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Joint State and Parameter Estimation for a
Target-Directed Nonlinear Dynamic System Model
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Abstract—In this paper, we present a new approach to joint includes temporal evolution of the input variable. In control
state and parameter estimation for a target-directed, nonlinear theory, a state-space dynamic has been widely used as a model
dynamic system model with switching states. The model, which for the noisy observations, assuming an underlying hidden

was recently proposed for representing speech dynamics, is also - - . .
called the hidden dynamic model (HDM). The model parameters state dynamic plant process. In adaptive signal processing,

subject to statistical estimation consist of the target vector and the Kalman filter technique adopts a state-space dynamic for
the system matrix (also called the “time-constants”), as well as formulating the minimum mean-square error (MMSE) linear
the parameters characterizing the nonlinear mapping from the filtering for complicated nonstationary problems. The specific
hidden state to the observation. These latter parameters are ;|55s of dynamic model investigated in this paper has been used

implemented in the current work as the weights of a three-layer . . . .
feedforward multilayer perceptron (MLP) network. The new esti- in recent research on continuous-state acoustic modeling for

mation approach presented in this paper is based on the extended SP€€ch recognition, in [4] and [7], as the statistical coarticula-
Kalman filter (EKF), and its performance is compared with the  tory model for speech production, and in [38] as the statistical
more traditional approach based on the expectation-maximization hidden dynamic model evaluated against the discrete-state
(EM) algorlthm. Extensive simulation experiment results_are hidden Markov model [33] for a speech recognition task.
presented using the proposed EKF-based and the EM algorithms o - k on ioint stat d t timati f
and under the typical conditions for employing the HDM for ur prewpus wor or!10|n state an_ para_lme_ erestima |0n_o
speech modeling. The results demonstrate superior convergencethe target-directed nonlinear model with switching states, which
performance of the EKF-based algorithm compared with the EM  we will refer to as the hidden dynamic model (HDM), investi-
algorithm, but the former suffers from excessive computational gated the use of the extended Kalman filter (EKF) [1], [17], [28]
Io_ads vv_hen adopted for training tl_we MLP weights. In all cases, the and EM algorithms [2], [35], [36], for estimation of the param-
simulation results show that the simulated model output converges ters in the stat fi v [371. In thi tend th

to the given observation sequence. However, only in the case®lersin ?5 a ee_qL_Ja ion only [37]. In this paper, We_ex en e
where the MLP Weights or the target vector are assumed known reSUItS to |nC|Ude jOInt state and parameter estimation Of bOth
do the time-constant parameters converge to their true values. the state and observation equation parameters and perform more
We also show that the MLP weights never converge to their true rigorous simulation experiments with equivalent complexity to
values, thus demonstrating the many-to-one mapping property {ha gneech recognition task. We also solve the problem expe-
of the feedforward MLP. We conclude from these simulation . di i K related to th f th
experiments that for the system to be identifiable, restrictions on rence "? our earfier wor re ated to . e converggnce orthe
the parameter space are needed. EM algorithm. Comprehensive evaluation of the different al-
gorithms in terms of the generative capabilities of the model,
convergence to the true parameter values, computational com-
plexity of the algorithm implementation, and implications for

|. INTRODUCTION system identifiability will be presented in this paper.
HE work reported in this paper deals with the problem The EKF atlgorlthtm tht?ﬂ we h;ve |mple?1entes_l fortplnt st?te_
of state and parameter estimation for state-space dynal’a parameter estimation and parameler estimation only 1S
I§nown to perform suboptimally due to the first-order approx-

models with switching states of the type of model similay ™~ : "
to that in [35]. In this paper, we focus on a specific class dpation of system nonllngar|tles. Recent work on the meth_od
the model that is constrained to exhibit the target-directé’(ﬁ unscented transformations for more accurately calculating

property and implements a nonlinear observation equat:ine distribution statistics of a nonlinear system has lead to the

The problem of state and parameter estimation of dyna erulation of the unscented Kalman filter (UKF) [39], [41]

models arises in many applications. In statistics, linear regr@ﬁd' together with efficient square-root numerical solutions, the

sion techniques can be generalized to a dynamic model t eﬁ'UKF aIgonthm [27], which is of the same complexny as
the EKF but provides up to second-order accuracy in the non-

linearity. There are also different formulations of the problem,
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Dr. Olivier Cappe. . _ to switching state-space models [11]. The traditional EKF
R. Togneri is with the School of Electrical, Electronic, and Computer En-I ith h d . . lei | . d
gineering, The University of Western Australia, Crawley WA 6009, Australi& gOI’It. m was chosen due tO_ its simple implementation an .to
(e-mail: roberto@ee.uwa.edu.au). establish a first-order analysis of an EKF-based method with
L. Deng is with Microsoft Research, Redmond WA 98052-6399 USA, anghe EM approach.

also with the Department of Electrical Engineering, University of Washington, . . .
Seattle, WA 98195 USA (e-mail: deng@microsoft.com). The organization of this paper is as follows. The HDM

Digital Object Identifier 10.1109/TSP.2003.819013 framework for this study is briefly discussed in Section II.

