new location algorithm is designed to work in 
spite of missing calibration data. It takes a set of signal 
strengths from known locations in a building and builds 
an interpolation function giving ),( yx  as a function of 
signal strength. For interpolation we use radial basis 
functions, which are simple to express and compute. We 
evaluated this new algorithm on one floor of a building 
with 118 rooms. The rms location error was 3.75 meters 
using, on average, one calibration point for every 19.5 
square meters of floor area. 
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To study the problem of calibration effort, we 
reduced the amount of calibration data as if we had 
spent less time at each location and as if we had skipped 
certain locations. The fact that our algorithm 
interpolates on signal strength to give location makes it 
possible to skip whole rooms during calibration yet still 
test in those rooms. This is more difficult with most 
other 802.11 location algorithms which instead must 
classify signal strengths into only previously seen 
locations. As expected, the accuracy goes down with 
reduced calibration data, but it goes down surprisingly 
little. The results quantify the tradeoff between accuracy 
and effort, and suggest a prescription for manually 
calibrating systems of this type. 

2 Location Measurement with 802.11 
Signal Strength 

One of the most attractive features of an 802.11 location 
system is that is does not require any extra infrastructure 
beyond the wireless network that already exists in many 
buildings. This is in contrast to other person-tracking 
systems like active badges and cameras which require 
the installation and maintenance of extra equipment. For 
a survey of location systems, see [4]. 

In the realm of 802.11 location, the first published 
work was Bahl and Padmanabhan’s RADAR system[3]. 
RADAR worked based on a table of indoor locations 
and corresponding signal strengths. Using a manully 
calibrated table (as we do), their nearest neighbor 
algorithm gave a median spatial error of 2.94 meters. 
Another table based on simulated radio wave 
propagation allowed them to avoid most of the 
calibration work at the cost of increasing the median 
error to 4.3 meters. The RADAR paper also looked at 
the problem of reducing calibration effort. They found 
that reducing the number of calibration points from 70 
to 40 had only a small negative impact on accuracy. 
This is similar to one of our results. In following work 
[5], RADAR was enhanced to use a Viterbi-like 
algorithm on short paths through the building. This 
reduced the median error to 2.37 meters. 

As part of Carnegie Mellon’s Andrew system, Small 
et al.[6] did a limited study of 802.11 location using 
eight discrete locations in a hallway. They built a table 
of signal strength vs. location and found that, upon 

returning to the eight locations, their system inferred the 
right location 87.5% of the time. 

The Nibble[7] location service used signal-to-noise 
ratios instead of the more commonly used raw signal 
strengths. (The RADAR[3] researchers, however, found 
that signal strength was more indicative of location than 
signal-to-noise ratio.) The location algorithm was a 
Bayesian network, manually trained at discrete locations 
in two buildings. The Bayes formulation allowed the 
inclusion of a priori probabilities of a person’s location 
as well as transition probabilities between locations. In 
one test on 12 locations in a hallway, Nibble assigned 
the highest probability to the correct location 97% of the 
time, not counting the 15% of the time it was 
inconclusive. 

UCSD’s ActiveCampus[8] project uses 802.11 to 
compute the location of wireless PocketPCs both 
indoors and outdoors. Instead of manual calibration, 
they use a formula that approximates the distance to an 
AP as a function of signal strength. Using a hillclimbing 
algorithm, their system computes location down to 
about 10 meters (35 feet) using signal strengths from 
multiple APs. 

Ladd et al.[9] reported an 802.11 location system 
using Bayesian reasoning and a hidden Markov model. 
They took into account not only signal strengths, but 
also the probability of seeing an access point from a 
given location. Like other work, it was based on a 
manual calibration. Their system explicitly modeled 
orientation and achieved a median spatial error of about 
one meter using calibration samples taken 
approximately every 1.5 meters in hallways. In terms of 
accuracy, this is the best result we know of. However, 
they acknowledge the problem of calibration effort and 
suggest that calibrated locations could be automatically 
inferred by outfitting the calibrator with an 
accelerometer and magnetic compass. 

Some of these systems are explicitly working toward 
more accuracy, but at the expense of increased 
calibration effort. The goals of this paper are to show 
how well a system can perform with a reasonable 
amount of calibration effort and to show how 
performance degrades if the effort is reduced. 

