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Joint State and Parameter Estimation for a
Target-Directed Nonlinear Dynamic System Model
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Abstract—In this paper, we present a new approach to joint
state and parameter estimation for a target-directed, nonlinear
dynamic system model with switching states. The model, which
was recently proposed for representing speech dynamics, is also
called the hidden dynamic model (HDM). The model parameters
subject to statistical estimation consist of the target vector and
the system matrix (also called the “time-constants”), as well as
the parameters characterizing the nonlinear mapping from the
hidden state to the observation. These latter parameters are
implemented in the current work as the weights of a three-layer
feedforward multilayer perceptron (MLP) network. The new esti-
mation approach presented in this paper is based on the extended
Kalman filter (EKF), and its performance is compared with the
more traditional approach based on the expectation-maximization
(EM) algorithm. Extensive simulation experiment results are
presented using the proposed EKF-based and the EM algorithms
and under the typical conditions for employing the HDM for
speech modeling. The results demonstrate superior convergence
performance of the EKF-based algorithm compared with the EM
algorithm, but the former suffers from excessive computational
loads when adopted for training the MLP weights. In all cases, the
simulation results show that the simulated model output converges
to the given observation sequence. However, only in the case
where the MLP weights or the target vector are assumed known
do the time-constant parameters converge to their true values.
We also show that the MLP weights never converge to their true
values, thus demonstrating the many-to-one mapping property
of the feedforward MLP. We conclude from these simulation
experiments that for the system to be identifiable, restrictions on
the parameter space are needed.

Index Terms—System modeling and representation.

I. INTRODUCTION

T HE work reported in this paper deals with the problem
of state and parameter estimation for state-space dynamic

models with switching states of the type of model similar
to that in [35]. In this paper, we focus on a specific class of
the model that is constrained to exhibit the target-directed
property and implements a nonlinear observation equation.
The problem of state and parameter estimation of dynamic
models arises in many applications. In statistics, linear regres-
sion techniques can be generalized to a dynamic model that
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includes temporal evolution of the input variable. In control
theory, a state-space dynamic has been widely used as a model
for the noisy observations, assuming an underlying hidden
state dynamic plant process. In adaptive signal processing,
the Kalman filter technique adopts a state-space dynamic for
formulating the minimum mean-square error (MMSE) linear
filtering for complicated nonstationary problems. The specific
class of dynamic model investigated in this paper has been used
in recent research on continuous-state acoustic modeling for
speech recognition, in [4] and [7], as the statistical coarticula-
tory model for speech production, and in [38] as the statistical
hidden dynamic model evaluated against the discrete-state
hidden Markov model [33] for a speech recognition task.

Our previous work on joint state and parameter estimation of
the target-directed nonlinear model with switching states, which
we will refer to as the hidden dynamic model (HDM), investi-
gated the use of the extended Kalman filter (EKF) [1], [17], [28]
and EM algorithms [2], [35], [36], for estimation of the param-
eters in the state equation only [37]. In this paper, we extend the
results to include joint state and parameter estimation of both
the state and observation equation parameters and perform more
rigorous simulation experiments with equivalent complexity to
the speech recognition task. We also solve the problem expe-
rienced in our earlier work related to the convergence of the
EM algorithm. Comprehensive evaluation of the different al-
gorithms in terms of the generative capabilities of the model,
convergence to the true parameter values, computational com-
plexity of the algorithm implementation, and implications for
system identifiability will be presented in this paper.

The EKF algorithm that we have implemented for joint state
and parameter estimation and parameter estimation only is
known to perform suboptimally due to the first-order approx-
imation of system nonlinearities. Recent work on the method
of unscented transformations for more accurately calculating
the distribution statistics of a nonlinear system has lead to the
formulation of the unscented Kalman filter (UKF) [39], [41]
and, together with efficient square-root numerical solutions, the
SR-UKF algorithm [27], which is of the same complexity as
the EKF but provides up to second-order accuracy in the non-
linearity. There are also different formulations of the problem,
including sequential Monte Carlo methods (or particle filters)
[9], [26], and variational learning methods applied directly
to switching state-space models [11]. The traditional EKF
algorithm was chosen due to its simple implementation and to
establish a first-order analysis of an EKF-based method with
the EM approach.