Index Terms—System modeling and representation.

1053-587X/03$17.00 © 2003 IEEE



3062 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

The proposed EM and EKF-based algorithms for joint statsdz = +1 (see[13]). There is a unique MLP network for each
and parameter estimation are detailed in Section Ill. Thed#stinctr.

algorithms are comparatively tested on the identical switchingThe switching state behavior of this model is represented by
state-space, multiple-token training data generated fromaal-state discrete-time random sequence, whexej(k) €
hypothetical speech recognition task. The experimental sefup2..., M] is a random variable that takes on one of fife
used is explained in Section IV, and the results are presenpeussible “phone” regimes (or states) at tifaeAn additional

in Section V. Finally, a summary of the results is made, and-state discrete-time random sequence also exists where

conclusions are drawn in Section VI. r(k) € [1,2,...R] is a random variable that takes on one of
the R possible manner of articulation states at timen prac-
Il. FORMULATION OF THE HIDDEN DYNAMIC MODEL tice, both sequences are unknown and need to be estimated, both

wpen training the model (i.e., estimating the parameters) and

N -\ll—vhg lr_1|Drr|\1/|| stud|edti|nnt1h|3 p;ia:]per r(rapdr;asrﬁntfs rone of ﬁ rdasstr%sting (i.e., using the model to rescore or decode an unknown
ew dynamic acoustic modeling paradigms for speech recogpi- . o0 sequence).

tion [4], [12], [3.1]’ [.34]’ and _the rati_onale_: for the_ form of the An important property of this model is the continuity of the
HDM ad_opted in thls_ paper is provided in [7] with the mOdehidden state variable(k) across phone regimes(0,1) —
formulation detailed in [4], [7], and [38]. qi](Nl), where N; is the number of observation vectors in seg-

th;hsetaigsta co;nt_gcr)]nggt aOftatrheet-l_ciil'Drg/clz’teVghlggnlt'sn acl)sc; c_al{l;le nt/, and0;4; is the initial observation vector for segment
quation, | get-di ’ INUOUSTY-VAIUEL | That isz(k) at the start of segmeht- 1 is set to the value

(hidden) Ma(f%\é p(rjocess.that IS us;d tot describe the Vocal'tr%?nputed at the end of segmén(This provides a long-span
resonance ( ) dynamics according to continuity constraint across adjacent phone regimes that struc-

turally models the inherent context dependencies and coarticu-

2(k+1) = ¢ 2(k) + (Im — ¢ )T? + w(k) (1) latory effects [7].

wherez (k) is them x 1 VTR state vectof]” is them x 1 phone
target vector parameter, agd is themn x m diagonal “time- [Il. STATE AND PARAMETER ESTIMATION

constant” matrix parameter associated with the phone regime Te estimation problem that we investigate in this paper is as

The phone regime is used to describe the segment of speechififdys. Given multiple sets of observation sequen@és) for

is attributed to the phone identified by the model pait.(I”).  each distinct phone regime, we seek to determine the optimal
The process noise(k) is an i.i.d, zero-mean, Gaussian processstimates for the unknown values of the state-equation parame-
Wlt.h covarlanch. The target-directed naturg of the process {ersp andT and the observation-equation paramet&ravhich
evident by noting that(k) — 77 ask — oo, independent of 5 the MLP weight vector of the nonlinear mapping function
the initial value of the state. _ _ h(z(k)). For convenience and without causing loss of gener-

~ The second component of the HDM is the observation €qugity we drop thej andr superscripts on the parameter vari-
tion used to describe the static mapping from the three-dimefljes. The hidden dynamic state vect) is usually also esti-
sional (3-D) hidden VTR state vector to the 12-dimensional obsateq simultaneously, giving rise to joint state and parameter
servable acoustic feature vector. The general form of this mapgimation. However, state estimation is strictly not required,

ping_adopted in.the current study assumes a static, multivaripégding to the proposed parameter-only, EKF-based estimation
nonlinear mapping function as follows: algorithm detailed in Section I1I-C.

Inthis study, we assume that the phone sequence or segmenta-
tion of model regimeg(k) is known in advance, which, in prac-
tice, requires training on phonetically transcribed speech cor-
pora[4], [38]. In addition, for simplicity, we assume that there is
only one manner of articulation (i.e:(k) = 1 Vk). The former
assumption is not unduly restrictive given the availability of

honetically transcribed data. However, estimation of the phone
Wundaries or the phone sequence is necessary when phonetic
scriptions are not available for training, and in testing when
unknown utterance is presented to the modeNevest or
lattice rescoring. Solutions to this problem have been provided
in [20] and [35] and will not be studied in this paper.