3 Signal Strength Calibration 
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Our location algorithm works based on interpolation of 
signal strength calibration data taken from known 
locations. We gathered training data from rooms of one 
floor of a normal office building, shown in Figure 1. 
The area of the floor is about 2680 square meters, and it 
contains 132 rooms, 118 of which were accessible to us. 
Our building maps were extracted from our 
organization’s database of Microsoft Visio® floor plans 
both as polygon representations and bitmaps. The 
coordinates of all the maps were expressed in actual 
floor coordinates in meters, giving us a consistent, 
intuitive representation of location for all our work. 

For calibration, we walked into each accessible room 
with a wirelessly connected laptop PC running the 
logging program shown in Figure 2. The logging 
program uses a new prerelease version of the Wireless 
Research Application Programming Interface (WRAPI) 

1 to get signal strengths from all the “visible” 802.11 
access points (APs).  In office-sized rooms, we stood as 
close as possible to the room’s center, taking calibration 
data at this single point. In larger rooms like conference 
rooms, we took data from a few more locations for a 
total of 137 calibration locations. These locations are 
shown in the lower right segment of Figure 6. Given the 
area of the floor and the number of calibration points, 
there was on average one calibration location for every 
19.5 square meters. We indicated the approximate (x,y) 
position of the calibration point by clicking on the map 
in Figure 2. 
                                                 
1 WRAPI is a software library that provides an interface 
to 802.11 hardware in PCs running Windows XP. It 
works with any conforming wireless hardware and is 
available from the University of California, San Diego 
at http://ramp.ucsd.edu/pawn/wrapi/. 

We spent 60 seconds at every calibration location, 
spinning around to factor out orientation effects. Our 
program scanned the available access points at about 3.4 
Hz, giving about 200 scans from each location. Each 
scan gave the set of signal strengths and Media Access 
Control (MAC) addresses of the 802.11 access points 
that the laptop could see. On average, the wireless card 
could see 3.6 APs at any given time. 

In all we took 27,796 sets of signal strength readings 
for calibration. On a different excursion through the 
same space a few days later, we took another 25,457 
sets of readings to serve as test data. The two excursions 
were separated by a few days to avoid unnatural 
similarities between test and training data. Our laptop 
saw 22 different access points during calibration. As 

 
Figure 1: We did our experiments on this floor of 
a normal office building. 
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Figure 3: This plot shows how often each access 
point was seen as a fraction of how many times 
the most visible access point was seen. The gray 
bars are for access points on floors of the 
building other than where we did our 
experiments. 

 
Figure 2: This is a screen shot of our signal 
strength logging program. The bar chart shows 
the signal strengths of the visible access points. 
The user indicates his or her position on the map 
by clicking. Signal strengths and locations are 
saved to a file for later training of the location 
program.
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shown in Figure 3, some APs were not seen very often. 
About 31% of the signal strength readings came from 
APs on floors other than the one where we were doing 
our experiments. 

In spite of our efforts to make calibration easy, the 
calibration procedure took about four tedious hours for 
one floor of a medium-sized office building, including 
the time it took to explain to curious office occupants 
what we were doing. This effort would grow quickly for 
an enterprise like a university or corporate campus with 
tens of buildings with multiple floors. Likewise, the 
effort would be large for warehouses or retail chains 
like grocery stores, both with a professed interest in this 
sort of location technology. Also periodic recalibration 
would be necessary to account for the addition or 
replacement of access points and structural changes that 
would affect radio propagation. This served as the 
inspiration for studying the effects of reducing the 
amount of necessary calibration data.  

In order to facilitate the upcoming math, we will 
designate each set of calibration signal strength readings 
with a vector is , where i  indexes over all the 
calibration vectors in all the locations we visited. Each 
calibration vector has a corresponding ( )ii yx ,  giving 
the location on the floor from which it was taken. Each 
signal strength vector is  has 22 elements, one element 
for each AP ever seen in the experiment. The elements 
in is  corresponding to unseen APs were given a value 
of one less than the minimum signal strength seen for 
the whole experiment. The signal strengths are returned 
from WRAPI as integers in units of dBm, where 

( )milliwattslog10dBm 10= . We used these units 
throughout. 

As mentioned above, the calibration excursion gave 
27,796 signal strength vectors. In the next section we 
describe how we used these vectors to compute an 
interpolation function that gives location as a function 
of the signal strength vector. After that, we reduce the 
number of calibration vectors in a principled way to see 
how reducing the amount of calibration data affects the 
accuracy of location measurement. 

4 Location as a Function of Signal 
Strength 

Most other 802.11-based location work has formulated 
the task of location measurement as a classification 
problem, where the goal is to classify the signal strength 
vector into a discrete set of locations. This includes the 
probabilistic formulations where the classification result 
is given as a set of probabilities over all the possible 
locations. 