The organization of this paper is as follows. The HDM
framework for this study is briefly discussed in Section II.

1053-587X/03$17.00 © 2003 IEEE
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The proposed EM and EKF-based algorithms for joint state
and parameter estimation are detailed in Section III. These
algorithms are comparatively tested on the identical switching
state-space, multiple-token training data generated from a
hypothetical speech recognition task. The experimental setup
used is explained in Section IV, and the results are presented
in Section V. Finally, a summary of the results is made, and
conclusions are drawn in Section VI.

II. FORMULATION OF THE HIDDEN DYNAMIC MODEL

The HDM studied in this paper represents one of a class of
new dynamic acoustic modeling paradigms for speech recogni-
tion [4], [12], [31], [34], and the rationale for the form of the
HDM adopted in this paper is provided in [7] with the model
formulation detailed in [4], [7], and [38].

The first component of the HDM, which is also called
the state equation, is a target-directed, continuously-valued
(hidden) Markov process that is used to describe the vocal-tract
resonance (VTR) dynamics according to

(1)

where is the 1 VTR state vector, is the 1 phone
target vector parameter, and is the diagonal “time-
constant” matrix parameter associated with the phone regime.
The phone regime is used to describe the segment of speech that
is attributed to the phone identified by the model pair ( ).
The process noise is an i.i.d, zero-mean, Gaussian process
with covariance . The target-directed nature of the process is
evident by noting that as , independent of
the initial value of the state.

The second component of the HDM is the observation equa-
tion used to describe the static mapping from the three-dimen-
sional (3-D) hidden VTR state vector to the 12-dimensional ob-
servable acoustic feature vector. The general form of this map-
ping adopted in the current study assumes a static, multivariate
nonlinear mapping function as follows:

(2)

where the 1 acoustic observation is the set of acoustic
feature vectors for frame, and is the static,
nonlinear mapping function on the state vector associated
with the manner of articulation. The manner of articulation
describes how the phone is articulated to produce the acoustic
observations arising from the speech production process and
will usually be different for the different broad phonetic classes
(e.g., vowels, voiced stops, etc.). The observation noise is
an i.i.d, zero-mean, Gaussian process with covariance. The
multivariate mapping function is implemented by an

- - feedforward multilayer perceptron (MLP) withhidden
nodes, a linear activation function on the output layer, and the
antisymmetric hyperbolic tangent function

(3)

on the hidden layer, where and are chosen
so that exhibits useful unity slope and response at ,

and (see [13]). There is a unique MLP network for each
distinct .

The switching state behavior of this model is represented by
an -state discrete-time random sequence, where

is a random variable that takes on one of the
possible “phone” regimes (or states) at time. An additional

-state discrete-time random sequence also exists where
is a random variable that takes on one of

the possible manner of articulation states at time. In prac-
tice, both sequences are unknown and need to be estimated, both
when training the model (i.e., estimating the parameters) and
testing (i.e., using the model to rescore or decode an unknown
observation sequence).

An important property of this model is the continuity of the
hidden state variable across phone regimes:

, where is the number of observation vectors in seg-
ment , and is the initial observation vector for segment

. That is at the start of segment is set to the value
computed at the end of segment. This provides a long-span
continuity constraint across adjacent phone regimes that struc-
turally models the inherent context dependencies and coarticu-
latory effects [7].

III. STATE AND PARAMETER ESTIMATION

The estimation problem that we investigate in this paper is as
follows. Given multiple sets of observation sequences for
each distinct phone regime, we seek to determine the optimal
estimates for the unknown values of the state-equation parame-
ters and and the observation-equation parameters, which
is the MLP weight vector of the nonlinear mapping function

. For convenience and without causing loss of gener-
ality, we drop the and superscripts on the parameter vari-
ables. The hidden dynamic state vector is usually also esti-
mated simultaneously, giving rise to joint state and parameter
estimation. However, state estimation is strictly not required,
leading to the proposed parameter-only, EKF-based estimation
algorithm detailed in Section III-C.

