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Abstract. In this paper, we propose a fully automatic, effective and effi-
cient framework for 3D face reconstruction based on a single face image in
arbitrary view. First, a multi-view face alignment algorithm localizes the
face feature points, and then EM algorithm is applied to derive the op-
timal 3D shape and position parameters. Moreover, the unit quaternion
based pose representation is proposed for efficient 3D pose parameter op-
timization. Compared with other related works, this framework has the
following advantages: 1) it is fully automatic, and only one single face
image in arbitrary view is required; 2) EM algorithm and unit quaternion
based pose representation are integrated for efficient shape and position
parameters estimation; 3) the correspondence between 2D contour points
and 3D model vertexes are dynamically determined by normal direction
constraints, which facilitates the 3D reconstruction from arbitrary view
image; 4) a weighted optimization strategy is applied for more robust
parameter estimation. The experimental results show the effectiveness
of our framework for 3D face reconstruction.

1 Introduction

Modeling 3D human faces has been a challenging problem in computer graphics
and computer vision literatures in the last decades. Since the pioneering work of
Parke [§][9], various techniques have been reported for modeling the geometry
of faces [5][I1]. The 2D-based methods do not consider the specific structure
of human faces, thus result in the poor performance on profile face samples. In
the work of Lam et al. [4], face samples with out-of-plane rotation are warped
into frontal faces based on a cylinder face model, but it requires heavy manual
labeling work. Shape from shading [I3] has been explored to extract 3D face
geometry information and generate virtual samples by rotating the generated
3D models. This algorithm requires that the face images are precisely aligned
pixel-wise, which is difficult to be implemented in practice and even impossible
for practical face recognition applications.
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The two most popular works on 3D face modeling and analysis are the mor-
phable 3D face model proposed by Vetter et al. [I0] and the artificial 3D shape
model by Zhang et al. [7]. The former one presented a 3D face reconstruction
algorithm to recover the shape and texture parameters based on a face image
in arbitrary view, and the latter developed a system to construct textured 3D
face model from video sequence. Recently, Hu and Yan et al. [3] presented an
automatic 2D-to-3D integrated face reconstruction method to recover the 3D
face model based on a frontal face image and it is much faster. However, there
are still some shortcomings in these works: 1) both Vetter and Zhang’s works
require manual initialization and the speed can not satisfy the requirement of a
practical face recognition system; 2) Vetter’s work needs a large number of sam-
ples for a representative texture model, and mostly the small number of texture
samples will limit the generalization of the algorithm; 3) Hu and Yan’s work
assumed fixed pose parameters which limited its extension to side view images.

In this paper, we propose a fully automatic, effective and efficient framework
for 3D face reconstruction based on a single face image in arbitrary view. It not
only inherits the advantages of the above three works, but also successfully over-
comes their shortcomings. First, a recently developed multi-view face alignment
algorithm [6] is utilized to localize the feature points in a face; Second, the 3D
face shape and pose parameters are estimated synchronously by an EM based
algorithm, in which the correspondence between the contour points and their
vertex indices in the 3D face models are dynamically determined; moreover,
a unit quaternion based pose representation is proposed for efficient position
parameter optimization; Finally, the complete 3D face model is obtained by
mapping the input 2D image onto the 3D face shape surface with the mirror
and smoothing operation.

The rest of this paper is organized as follows. The 2D-to-3D face reconstruc-
tion algorithm is described in detail in Section [2. Section B provides some experi-
mental results. We draw the conclusions and discuss the future work in Section Fl

2 3D Reconstruction with Single Arbitrary View Image

In this section, we present our fully automatic framework for 3D face recon-
struction. In [3], Hu and Yan et al. proposed an automatic algorithm for 3D face
reconstruction; however, it can only handle frontal faces. In this framework, we
utilize a newly developed multi-view face alignment algorithm [6] to locate the
feature points in an arbitrary view face image; then, the 3D shape and position
parameters are efficiently estimated with the EM algorithm in term of the unit
quaternion [1][2] pose representation and the dynamical correspondence between
the contour points and the vertexes on the 3D face model. Moreover, a weighted
optimization strategy is applied for robust parameter estimation. This section
consists of five parts: 1) the efficient multi-view 2D face alignment; 2) the mor-
phable 3D face model; 3) problem formulation; 4) efficient parameter inference;
and 5) robust parameter estimation with the dynamic correspondence strategy
and weighted optimization.
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2.1 Efficient Multi-view 2D Face Alignment

Automatic multi-view face alignment is still an open problem. In this work, we
apply the recently proposed multi-view 2D alignment algorithm [6]. In [G], the
texture is redefined as the unwarped grey-level edge in the original image; then,
a Bayesian network is designed to describe the intrinsic co-constrains between
shape and texture; finally, the EM algorithm is utilized to infer the optimal
parameters of the proposed Texture-Driven Shape Model. There are 83 feature
points located, part of which are adaptively selected for 3D face reconstruction
in different views.