O(k) = h"(z(k)) + v(k) )

where thenx 1 acoustic observatiof (k) is the set of acoustic
feature vectors for framé, andh”(z(k)) is then x m static,
nonlinear mapping function on the state vecitk) associated
with the manner of articulation. The manner of articulation
describes how the phone is articulated to produce the acou
observations arising from the speech production process
will usually be different for the different broad phonetic classegn
(e.g., vowels, voiced stops, etc.). The observation naisg is
an i.i.d, zero-mean, Gaussian process with covaridic€he
multivariate mapping functioh” (z(k)) is implemented by an
m-.J-n feedforward multilayer perceptron (MLP) withhidden

nodes, a linear activation function on the output layer, and tﬁ‘é Joint State and Parameter Estimation by the EM Algorithm

antisymmetric hyperbolic tangent function The EM algorithm [2] is a widely used algorithm for the esti-
mation of the parameters in the general state-space models [15],
g(z) = atanh(bx) (3) [36] and in the current research on the HDM [4], [7], [8]. The

EM algorithm provides new estimates of the parameters after
on the hidden layer, where = 1.72 andb = 2/3 are chosen the set of all availableV observation vectors have been pre-
so thatg(z) exhibits useful unity slope and response:at 0, sented. The EM algorithm can be considered a batch or offline
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estimation method most suited to applications where all of théhere

data is available. We now present the EM algorithm for the spe- N-1 . N-1 .
cific type of model given in Section IL. A=Y Ex[z(k+1)|0,8], C=>" Ey[2(k+1)2(k)'|0, 0]
E-Step: For a sequence df observation vectors, the E-step k=0 k=0
involves computation of the conditional expectation of the log =1 _ N-l _
joint likelihood betweenZ = {z(0), z(1), ..., z(N)} and B =Y En[2(¥)[0,8], D =Y Ex[z(k)z(k)'|0,0]
0 = {0(0), O(1), ..., O(N)}, given the observatio® and k=0 k=0
parameter séb estimated at the previous step, that is are the relevant sufficient statistics that are computed by the
_ _ EKF smoother during the E-step.
Q(0]0) =E{log L(Z,0]0)|0,0) Direct solutions of (6) and (7) for either parameter can be
Nt R _ easily derived, assuming the other parameter is fixed (i.e.,
=3 Z En[e Q@ er|0, 0] known). However, for joint estimation op and T, a direct
k=0

solution is not evident. One alternative is to apply the ECM
algorithm described in [25], which has been shown to hold
the same convergence properties as the EM algorithm. In
our previous work [37], however, we found that the ECM
whereey, = [z2(k+1) — ¢z(k) — (I — ¢)I]ander2 = [O(k)—  procedure did not converge. This is due to the constrained
h(z(k))], andEx denotes the expectation baseddisamples. nature of the parameter space oy which must lie in the
The standard EKF smoother is used to provide estimates of tagge [0,1). The convergence properties of the ECM (and any
hidden dynamic variable(k) = Z(k|N) = En[2(k)|O,0] generalized EM algorithm) assume an unconstrained parameter
[22], [37]. The Jacobian matrix for thex m nonlinear mapping space. Specifically, the problem in our case is that in the ECM
functionh(z(k)) used in the EKF recursion is given by formulation forT, it is assumed that # I. In cases where
90, (k +1) was re—e_stimated cloge 1o the re-estimated value far would_
m} be ill-defined, and this was the cause for the ECM algorithm
JL failing to converge. One solution would be to regetto a
_ [ ] ) reasonable value when it is re-estimated closé;thowever,

2

Exlefy R er2|O,0] + const  (4)
0

N =

k

HI 3k 18] = [

25 1" = 1h
; Wylg (W 2k 1) W this makes it difficult to analyze the convergence properties of
- the ECM. An alternative is to use a locally optimal gradient

whereO; (k) is the jth component of the observation vector afethod, as discussed in [16], with a suitable initialization of the
time k, Z;(k + 1|k) is thei"" component of the predicted statgyarameters and step-size. In this paper, we propose to maximize
vectorz(k + 1|k) at timek, W;" is thei*" component of the (g) and (7) jointly by a simple gradient descent method with
MLP weight vectoriW"" of nodef in layer ! (layer 1 is the the gain step and number of iterations empirically chosen to
hidden layer and layer 2 is the output layef)js the number ensyre convergence.

It should be noted that the continklity conditionZ{i) is also N1
applied to the EKF error covarian@&(k). Q2(2,0,0) = > En[ejoR ™ es2|0, 6.