In this study, we assume that the phone sequence or segmenta-
tion of model regimes is known in advance, which, in prac-
tice, requires training on phonetically transcribed speech cor-
pora [4], [38]. In addition, for simplicity, we assume that there is
only one manner of articulation (i.e., ). The former
assumption is not unduly restrictive given the availability of
phonetically transcribed data. However, estimation of the phone
boundaries or the phone sequence is necessary when phonetic
transcriptions are not available for training, and in testing when
an unknown utterance is presented to the model for-best or
lattice rescoring. Solutions to this problem have been provided
in [20] and [35] and will not be studied in this paper.

A. Joint State and Parameter Estimation by the EM Algorithm

The EM algorithm [2] is a widely used algorithm for the esti-
mation of the parameters in the general state-space models [15],
[36] and in the current research on the HDM [4], [7], [8]. The
EM algorithm provides new estimates of the parameters after
the set of all available observation vectors have been pre-
sented. The EM algorithm can be considered a batch or offline
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estimation method most suited to applications where all of the
data is available. We now present the EM algorithm for the spe-
cific type of model given in Section II.

E-Step: For a sequence of observation vectors, the E-step
involves computation of the conditional expectation of the log
joint likelihood between and

, given the observation and
parameter set estimated at the previous step, that is

const (4)

where and
, and denotes the expectation based onsamples.

The standard EKF smoother is used to provide estimates of the
hidden dynamic variable
[22], [37]. The Jacobian matrix for the nonlinear mapping
function used in the EKF recursion is given by

(5)

where is the th component of the observation vector at
time , is the component of the predicted state
vector at time , is the component of the
MLP weight vector of node in layer (layer 1 is the
hidden layer and layer 2 is the output layer),is the number
of nodes in the hidden layer, and is the derivative of the
activation function in the hidden layer.

It should be noted that the continuity condition on is also
applied to the EKF error covariance .

M-Step: In the M-step, the function in (4) is maximized
with respect to the parameter set . We consider
the first summation involving the parametersand :

Minimization of , which implies maximization of , pro-
ceeds by setting the partial derivatives with respect toand
to zero, that is

The resulting equations to be solved are nonlinear high-order
equations in terms of and :

(6)

(7)

where

are the relevant sufficient statistics that are computed by the
EKF smoother during the E-step.

Direct solutions of (6) and (7) for either parameter can be
easily derived, assuming the other parameter is fixed (i.e.,
known). However, for joint estimation of and , a direct
solution is not evident. One alternative is to apply the ECM
algorithm described in [25], which has been shown to hold
the same convergence properties as the EM algorithm. In
our previous work [37], however, we found that the ECM
procedure did not converge. This is due to the constrained
nature of the parameter space for, which must lie in the
range [0,1). The convergence properties of the ECM (and any
generalized EM algorithm) assume an unconstrained parameter
space. Specifically, the problem in our case is that in the ECM
formulation for , it is assumed that . In cases where
was re-estimated close to, the re-estimated value for would
be ill-defined, and this was the cause for the ECM algorithm
failing to converge. One solution would be to resetto a
reasonable value when it is re-estimated close to; however,
this makes it difficult to analyze the convergence properties of
the ECM. An alternative is to use a locally optimal gradient
method, as discussed in [16], with a suitable initialization of the
parameters and step-size. In this paper, we propose to maximize
(6) and (7) jointly by a simple gradient descent method with
the gain step and number of iterations empirically chosen to
ensure convergence.

We now consider the second summation of thefunction in
(4) involving the parameter :

Minimization of , which leads to maximization of , pro-
ceeds by setting the partial derivatives with respect toto zero,
that is

That is, is minimized when the error signal
is minimized. Since the multivariate mapping function

is a feedforward MLP network, then the standard back-propa-
gation [13] is used with as the input and as the
desired output to provide estimates of the MLP weights.