The classification formulation is unsuitable for our 
goal of completely skipping certain rooms during the 
calibration phase. If a trained classifier has never seen a 
certain room, it will not ever classify data as coming 
from that room. Our algorithm can still interpolate a 
signal strength vector into a room it has never seen. If 
we want to then classify, we can check to see which 
room, if any, contains the computed location. 

The interpolation formulation fits a function whose 
input is a signals strength vector s  and whose output is 
a location ),( yx . We chose to use radial basis 
functions, which means 
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where ( )rK  is the chosen kernel function, *
js  are the  

M kernel function centers (described below), and jα  
and jβ  are the computed weights based on calibration 

data. *
jss −  is the Euclidian distance between the test 

signal strength vector s  and the kernel center *
js  in 

signal strength space. The offset ( )yx cc ,  is simply the 
centroid of the training data, i.e. 
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where N  is the number of calibration vectors (27,796). 
The basics of radial basis functions are explained in 
[10]. 

We chose a simple, isotropic Gaussian kernel 
function: 

( ) 







−= 2

2

2
exp

σ
rrK  (3) 

This choice of kernel function also requires a choice of 
σ  which we describe below. We also describe below 
our choice of the M  kernel centers *

js  using a k-means 
algorithm. 

Our calibration data provides the basis for a least 
squares fit to compute the kernel weights. To compute 
the jα  (for the x  coordinate), we minimize the squared 
error between the calibration data and ( )ix s , which is 
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where ( )*
jiij KK ss −= . Minimizing with respect to jα  

gives a linear equation that can be solved for the vector 
( )T

MM 1210 ,,,, −−= αααα Kα : 

xα TT KKK =  (5) 

Here K  is an MN ×  matrix of ijK  and 

( )T
xNxNxx cxcxcxcx −−−−= −− 1210 ,,,, Kx . 

Analogously, we get the jβ  from yβ TT KKK = . 

We note that KK T  has size MM × , where M  is 
our chosen number of kernel centers. One possible 
choice is to let each calibration point is  serve as a 
kernel center, giving NM = . For us however, solving 
Equation (5) with 27,796=M  would exceed our 
patience and our PC’s memory. Instead, we chose to 
cluster the signal strength calibration vectors from each 
location and use the cluster centers as kernel centers. 

Using a standard k-means algorithm, we computed 
5=k  signal strength clusters from each calibration 

location, giving us 685137 == kM  kernel centers to 
represent all 137 calibration locations on the test floor. 

The only remaining choice was σ , which controls 
the size of the kernel functions in signal strength space. 
The same  σ  is used for all M  kernel functions. For 
this we performed a simple linear search over possible 
values of σ . For each candidate σ , we first computed 
the kernel weights α  and β  using 70% of our 
calibration data. We then evaluated the candidates using 
the remaining 30% and picked the σ  that gave the least 
rms distance error in ),( yx . In spite of the 70/30 split 
for computing σ , we still used 100% of the calibration 
data to cluster for the kernel centers. 

As mentioned previously, we had another 25,457 test 
vectors taken a few days after the training data. To 
simulate a realistic scenario, we took these points by 
setting the laptop down on a flat surface for 60 seconds, 
not necessarily at the center of each room, logging 
signal strengths at the same 3.4 Hz rate. As with the 
calibration set, we approximated the ground truth 
position of the laptop by clicking on the map. Testing 
on this data, the radial basis function method gave an 
rms error of 3.75 meters. 

The rms error was computed from the  25,457=L  
test points, whose signal strengths are ls  and whose 
coordinates are ),( ll yx . For the rms error, we 
computed 

∑
−

=
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l
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Figure 5: Reducing the amount of time spent 
gathering training data at each location did not 
significantly affect accuracy.  

Figure 4: These are the locations we used to test 
our location algorithm. Altogether we tested on 
25,457 signal strength vectors taken at 115 
different locations. 
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As a way of reducing noise and increasing accuracy, 
we applied a simple running average filter to the 
computed location vectors. The filter was 10 samples 
long, which induced a delay of about 2.9 seconds at our 
scanning rate of 3.4 Hz. 