M-Step: In the M-step, the&) function in (4) is maximized o
with .respect to the Param?ter t= (T, ¢, W). We. consider Minimization of @5, which leads to maximization af, pro-
the first summation involving the parametéf@ande: ceeds by setting the partial derivatives with respet¥tto zero,

Ji—:l . . that is

Q1(Z2,0,0) = ) En[ej1Q "ern|O,0]. N-1

k=0 % x Y Ey [%{[O(k) — h(z(k)?}0,0| =0.
k=0

Minimization of Q1, which implies maximization ofy, pro- _ k=0 _
ceeds by setting the partial derivatives with respe and¢  That is,Q2 is minimized when the error signalk) = O(k) —
to zero, that is h(z(k)) is minimized. Since the multivariate mapping function

No1 is a feedforward MLP network, then the standard back-propa-
%O(ZEN{[Z(]{Z—Fl)—(/)Z(k')—(I — OT|T—(k)]|0, @) 9ation [13]is used WitlE(k| V) as the input and)(k) as the
k=0

d¢ desired output to provide estimates of the MLP weidhts

90 j}_l B. Joint State and Parameter Estimation by the EKF Algorithm

8—T1 Y En{[z(k+1)—¢pz(k)—(I—-)T1|0,0} =0. The use of the traditional EKF for joint state and parameter
k=0 estimation is not new [17], [28], and its application to the HDM

The resulting equations to be solved are nonlinear high-ordés been detailed in our earlier work [37], [38] for the param-
equations in terms af andT: eter setd = (T,¢). Parameter estimation based on the EKF
algorithm differs fundamentally from estimation using the EM

NYTT'—¢TB'~pBT'-NTT"+p DT B'+AT'-C =0 (6) algorithm in that new estimates of the parameters are provided

A—¢B—NT + N¢T =0 (7) immediately after the presentation of the current observation
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vector. Thus, EKF-based parameter estimation is a recursiV@e measurement equation now becomes

online method suitable for applications requiring continuous pa-
rameter updates at each observation time-step and where not

O(k) = h(6(k)) + v(k).

all of the data needs to be available. The use of the EKF dibe state equation error covariance mafjiis also augmented
gorithm for joint state and parameter estimation involves ef@ include the covariance of the parameter noise processes
tending the standard EKF algorithm to the complete parametés(k), wr(k), andwyw (k) in addition to the noise process of
set® = (T, ¢, W). This is achieved by defining the augmenteéhe dynamic state. (k). The addition of the noise parameter

State vector

N

2(k)
(k)
()

W (k)

(k)= (®)

NS

whereT'(k) is the target vector at time. The “super”-vector
¢ (k)
~ ¢2(k)
b(k) : ©)
P (F)
is them?x 1 time-constant “vector” at timé, whereg; (k) is
row ¢ of ¢(k), and the “super”-vector
Wll(k')
W2(k)

(10)

Wzn(k)
consists of all MLP weights, whei& ' (k) is the MLP weight
vector of nodée in layer/ at timek.

After the definition of the augmented state vector, the neY\fk-) and/W(k' +1|k)

state equation becomes
0(k+1) = f(0(k)) + w(k)

which is now nonlinear in the state varialfl¢k) and can be
decomposed as

changes the modeling paradigm in an important way from
EM-based parameter estimation, where there is no “noise”
process associated with the parameters.

The standard EKF recursion can now be used to yield joint
state and parameter estimates at each time-step. The expression
for the (2m + m? + p) x (2m + m? + p) state equation Jaco-
bian matrix for the nonlinear functiofi(f(k)) used in the EKF
recursion has been derived to have the following form:

$(k|k)  SL(kIk) I — G(klk) 0

~ 0 12 0 0
0 0 0 I

p

whereg(k|k) is the current estimate ¢f, p = (n + 1) x J +

(J + 1) x m is the number of weights in®-.J-n feedforward

MLP network (including the bias terms), and

> l
of [Z(klk) = T(kIR)]" - 0
GLE : -
0 < BB — (kIR

11)

is the m x m? partial derivative submatrix expression for
af /0.

The expression for then) x (2m + m? + p) measurement
equation Jacobian matrix for the nonlinear functibof® (%))
used in the EKF recursion is strictly dependent onlyzoh +
. It can be expressed as

Hy[B(k+1[R)) = [ HE[E(k+11k)] 0 0 H{ W (k + 1]k)]]

where the expression for thex m Jacobian matrixf 7 [2(k +
1]k)] is given by (5), and (12), shown at the bottom of the page,
is ann x p Jacobian matrix.

i(k+1) The same continuity condition o@(k) is also applied
p(k+1) to W(k) and the error covariancé(k). For the phone
Z:(k +1) dependent parametersl”A((k),qAS(k)), the continuity condi-
W(k+1) tion is slightly more complexﬁj(oljﬂ) = gEj(Nlj) and

¢(k)z(k) + (I — ¢(k))T'(k) w. (k) Ti(0p41) = T?(Ny,). Here,l? andl? + 1 are the successive

_ o(k) we (k) (but not necessarily adjacent) segments of the same state-space

- T(k) + wr (k) phone model;, INV;; is the number of observation vectors in

W(k) wywy (k) segmentl’ (the ith segment for phong), and 0;;,; is the
00,(k+1)