B. Joint State and Parameter Estimation by the EKF Algorithm

The use of the traditional EKF for joint state and parameter
estimation is not new [17], [28], and its application to the HDM
has been detailed in our earlier work [37], [38] for the param-
eter set . Parameter estimation based on the EKF
algorithm differs fundamentally from estimation using the EM
algorithm in that new estimates of the parameters are provided
immediately after the presentation of the current observation
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vector. Thus, EKF-based parameter estimation is a recursive,
online method suitable for applications requiring continuous pa-
rameter updates at each observation time-step and where not
all of the data needs to be available. The use of the EKF al-
gorithm for joint state and parameter estimation involves ex-
tending the standard EKF algorithm to the complete parameter
set . This is achieved by defining the augmented
state vector

(8)

where is the target vector at time. The “super”-vector

...
(9)

is the 1 time-constant “vector” at time, where is
row of , and the “super”-vector

...

...

(10)

consists of all MLP weights, where is the MLP weight
vector of node in layer at time .

After the definition of the augmented state vector, the new
state equation becomes

which is now nonlinear in the state variable and can be
decomposed as

The measurement equation now becomes

The state equation error covariance matrixis also augmented
to include the covariance of the parameter noise processes

, , and in addition to the noise process of
the dynamic state . The addition of the noise parameter
changes the modeling paradigm in an important way from
EM-based parameter estimation, where there is no “noise”
process associated with the parameters.

The standard EKF recursion can now be used to yield joint
state and parameter estimates at each time-step. The expression
for the state equation Jaco-
bian matrix for the nonlinear function used in the EKF
recursion has been derived to have the following form:

where is the current estimate of,
is the number of weights in a - - feedforward

MLP network (including the bias terms), and

...
...

...

(11)

is the partial derivative submatrix expression for
.

The expression for the measurement
equation Jacobian matrix for the nonlinear function
used in the EKF recursion is strictly dependent only on

and . It can be expressed as

where the expression for the Jacobian matrix
is given by (5), and (12), shown at the bottom of the page,

is an Jacobian matrix.
The same continuity condition on is also applied

to and the error covariance . For the phone
dependent parameters ( ), the continuity condi-
tion is slightly more complex: and

. Here, and are the successive
(but not necessarily adjacent) segments of the same state-space
phone model , is the number of observation vectors in
segment (the th segment for phone), and is the

if
if
otherwise

(12)
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initial observation for segment (the th segment
for phone ).

C. Parameter Estimation by the EKF Algorithm

The use of the EKF for joint state and parameter estimation
strictly does not require estimation of the state since we are only
concerned with parameter estimation. If the hidden dynamic
state is assumed to be a deterministic process then the EKF can
be used for parameter-only estimation (i.e., without the need to
estimate the state sequence). The method described here is an
extension of the EKF training algorithm of a recurrent neural
network [10], [14], [32] to the HDM using static linearizations.

We define the augmented state vector as

(13)

where is given by (9), is given by (10), and is
the target vector at time.

The state equation becomes

which is a simple linear function in the state variable .
The noise process includes the parameter noise processes

, , and . It should be noted that the system
state is still , but the state for the purposes of the EKF re-
cursion is .

The measurement equation becomes

The standard EKF recursion is used to yield the parameter esti-
mates at each time-step, where the state equation system matrix

and the “true” state is recursively computed
from the relation

(14)

Since the “true” state is itself a function of the parameters being
estimated and the previous estimate of the state, a recurrent or
dynamic derivation of the Jacobian matrix derivatives for the
nonlinear function is needed [32], [40]. However,
to avoid the complexity of formulating these recurrent deriva-
tives, an approximation based on static derivatives is used as-
suming the “true” state is known and given by (14).