At first glance, an rms error of 3.75 meters seems 
significantly worse than RADAR’s[3] median error of 
2.94 meters or Ladd et al.’s[9] median error of about 1 
meter. But both these systems required much more 
calibration effort. The first RADAR experiment covered 
the hallway outside about 54 rooms with 70 calibration 
points, and Ladd et al. covered the hallway with 
calibration points about 1.5 meters (5 feet) apart. In 
contrast, we used one calibration point per office-sized 
room on rooms with an average spacing of 2.85 meters. 
While RADAR and Ladd et al. show what is achievable 
with a careful calibration, we show what is achievable 
with a practical one. In the next section we show how 
the calibration effort can be significantly reduced 
without a significant reduction in accuracy. 

5 Reducing Calibration Effort 
One barrier to deploying an 802.11-based location 
system is the calibration effort. We spent about four 
hours calibrating at 137 locations on one floor of our 
building. We would like to know if this amount of 
calibration is really necessary. In particular, we are 
interested in evaluating the effect of reducing the time 
spent at each location and reducing the number of 
locations visited. By training on subsets of our original 
training data, we simulated the effects of reducing the 
time and number of locations. This section shows how 
location accuracy is affected with reduced calibration 
effort. It also gives a method to decide which locations 
to skip. 

5.1 Reducing Time at Each Location 
For our original calibration excursion, we spent at least 
60 seconds at each location, gathering signal strength 
vectors at a rate of about 3.4 Hz. To test the effect of 
reduced time, we took the first s seconds of calibration 
data, processed it with the same training algorithm as 
described in Section 4, and then tested with the entire 
test set. Surprisingly, accuracy does not suffer 
significantly even when the time spent in each location 
is only ten seconds, as shown in Figure 5. At 10 
seconds, the rms error had only grown by about 12% 
(0.45 meters) from the rms error at 60 seconds. At a 
data rate of 3.4 Hz, 10 seconds of data is only 34 signal 
strength vectors. This somewhat surprising result shows 
that it is not necessary to spend much time at each 
location during calibration. 

5.2 Reducing Number of Locations 
Our radial basis function method lends itself to 
interpolating over missing data better than a pure 
classification method would. Thus we can test the effect 
of skipping certain locations in the calibration phase, 
but still test anywhere in the test phase. For this part of 
our evaluation, we omitted some locations from our 
calibration data, fit the interpolation functions as normal 
on this reduced set, and tested on the original test set. 

Figure 7 shows how we progressively reduced the 
number of calibration locations from the original full set 
of 137 locations down to 10% of the original. To choose 
k  locations from the original calibration set, we ran a k-
means clustering algorithm on the original locations to 
make k  clusters. We picked the k  original locations 
nearest the k  cluster centroids as those for calibration.  

Figure 7 shows the effect on rms error of reducing 
the number of locations visited for calibration. As 
expected, the error grows as the number of locations 
decreases. But even at 50%, the rms error has only 
grown by 20% (0.74 meters), and at 20% has grown by 
42% (1.59 meters). At 10% of the original locations, the 
rms error is 9.19 meters, an increase of 145% (5.44 
meters) over the best result at 100%.  This shows that 
there is a significantly diminishing return for moving to 
a denser set of calibration points. 
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This experiment also suggests a way to choose 
calibration points in a space. Starting with a dense set, 
say at the centroid of every room, use k-means to cluster 
the set into a representative subsample. 

5.3 Reducing Time and Locations Together 
Our experiments show that we can significantly reduce 
either the time spent at each location or the number of 
locations with only a minor degradation in accuracy. 
Figure 8 shows the effect of reducing both the time and 
the number of locations simultaneously. This plot shows 
that both the parameters can be reduced significantly 
without a correspondingly significant reduction in 
accuracy. As an example, spending 30 seconds in 40% 
of the locations increases the rms error by only about 
21% (from 3.75 meters to 4.55 meters), yet reduces the 
calibration effort by much more than half. 

6 Conclusion 
Calibration for 802.11-based location can be very 
tedious. We calibrated one floor of an office building 
with the effort close to what we could expect for a 
large-scale deployment of an 802.11 location system. 
Using radial basis functions to interpolate location as a 
function of signal strength, we achieved an rms error of 
3.75 meters. By formulating the problem as one of 
interpolation, we showed how it is possible to make 
calibration easier by skipping a significant fraction of 
the calibration locations. We also showed that it is 

unnecessary to spend much time at each location, as 
more time beyond a short minimum does not improve 
accuracy very much. These results show what level of 
accuracy we can achieve with a practical amount of 
calibration effort and how to maintain this level of 
accuracy with significantly reduced effort, making the 
deployment of such a system much more practical. 
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