HIYIW (k+1]k)] =

W™ (k + 1|k)

g (W (k + 1[k) - 20k + 1[k)),
Wil (ke + 1|k)g (W™ (I + 1) 2(k + 1]k))Z:(k + 1]k)
07

ifl=2 h=y
L ifl=1 (12)
otherwise
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initial observation for segmeri{ + 1 (the (I + 1)th segment  We form then x m? expression

for phoney).
phone;) 20, (k + 1)
Oz (k+1)

sz(k + 1)
Oy (K + k)

kp
HIMa(k + 1) [g—;<k n 1|k>}

. . HP[(k + 1|k
C. Parameter Estimation by the EKF Algorithm ¢ [#(k + 1]k)]

The use of the EKF for joint state and parameter estimation
strictly does not require estimation of the state since we are only
concerned with parameter estimation. If the hidden dynamic
state is assumed to be a deterministic process then the EKF g@are % [2(k + 1)] is given by (5)[0.f /0 (k + 1|k)] is given
be used for parameter-only estimation (i.e., without the needgo (11), and the: x m matrix
estimate the state sequence). The method described here is an
extension of the EKF training algorithm of a recurrent neura}liji[f(k k)] =
network [10], [14], [32] to the HDM using static linearizations.” T

We define the augmented state vector as

o(k)
o) = (%&%) (13) The continuity condition that applies te(k), /W(k), and
(T'(k), $(k)) is as described previously.

m
k=1
m
k=1

8zk(k + 1)
OT(k + 1|k)

HvgE

]

k=1

HI* (k4 D) [ — 3k + 111)] "

M-

>
Il

1

whereg(k) is given by (9),W(k) is given by (10), and’(k) is
the target vector at time.

IV. SIMULATION EXPERIMENTS—CONDITIONS

The state equation becomes Simulated data was used to evaluate the performance of sev-
eral estimation algorithms described in Section IlI for =
0(k + 1) = 0(k) + w(k) (T, ¢, W). All experiments were based on a hidden dynamic

z(k) of dimensionm = 3, an acoustic feature vectér(k) of
which is a simple linear function in the state varialdig:). $_|menﬁlqnn :f 1.2,h;51ndda 3—.8—t1hZ fﬁ%{éfOl’V\llard MLP netv;/ork.
The noise process(k) includes the parameter noise processeé1e choice Ob et'\g noh es mt € hidden fayer \t/vas tm? € as 3
wy(k), wr(k), andwy (k). It should be noted that the systen{OMPromISe bEAWeEn having oo many parameters to frain an

state is stillz(k), but the state for the purposes of the EKF rd1ot enough hidden units to allow the network sufficient nonlin-

cursion isf (k). earity i?_the mapping; . . . -
The measurement equation becomes The tlme—.constantgb isa d|ag.onal'3< 3 matrlx.compnsmg
the three diagonal terms. Estimation of a diagopalvas
achieved by diagonalizing the ensuing full matrix that is
computed at each M-step of the EM algorithm and at each
o ) time-step of the EKF algorithms. There are a total of six scalar
The standard E.KF recursion is used to yield thg parameter eﬁ%ﬁrameters for the state parameter vectomnd T and 140
mates at each time-step, where the state equation system maijar parameters for the nonlinear mapping function MLP
Fy = Imim2yp and the “true” state is recursively computedyeights of a 3-8-12 network. Thus, the estimation of the MLP
from the relation weights was by far the most time-consuming task, butghe
R R R and 1" are by far the most important parameters since they
z(k+1) = ¢p(k|k)z(k) + (Im — ¢(k|k))T(k|k).  (14) characterize each phone regime.
Both the experimental setup and simulated data were based
Since the “true” state is itself a function of the parameters beiog typical conditions found in using the HDM for acoustic mod-
estimated and the previous estimate of the state, a recurrenglang [4], [7], [38]. The simulated data was generated using (1)
dynamic derivation of the Jacobian matrix derivatives for theith w(k) = 0 and z(0) = [100,700,1700]" and (2) with
nonlinear functiork(0(k), z(k)) is needed [32], [40]. However, v(k) = N (0, 0.0625).
to avoid the complexity of formulating these recurrent deriva- Two 3-8—-12 MLP networks were randomly generated: One
tives, an approximation based on static derivatives is used ass used to generate the simulated data and represented the
suming the “true” state is known and given by (14). “true” MLP network, and the other was used as the initial net-
The expression for th@) x (m+m?2+p) measurement equa-work in experiments where the MLP weight veciét had to
tion Jacobian matrix for the nonlinear functiénif(k)) used be estimated. For optimum performance, the inputs to an MLP
in the EKF recursion can be expressed as the equation at ¢heuld be normalized [13], and this was achieved by presenting
bottom of the page, whet],”[W (k + 1|k)] is given by (12).  zin(k) = 2(k) — E(z), whereE(z) = [300, 1200, 2000]’ to the

O(k) = h(6(k), 2(k)) + v(k).