The expression for the measurement equa-
tion Jacobian matrix for the nonlinear function used
in the EKF recursion can be expressed as the equation at the
bottom of the page, where is given by (12).

We form the expression

where is given by (5), is given
by (11), and the matrix

The continuity condition that applies to , , and
( ) is as described previously.

IV. SIMULATION EXPERIMENTS—CONDITIONS

Simulated data was used to evaluate the performance of sev-
eral estimation algorithms described in Section III for

. All experiments were based on a hidden dynamic
of dimension , an acoustic feature vector of

dimension , and a 3–8-12 feedforward MLP network.
The choice of eight nodes in the hidden layer was made as a
compromise between having too many parameters to train and
not enough hidden units to allow the network sufficient nonlin-
earity in the mapping.

The “time-constant” is a diagonal 3 3 matrix comprising
the three diagonal terms. Estimation of a diagonalwas
achieved by diagonalizing the ensuing full matrix that is
computed at each M-step of the EM algorithm and at each
time-step of the EKF algorithms. There are a total of six scalar
parameters for the state parameter vectorsand and 140
scalar parameters for the nonlinear mapping function MLP
weights of a 3–8–12 network. Thus, the estimation of the MLP
weights was by far the most time-consuming task, but the
and are by far the most important parameters since they
characterize each phone regime.

Both the experimental setup and simulated data were based
on typical conditions found in using the HDM for acoustic mod-
eling [4], [7], [38]. The simulated data was generated using (1)
with and and (2) with

.
Two 3–8–12 MLP networks were randomly generated: One

was used to generate the simulated data and represented the
“true” MLP network, and the other was used as the initial net-
work in experiments where the MLP weight vector had to
be estimated. For optimum performance, the inputs to an MLP
should be normalized [13], and this was achieved by presenting

, where to the
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MLP network. is an empirical estimated of the expected
value of the hidden dynamic state .

The number of phone segment models were chosen to corre-
spond to 31 of the phonemes of the English language. The “true”
target values were based on the Klatt synthesizer setup, as
described in [7], and the “true” time-constantwere randomly
generated values in the range . A total of 64 utter-
ances were generated based on random phonetic transcriptions
with phone models per utterance and frames
per model segment. This produced a training data set with a total
of 12 695 observations.

In all experiments the ( ) parameters were initialized by

diag

and the hidden dynamic state was initialized by
.

The error covariance for the hidden state variable was
initialized to , corresponding to the condition
of no errors in the initial estimate for . For the two
EKF parameter estimation algorithms, the error covariance
corresponding to the parameters in the augmented state vector
was initialized to diag diag diag ,
where are empirically
chosen values proportional to the expected error in the corre-
sponding parameter to ensure smooth convergence of the EKF
algorithms.

The process and observation noise covarianceand ma-
trices are set to fixed values and do not form part of the estima-
tion process in the EKF recursions. Although the use of fixed
values may produce questionable convergence results, this was
found not be the case for the results reported in this paper if
reasonable choices for the parameters were made. For the EM
parameter estimation algorithm diag was used to de-
scribe the error in the predicted value of the state
arising from the incorrect state parameter values (ideally,
should be annealed to 0 as the state parameter values converge
to their correct values). For the EKF parameter estimation al-
gorithm, diag , which indicates the absence of
any “noise” in the augmented state equation [that is, we assume

and that errors in the parameter
values are described by the error covariance matrix ]. For
the EKF joint state and parameter estimation algorithm, we ad-
ditionally set diag for the covariance of the noise
process , where is an arbitrary fictitious noise for the
uncertainty in the hidden state variable equation. For all algo-
rithms, the observation noise covariance diag ,
which describes the effect of the added Gaussian observation
noise.

V. SIMULATION EXPERIMENT—RESULTS

The EM and EKF algorithms described in Section III were
evaluated by different parameter estimation trials based on the
simulated data experimental setup described in Section IV.