2.2 Morphable 3D Face Model

Similar to Vetter’s work [10], the geometry of a 3D face is represented as a
shape vector S = (21, y1, 21, T2, ..., Y1, 21,) € R3L, which contains the x, y and z
coordinates of the L vertices. We apply the probabilistic extension of traditional
PCA [12] to model the shape variations based on 100 3D faces with about 8900
vertexes.

S=U-s+S+e, e ~N(0,02,I51), 0> :ZSL \i/3L (1)
) yU3d43L ), 3d =141 7
where the columns of U are the most significant eigenvectors and [ is the number
of eigenvectors, S is the average shape of samples and s is the shape parameter
to be estimated. £ denotes the isotropic noise in the shape space and o34 is the
standard deviation.

2.3 3D Reconstruction Problem Formulations

The input is the multi-view face alignment result as described in subsection 2.1}
denoted as sa4, and the object is to reconstruct the personalized 3D face model.
Their relationship can be formulated as:

S2a=PfRS+t+n, n~N(0,021r,) (2)

where 1 denotes an isotropic observation noise in the image space; 024 is the

standard deviation, which is dynamically decided according to the variation of

the shape in each step; P = Parox3r = (IL,,0)1,xz ® Fo is the projection matrix
. 1 . .

with Py = [0 (1) g]and ®is the Kronecker product; f is the scale parameter;

R = Rsx31, = I, ® Ry is the rotation matrix and t =1, @ tg = 11, ® (¢4, 1)’

is the translation parameter. Denote c as the pose parameters {a, 5,7, f, ts, t,}.

2.4 Parameter Estimation

It is difficult to infer the shape parameter s and pose parameter ¢ from the given
2D shape so4 directly. With the hidden data S, the EM algorithm can be applied
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to conduct parameter optimization. Define the Q-function as:
Q(s,c,s% 0 = E [In P(s,c|52d,S)\SQd,s"ld,cOld]

:/lnP(s,c\SQd,S) P(S|s24,5°¢, c?'?)dS (3)
E-Step: With simple computation from Eqn () and (), we have

1 _
—2InP(s,c|s24,9) = — | S—U-s =5[> +s'A7"
o

3d
+ — || s2a — PfRS —t||® +¢1
2d
—21n P(S|s24, sotd, Old) | S—-U- -5 H2 (4)
Usd
+ — || 820 — MS —t ||* +¢2
2d

where c¢1, co are constants and A is a diagonal matrix with diagonal elements
as leading eigenvalues. The conditional probability P(S|saq4, s°'¢, c®'?) obeys the
following Gaussian distribution:

P(S]s2a,5°', ") ~ N(p, 2) (5)
where (M = P feld gold)
p={(S) = (o5; 1+ o5y M'M)™" - [0 (U - s +8) + 057 M' (524 — t'")] (6)

Y= (o3I +oy;M'M)™* (7)

where (S) denotes the conditional expectation E [S|s2q4, s/, c?!]

, then we have:
(98") = X+ (5) (5") (8)

On the other hand, X' is the inversion of a very large matrix, which is com-
puted expensively. In fact, M has simple form with My = Pyf Ry being a 2 x 3
matrix.

M = (Iy,0)roxz @ My 9)
Then,

IL 0 -2 -2 _ 00
o= (0 0 0>L®(03d13+02d M)Mp) ! + (OIL—LO)L(@U%"ZI?’ (10)

which is much more simple and we only need to compute the inversion of a 3 x 3
matrix. With the Eqn (&)-(I), the problem is equal to

1 _
min<2 | S—U-5—S|?+sA" 3—|—||52d—PfRS—t||2> (11)
s,C J3d 2d
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M-Step: Notice that pose parameter c is independent to the shape parameter
s. Thus they can be optimized separately.

1) Optimize shape parameter s: shape parameter s can be easily derived
by setting the derivative of the Q-function to zero:

s=AA+o3, 1)U ((S) - S) (12)

2) Semi-closed-form solution for pose parameter c¢ using Quater-
nion: From (1)),

Lo
¢ = argmaz Q(s, ¢, s, c*'Y) = arg minz (|| sbq — MoS™ ||*) (13)
c c
i=1
where szd denotes the ith point of sog, and S? denotes the correspondent point in
S. It’s a nonlinear optimization problem and can not be optimized directly. Tra-
ditionally, unit quaternion [I][2] based pose representation was applied to solve

3D-to-3D pose parameter variation problem. In the following, we will introduce
a semi-closed-from algorithm in terms of unit quaternion for pose estimation.