Hol@(k + 1[k)] = [ HP [0+ 1[k)] HE [Tk + k)] HEE Wk + 11k)]]
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MLP network. E(z) is an empirical estimated of the expected = EM—joint state and parameter estimation by the EM al-
value of the hidden dynamic staték). gorithm (Section IlI-A);

The number of phone segment models were chosen to corre- EKFZ —joint state and parameter estimation by the EKF
spond to 31 of the phonemes of the English language. The “true” algorithm (Section 111-B);
target valuesl” were based on the Klatt synthesizer setup, as EKFP—parameter estimation by the EKF algorithm (Sec-
described in [7], and the “true” time-constaptvere randomly tion III-C).

generated values in the ranf§e5...1.0]. A total of 64 utter- There were four different experimental evaluations carried out
ances were generated based on random phonetic transcriptia@lving different combinations of parameters to be estimated.
with [13 ... 23] phone models per utterance dfid. . 17] frames  These were the following:
per model segment. This produced a training data set with a total
of 12 695 observations.

In all experiments they(, ') parameters were initialized by

1) parameter set to be estimated consisted of the state pa-
rameter® = (¢, T), with observation parameté¥ as-
sumed known (i.e., fixed to the “true” value );

2) parameter set to be estimated consisted of the complete

N 0.75 0 0 R 300 ter seb — T W
d0[0)=| 0 075 0 |=diag}(0.75), T(0]0)=| 1200 parameter seb = (¢, T, W). .
0 0 075 2000 3) parameter set to be estimated consiste® cE (¢, W)
with the target vectof” known;
and the hidden dynamic state was initialized &p|0) =  4) parameter set to be estimated consiste@ of (7', W)
[100, 700, 1700]’. with the time-constanp known.
The error covariance for the hidden state variable wa&®r each simulation experiment, results are presented after 100
initialized to P(0|0) = 0, corresponding to the conditioniterations of the algorithm, where an iteration is defined as one

of no errors in the initial estimate fo£(0|0). For the two run or pass through all of the training data (corresponding to
EKF parameter estimation algorithms, the error covariand@ 695 observations per iteration).
corresponding to the parameters in the augmented state vectdrhe average percentage deviation of the estimated parameters
was initialized toP(0(0) = [diag’(¢.) diag*(T.) diagf (W.)]’, from the known “true” values was calculated to indicate the con-
where (¢, T.,W.) = (107°,0.1,1071%) are empirically vergence of the algorithm and identifiability of the system. The
chosen values proportional to the expected error in the coreggorithm performance in minimizing the innovation sequence
sponding parameter to ensure smooth convergence of the BEKF) = O(k) — h(z(k|k)) was examined by calculating the
algorithms. difference between the observation sequen¢e) and the se-

The process and observation noise covarigp@nd R ma- quence generated by HDM during trainiégk) = h(Z(k|k)).
trices are set to fixed values and do not form part of the estiniBhis difference is presented as both an average mean-square-
tion process in the EKF recursions. Although the use of fixeztror (MSE) and an average percentage deviation. The genera-
values may produce questionable convergence results, this Wi capabilities of the HDM was examined by plotting the sixth
found not be the case for the results reported in this papercdmponent of the observation vectork) together with the
reasonable choices for the parameters were made. For the HBIM generated output(z(k|k)) between sample times 5800
parameter estimation algorith@y = diag’(10) was used to de- and 6000.
scribe the error in the predicted value of the state + 1|k) To gauge the computational load of the proposed algorithms,
arising from the incorrect state parameter values (ideélly, the CPU time (user and system time) was measured for 100
should be annealed to O as the state parameter values conviegations of the algorithm.
to their correct values). For the EKF parameter estimation al-The significance of each algorithm’s performance was ver-
gorithm, Q = diag*"**7(0), which indicates the absence ofified by including the average mean-square-error and average
any “noise” in the augmented state equation [that is, we assupercentage deviation results based on the initial values of the pa-
wy(k) = wr(k) = ww (k) = 0 and that errors in the parametetrameters prior to estimation. These results are indicated by the
values are described by the error covariance mdt(ik)]. For column labeled “Untrained” and represent the worst-case per-
the EKF joint state and parameter estimation algorithm, we adrmance.
ditionally setQ = diag*(10~?) for the covariance of the noise
processu. (k), wherel0~? is an arbitrary fictitious noise forthe A, parameter Se® = (¢, T) and Knowni¥/

uncertainty in the hidden state variable equation. For all algo- . . .
y q 9 From the results in Table |, it is evident that the state param-

rithms, the observation noise covariange= diag'?(0.0625), .
which describes the effect of the added Gaussia(m obse)rvat'i%(raﬁr se@ - (‘/”.T) converged to the true values, and_hence, t.h's
noise. system s |_d§r_1t|f|able for both the EM c_’;m_d EKF algorithms, with
EKFZ exhibiting the the smallest deviation for both the param-
eters and observation sequence. Among the three algorithms,
the EM algorithm was the most expensive computationally and
The EM and EKF algorithms described in Section Il werbad the largest parameter deviation. The EKFP was margin-
evaluated by different parameter estimation trials based on tily faster than the EKFZ but was also slightly less accurate.
simulated data experimental setup described in Section IV. To examine the properties of the algorithms further, the synthe-
The three estimation algorithms evaluated were the faized model outputs are plotted in Fig. 1. The model output plots
lowing: closely match the observation sequence for all three algorithms.