The three estimation algorithms evaluated were the fol-
lowing:

EM—joint state and parameter estimation by the EM al-
gorithm (Section III-A);
EKFZ —joint state and parameter estimation by the EKF
algorithm (Section III-B);
EKFP—parameter estimation by the EKF algorithm (Sec-
tion III-C).

There were four different experimental evaluations carried out
involving different combinations of parameters to be estimated.
These were the following:

1) parameter set to be estimated consisted of the state pa-
rameters , with observation parameter as-
sumed known (i.e., fixed to the “true” value );

2) parameter set to be estimated consisted of the complete
parameter set .

3) parameter set to be estimated consisted of
with the target vector known;

4) parameter set to be estimated consisted of
with the time-constant known.

For each simulation experiment, results are presented after 100
iterations of the algorithm, where an iteration is defined as one
run or pass through all of the training data (corresponding to
12 695 observations per iteration).

The average percentage deviation of the estimated parameters
from the known “true” values was calculated to indicate the con-
vergence of the algorithm and identifiability of the system. The
algorithm performance in minimizing the innovation sequence

was examined by calculating the
difference between the observation sequence and the se-
quence generated by HDM during training .
This difference is presented as both an average mean-square-
error (MSE) and an average percentage deviation. The genera-
tive capabilities of the HDM was examined by plotting the sixth
component of the observation vector together with the
HDM generated output between sample times 5800
and 6000.

To gauge the computational load of the proposed algorithms,
the CPU time (user and system time) was measured for 100
iterations of the algorithm.

The significance of each algorithm’s performance was ver-
ified by including the average mean-square-error and average
percentage deviation results based on the initial values of the pa-
rameters prior to estimation. These results are indicated by the
column labeled “Untrained” and represent the worst-case per-
formance.

A. Parameter Set and Known

From the results in Table I, it is evident that the state param-
eter set converged to the true values, and hence, this
system is identifiable for both the EM and EKF algorithms, with
EKFZ exhibiting the the smallest deviation for both the param-
eters and observation sequence. Among the three algorithms,
the EM algorithm was the most expensive computationally and
had the largest parameter deviation. The EKFP was margin-
ally faster than the EKFZ but was also slightly less accurate.
To examine the properties of the algorithms further, the synthe-
sized model outputs are plotted in Fig. 1. The model output plots
closely match the observation sequence for all three algorithms.
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TABLE I
ESTIMATION RESULTS FORPARAMETER SET � = (�; T ) AND KNOWN W

AFTER100 ITERATIONS OF THEEM, EKFZ AND EKFP ALGORITHMS

Fig. 1. Plot of the one component of the observation vector sequenceO(k)
and synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations from
frame 5800 to 6000 for parameter set� = (�; T ) and knownW .

TABLE II
ESTIMATION RESULTS FORPARAMETER SET � = (�; T;W ) AFTER 100

ITERATIONS OF THEEM, EKFZ, AND EKFP ALGORITHMS

This result follows from the convergence of the parameters to
their true values.

Unlike our previous work based on the ECM algorithm [37],
the use of a simple gradient descent method did not result in any
convergence problems with the EM algorithm.

B. Parameter Set

From the results in Table II, it is evident that the combined
state and observation parameter set failed
to converge to the true values, and hence, this system is
not identifiable for either the EM or EKF-based algorithms.
However, the observation MSE and percentage deviation for all
the three algorithms is significantly lower than the Untrained
performance. Furthermore, from Fig. 2, the synthesized model
output converges to the observation sequence for all three
algorithms. These results show that the system parameters
are not uniquely specified, and incorrect values can yield the
same model output performance. The underlying cause is the

Fig. 2. Plot of the one component of the observation vector sequenceO(k)
and synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations from
frame 5800 to 6000 for parameter set� = (�; T;W ).

TABLE III
ESTIMATION RESULTS FORPARAMETER SET � = (�;W ) WITH KNOWN T

AFTER100 ITERATIONS OF THEEM, EKFZ, AND EKFP ALGORITHMS

unconstrained nonlinear mapping implemented by the MLP,
which can be freely adjusted to compensate for errors in the
state parameter values. The insight gained from these results is
that if the goal is to estimate physically plausible parameters
(as we claim the HDM is), then the search space will need to
be restricted for a unique solution.