A quaternion is represented as 8 = qo+ ¢zt +qyj +q.k, its complex conjugate
is defined as qo* = qo — gzt — qyj — q-k and S{((j} = (¢2,9y,9-)’- A 3D point p
is represented by the purely imaginary quaternion 2% =0+ pzi + pyj + p.k and
a rotation of p is defined as 8](;(]0*’ then f = 3.q0* and fRp = S{f(]).;).qo*}. The
detailed relation between rotation matrix Ry, scale parameter f and quaternion

5 is referred to [2]. With quaternion representation, the objective function in
Eqn (I3) can be rewritten as:

minE? =< 3" (3h, — S{AS ¢} — ) Wi(Ghy — S{AS' ¢} —t) > (14)
=1

where 3D point §§d is extended from séd with z-value being zero and W; repre-
100

sents the directional constraint of the i-th point W; = [ 010 | here.
000

Assume that we have some estimation of 5 available at the r-th iteration as
o o o o
q,, a new estimation ¢, = ¢, + §, then

S{dre1 S'ql 41} = {0, ST} +65 qf +4, 56"+ 556"y (15)

Assume f§ is small with respect to 5r, then Eqn (IH) can be approximated as

o o

S{d, S q" + 8§57 q* +4, 516} = [,R, S +Cy § (16)

where G; can be derived from the definition.
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Denote v=_(qo, Gz, @y, Gz+ Lz, ty)s 2i =585, — frR:-S* and Gy =(Gi , (I2x2,0)"),

we have:
n

min E? =< Z — Gyiv)' Wi(zi — Gyiv) > (17)

The optimal solution can be obtained by solving the following traditional
function:

n 6 n
Z (gi; Wi Zgikvk Z (g;;Wizi) (1 <j <6) (18)
k=1 i=1

=1

where g;; is the j-th column of matrix G;. Gy; is a linear function of 5% so are
gi; and z;. Therefore both sides of Eqn (I8) which are quadratic functions of S*
at most can be directly computed from Eqn (H).

2.5 Dynamic Correspondence Strategy and Weighted Optimization

Hu'’s work [B] assumed that the correspondences between the contour points
and the 3D face model vertexes are known and fixed, which is inappropriate
in the case of out-of-plane rotation. Here we assume that the eyes, mouth, and
nose points can be matched accurately from 2D to 3D. For the contour points,
the absolute value of z coordinate of the normal direction is small. We utilize
the information for the contour points and search for more “proper” points to
replace the original contour points after iteration, which results in a more precise
correspondence between the contour points of 2D image and 3D face vertexes.
The comparison between dynamic correspondence and static correspondence is
shown in Fig. M

Moreover, there will be part of face occluded in a side-view face image. Thus
for the occluded points, the location precision will be degraded. We set the

&
o
-

(d1) (e1) (d1) (e2)

Fig. 1. Comparison between dynamic correspondence and static correspondence. (a)
input image; (b) 2D alignment; (c1) 3D geometry reconstruction with static corre-
spondence(black points are the corresponding feature points in 3D model matching
the feature points in 2D image in (b). ); (c2) 3D geometry reconstruction with dy-
namic correspondence; (d1)(el) two views of 3D model with static correspondence;
(d2)(e2) two views of 3D model with dynamic correspondence.
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Fig. 2. Comparison of the original images with three different views of reconstructed
models of various people.

direction constraint W; of the contour points dynamically, which improves the
final result. After the 3D face geometry is reconstructed, the 2D image is mapped
to the 3D geometry to generate the texture. Mostly, there are some vertices
occluded in the 3D surface; the “mirror” and “interpolate” strategies are applied
to improve the reality.

3 Experiments

We constructed a fully automatic 3D face synthesis system based on the proposed
algorithm. Our system is fully automatic. The only input is one face image in
arbitrary view and there is no user interaction in the whole process.

In our experiments, we used face images with various poses to automatically
construct the personalized 3D faces. Fig. [2 shows some experimental results. It
shows that our algorithm can reconstruct the 3D face models for different persons
in different views; and the generated virtual faces in different views indicate the
realistic of the reconstructed 3D model. The faces in the original images in Fig.[2
are in different illumination conditions and there are different skin colors too.
One can see the effective 3D reconstruction results.

The whole process to construct a head model from a face image costs less
than 1.6 seconds on a PC with Pentium(R) IV 2.8 GHz processor, which is
about eighty times faster than the 3D face reconstruction processing [1{], ten
times faster than Zhang [7], and 1.25 times faster than Hu [3]. The time cost
in 3D face geometry reconstruction process is about 0.6 second and it is much
faster than Vetter’s [10] method.
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4 Conclusions and Future Work

We have proposed a novel framework to construct 3D face model from a single
face image in arbitrary view. The experiments show the efficiency and effective-
ness of our proposed algorithm. Compared with other related works, its high-
lights are two-folds: 1) it is fully automatic and handles face images in arbitrary
view; and 2) the efficiency and robustness are guaranteed via the EM algorithm
integrated with the unit quaternion based pose representation, dynamic corre-
spondence strategy and weighed optimization method.

The efficient 3D face reconstruction with an arbitrary view face image has
many applications including 3D model based multi-view face recognition, face
pose estimation and virtual reality in 3D game. Currently, we are exploring to
efficiently reconstruct the personalized 3D face model based on multiple face
images in different views and conduct the face recognition in variant poses;
moreover, we are also applying pose estimation results to detect and locate the
attention area.
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