V. SIMULATION EXPERIMENT—RESULTS
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TABLE |
ESTIMATION RESULTS FORPARAMETER SET © = (¢, T') AND KNOWN W/
AFTER 100 ITERATIONS OF THEEM, EKFZ AND EKFP ALGORITHMS

Untrained | EM | EKFZ | EKFP 8
¢ (% deviation) 28.93% | 4.83% | 0.574% | 1.16% g
T (% deviation) | 25.96% | 4.30% | 0.379% | 2.68% 3
Obs MSE 29.67 | 0.0979 | 0.0632 | 0.0870 S
Obs (% deviation) | 99.89% | 6.34% | 5.41% | 5.92% §
CPU time - 1955s | 890s | 712s g
5

-10 + N

-15 L L
5800 5850 5900 5950 6000

Time

Fig. 2. Plot of the one component of the observation vector sequetkte
and synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations from
frame 5800 to 6000 for parameter §@t= (¢, T, W).

Observation Sequence

TABLE Il
ESTIMATION RESULTS FORPARAMETER SET© = (¢, W) WITH KNOWN T’
AFTER 100 ITERATIONS OF THEEM, EKFZ, AND EKFP ALGORITHMS

2 EKZFP
4l A . Segment - ;- | Untrained | EM | EKFZ | EKFP
5800 5850 5900 5950 6000 ¢ (% deviation) 28.93% 6.68% 0.750% | 0.683%
Time W (% deviation) 265.43% | 241.12% | 314.69% | 355.91%
Obs MSE 64.06 0.347 0.0684 0.0682
Fig. 1. Plot of the one component of the observation vector sequente Obs (% deviation) | 152.94% 11.24% | 5.590% 5.59%
and synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations fror CPU time N 9640 s | 180714 s | 93821 s

frame 5800 to 6000 for parameter §t= (¢, T') and knowniV".

TABLE I unconstrained nonlinear mapping implemented by the MLP,
ESTIMATION RESULTS FORPARAMETER SETO = (. T.W) AFTER100  \yhich can be freely adjusted to compensate for errors in the
TERATIONS OF THEEM, EKFZ, AND EKFP ALGORITHMS . . A .
state parameter values. The insight gained from these results is
Untrained | EM EKFZ | EKFP that if the goal is to estimate physically plausible parameters
¢ (% deviation) 28.93% | 23.00% | 31.33% | 25.92% (as we claim the HDM is), then the search space will need to
T (% deviation) 25.96% 42.88% | 43.43% | 32.12% be restricted for a unique solution.
W (% deviation) | 265.43% | 290.94% | 830.18% | 858.04% Based on this insight, in the remaining two simulation experi-
Obs Mst_ 29.72 1.53 0.617 1.010 ments, one of the state parameters is assumed known in order to
Obs (% deviation) | 100.98% | 22.12% | 13.78% | 17.98% o nine to what degree the system is uniquely specified under
CPU time - 9577 s | 185860 s | 94609 s . . .
this constrained condition.
When comparing the computational load between the EM and
This result follows from the convergence of the parameters Ed<F algorithms, the augmented state vector for the EKF, in par-
their true values. ticular the size of the MLP parameter set, increases the CPU
Unlike our previous work based on the ECM algorithm [37]ime by almost two orders of magnitude, with the EKFZ ex-
the use of a simple gradient descent method did not result in drigiting the worst overall computational performance. The main

convergence problems with the EM algorithm. contributing factor is the multiplication ofi +m? + p) square
matrices withp = 140 at each time step compared with the case
B. Parameter Se® = (¢, 7, W) whenW is a known parameter and= 0.

From the results in Table Il, it is evident that the combined ]
state and observation parameter 8et= (¢, T, W) failed C- Parameter Seb = (¢, W) With Known'
to converge to the true values, and hence, this system isThe results in Table Il show that under the condition of the
not identifiable for either the EM or EKF-based algorithmsknown target vectdr’, the time-constant converged to the true
However, the observation MSE and percentage deviation for @dllue for all three algorithms. The failure of the MLP weight pa-
the three algorithms is significantly lower than the Untrainedhmeterd¥ to converge to the true values further strengthens the
performance. Furthermore, from Fig. 2, the synthesized mo@defument that the MLP network is too unrestricted, and it ver-
output converges to the observation sequence for all thifes the many-to-one mapping ability of the MLP. As there is
algorithms. These results show that the system parameteosdirect physical interpretation of the MLP weights, their con-
are not uniquely specified, and incorrect values can yield trergence to the true values is not critical. However, convergence
same model output performance. The underlying cause is tifehe physically meaningful state parametefsi() to the true



3068 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

10 — — . [ i ' Actual |
: 12 TEM
. EKFZ - -

Y, Segment

Observation Sequence
Observation Sequence

Segment -

4 v ) . L L L
Time

Time

Fig. 3. Plot of the one component of the observation vector sequ@tieg  F19- 4. Plot of the one component of the observation vector sequeakty
and synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations froffid Synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations from
frame 5800 to 6000 for parameter §t= (¢, W) and knowrlT. frame 5800 to 6000 for parameter &t= (7., W) and knowng.