Based on this insight, in the remaining two simulation experi-
ments, one of the state parameters is assumed known in order to
examine to what degree the system is uniquely specified under
this constrained condition.

When comparing the computational load between the EM and
EKF algorithms, the augmented state vector for the EKF, in par-
ticular the size of the MLP parameter set, increases the CPU
time by almost two orders of magnitude, with the EKFZ ex-
hibiting the worst overall computational performance. The main
contributing factor is the multiplication of ( ) square
matrices with at each time step compared with the case
when is a known parameter and .

C. Parameter Set With Known

The results in Table III show that under the condition of the
known target vector , the time-constant converged to the true
value for all three algorithms. The failure of the MLP weight pa-
rameters to converge to the true values further strengthens the
argument that the MLP network is too unrestricted, and it ver-
ifies the many-to-one mapping ability of the MLP. As there is
no direct physical interpretation of the MLP weights, their con-
vergence to the true values is not critical. However, convergence
of the physically meaningful state parameters () to the true
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Fig. 3. Plot of the one component of the observation vector sequenceO(k)
and synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations from
frame 5800 to 6000 for parameter set� = (�;W ) and knownT .

TABLE IV
ESTIMATION RESULTS FORPARAMETER SET � = (T;W ) WITH KNOWN �

AFTER 100 ITERATIONS OF THEEM, EKFZ, AND EKFP ALGORITHMS

values is significant. Thus, estimation of with
known is a feasible alternative to estimation of the complete
parameter set since can be uniquely identified. Moreover,
from the observation MSE and deviation results in Table III and
the results in Fig. 3, we again see that the synthesized model
output sequence closely matches the observation sequence for
all three algorithms.

As the parameter set includes the MLP weights, the mea-
sured CPU time for EKFZ and EKFP is one to two orders of
magnitude more than that for the EM algorithm. However, the
EKFZ and EKFP exhibit superior observation MSE and devia-
tion performance than the EM algorithm.

D. Parameter Set With Known

The results in Table IV show that under the condition of
known time-constant , the target vector still failed to con-
verge to the true value. This is in sharp contrast to the results
in Table III and illustrates an asymmetric relation between
the parameters and . In addition, as expected, the MLP
weights also failed to converge to the true values. However,
the observation MSE and deviation results and Fig. 4 indicate
that for all three algorithms, the model output sequence was
converging to the observation sequence. Thus, this system
is not uniquely identifiable and will not produce physically
meaningful estimates of .

VI. SUMMARY AND DISCUSSION

Three different EM and EKF-based algorithms for state and
parameter estimation in the HDM have been proposed and were

Fig. 4. Plot of the one component of the observation vector sequenceO(k)
and synthesized EM, EKFZ, and EKFP HDM outputs after 100 iterations from
frame 5800 to 6000 for parameter set� = (T;W ) and known�.

evaluated on simulated data generated using a typical setup for
applying the HDM to speech modeling. We presented and ana-
lyzed the experimental results in the following three aspects:

1) convergence or divergence of the estimated parameters to
the known “true” values;

2) convergence or divergence of the synthesized model
output to the given observation sequence;

3) comparative computational costs of the three algorithms.
Among the three algorithms evaluated, the EKFZ exhibited

the best convergence. However, in the experiments involving the
MLP weights , both the EKFZ and EKFP algorithms experi-
enced a one-to-two-orders-of-magnitude increase in computa-
tional cost compared with the EM algorithm. Thus, the EM al-
gorithm is preferred in cases where the MLP weightsneed
to be estimated.

In comparing the EKFZ and EKFP algorithms, we observe
that the EKFZ exhibits better performance but at the cost of a
greater computational load due to the larger state vector.
The performance of the EKFP is at least as good as, if not
better, than the EM algorithm. Since the EKFP only used static
rather the dynamic derivatives, this may explain its inferior
performance to the EKFZ. The EKFZ and EKFP algorithms
both outperform the EM algorithm, and given the suboptimal
nature of these algorithms, more advanced implementations of
the EKF-based algorithms remain to be further investigated.
These implementations include the decoupled EKF (DEKF)
[14], [32] to reduce the computational complexity arising
from estimating the MLP weights, the dual and joint forms
of the SR-UKF [40] to further improve convergence, and the
estimation of the MLP weights by an offline batch-mode
trained back-propagation algorithm, as is the case with the EM
implementation. By training the MLP weights separately, the
computational burden associated with using a large state vector
with the EKF and SR-UKF algorithms is greatly reduced.

The results for the complete parameter set
show that the presence of the unrestricted, many-to-one, MLP
mapping function prevents the state parameters () from con-
verging to their true values. Thus, estimation of the complete
parameter set will fail to yield physically meaningful values for
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the time-constant and target parameters unless these are care-
fully initialized. However, if the target or the MLP weights
are assumed known, then the unknown system matrix parame-
ters (i.e., the time constants) will converge to the true values.

In the case of acoustic modeling for speech, the targetsde-
rived from the Klatt synthesiser setup [7] can be assumed to
be reasonably close to the known “true” values, and thus, the
parameter set to be estimated is reduced to . Al-
ternatively, the Klatt-synthesizer derived targets can be used as
the initial values for with the complete parameter set

being estimated. It remains to be seen by future in-
vestigations whether convergence to the true values will hold.

From investigation of the acoustic-phonetics of speech, the
mapping functions from the VTR states to the acoustic mea-
surements may be established for different classes of speech
and speaker characteristics. Thus, the MLP weight vector
can be treated as known, and the parameter set can be reduced
to . Since this would not include the parameter,
the current implementation of the EKFZ algorithm or the more
optimal SR-UKF can be efficiently used due to their superior
convergence over the EM algorithm.

As has been shown by the results in Section V, the perfor-
mance of the training algorithms and convergence of the param-
eters to their true values depends heavily on whether the MLP
weights are assumed known or are parameters that need to
be estimated. In the justification for the current structure of the
HDM [4], [7], [38], the MLP is chosen to represent the most
general nonlinear mapping between the internal states and the
observable acoustics. Alternative formulations with linear map-
pings and mixture of linear mappings have also been proposed
[19], and more investigation is needed to determine whether a
simpler mapping function than a feedforward MLP is feasible.

The performance of the EKF-based algorithms was found to
be highly dependent on the initialization of the , as well
as of the noise covariance matricesand . In the work re-
ported in this paper, and were set to some empirically fixed
values, which are not optimal. Furthermore, the effect of the pa-
rameter noise processes , , and on the con-
vergence of the EKF-based algorithms requires further inves-
tigation. For the synthetic experiments discussed in this paper,
the use of fixed values did not result in any serious convergence
problems or inconsistent results, but ideally,and should
be adapted during the training process, especially for more real-
istic problems. Possible improvements in this respect are 1) in-
cluding and in the parameter set (i.e., )
[5] or, in cases where that is too difficult, 2) annealingand
during the training process [14], and investigating 3) the addi-
tion of a small artificial noise process to and to improve
stability [23].

An important problem arising from the switching state char-
acteristic is the estimation of the switching state sequences
and . In practice, the majority of speech corpora are not pho-
netically transcribed. Furthermore, the available phonetic tran-
scriptions may not perfectly align with the target-directed pho-
netic model structure of the HDM. An example of this is the an-
ticipatory effect of the succeeding phone, which is usually em-
pirically modeled by setting the midpoint of the phonetic tran-
scription as the model boundary in the HDM. To overcome this

arbitrariness, we will, in future work, investigate optimal seg-
mentation of the HDM sequence in conjunction with the esti-
mation algorithms discussed in this paper, i.e., expanding the
parameter set to [11].
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