TABLE IV ; ; ;
ESTIMATION RESULTS FORPARAMETER SET © = (T, W) WITH KNGWN evaluated on simulated data generated using a typical setup for

AFTER 100 TERATIONS OF THEEM, EKFZ, AND EKFP ALGORITHMS applying the HDM to speech modeling. We presented and ana-
lyzed the experimental results in the following three aspects:

Untrained | EM__| EKFZ | EKFP 1) convergence or divergence of the estimated parameters to
T (% deviation) 28.93% | 41.39% | 47.31% | 32.14% o
W (% deviation) | 265.43% | 295.75% | 929.23% | 1476.43% the known “true” values;
Obs MSE 30.05 276 0.288 1.29 2) convergence or divergence of the synthesized model
Obs (% deviation) | 101.90% | 29.36% | 10.66% | 21.17% output to the given observation sequence;
CPU time - 9626 s | 191037 s | 95501 s 3) comparative computational costs of the three algorithms.

Among the three algorithms evaluated, the EKFZ exhibited
the best convergence. However, in the experiments involving the
known T is a feasible alternative to estimation of the completd-P WeightsW', both the EKFZ and EKFP algorithms experi-
parameter set sincg can be uniquely identified. Moreover,e,nced a one-to-two-orQers-of-magmtuc!e increase in computa-
from the observation MSE and deviation results in Table Il ar1t5)n,a| CO,St compareq with the EM algorithm. Thu_s, the EM al-
the results in Fig. 3, we again see that the synthesized mof8[ithm is preferred in cases where the MLP weidfitsneed

output sequence closely matches the observation sequence% eshma’_ted. .
all three algorithms. In comparing the EKFZ and EKFP algorithms, we observe

As the parameter set includes the MLP weightsthe mea- that the EKFZ exhibits better performance but at the cost of a

sured CPU time for EKFZ and EKFP is one to two orders @f€ater computational load due to the larger state ve&(ﬂo)r._
magnitude more than that for the EM algorithm. However, thEn€ Performance of the EKFP is at least as good as, if not

EKFZ and EKFP exhibit superior observation MSE and devi&€tter. than the EM algorithm. Since the EKFP only used static
tion performance than the EM algorithm rather the dynamic derivatives, this may explain its inferior

performance to the EKFZ. The EKFZ and EKFP algorithms
D. Parameter Se® = (T, W) With Knowne both outperform the EM algorithm, and given the suboptimal
. / . ature of these algorithms, more advanced implementations of
The results in Table IV show that under the condition C&e EKF-based algorithms remain to be further investigated.

known time-constany, the target vectot” still failed to con- %hese implementations include the decoupled EKF (DEKF)

values is significant. Thus, estimation 6f = (¢, W) with

verge to the true value. This is in sharp contrast to the res ﬁ] [32] to reduce the computational complexity arising
in Table Il and illustrates an asymmetric relation betwe on; estimating the MLP weights, the dual and joint forms
the. parameters gnd T. In addition, as expected, the MLPof the SR-UKF [40] to further improve convergence, and the
weights/ also failed to converge to the true values. Howeve stimation of the MLP weight§/” by an offline batch-mode

the observation MSE and deviation results and Fig. 4 |nd|ce} Sined back-propagation algorithm, as is the case with the EM

that for all three algorithms, the model output sequence WA lementation. By training the MLP weights separately, the

converging to the ot_)_servatlon sequence. Thus, this -systg putational burden associated with using a large state vector
is not unlquely identifiable and will not produce phyS|caII3(Nith the EKF and SR-UKF algorithms is greatly reduced.
meaningful estimates GF. The results for the complete parameter ®et= (¢, T, W)
show that the presence of the unrestricted, many-to-one, MLP
mapping function prevents the state parametgr#’j from con-
Three different EM and EKF-based algorithms for state anegrging to their true values. Thus, estimation of the complete
parameter estimation in the HDM have been proposed and wpezameter set will fail to yield physically meaningful values for

VI. SUMMARY AND DISCUSSION
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the time-constant and target parameters unless these are cmgtrariness, we will, in future work, investigate optimal seg-
fully initialized. However, if the target’ or the MLP weightd¥  mentation of the HDM sequence in conjunction with the esti-
are assumed known, then the unknown system matrix pararmmetion algorithms discussed in this paper, i.e., expanding the

ters (i.e., the time constants) will converge to the true valuesparameter sett® = (¢, T, W, j,r) [11].

In the case of acoustic modeling for speech, the taffets-
rived from the Klatt synthesiser setup [7] can be assumed to
be reasonably close to the known “true” values, and thus, the
parameter set to be estimated is reduce®te= (¢, W). Al-
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