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Abstract
We propose a general model for joint inference in corre-
lated natural language processing tasks when fully anno-
tated training data is not available, and apply this model
to the dual tasks of word sense disambiguation and verb
subcategorization frame determination. The model uses
the EM algorithm to simultaneously complete partially
annotated training sets and learn a generative probabilis-
tic model over multiple annotations. When applied to the
word sense and verb subcategorization frame determina-
tion tasks, the model learns sharp joint probability dis-
tributions which correspond to linguistic intuitions about
the correlations of the variables. Use of the joint model
leads to error reductions over competitive independent
models on these tasks.

1 Introduction

Natural language processing research has tradition-
ally been divided into a number of separate tasks,
each of which is believed to be an important sub-
task of the larger language comprehension or gener-
ation problem. These tasks are usually addressed
separately, with systems designed to solve a sin-
gle problem. However, many of these tasks are not
truly independent; if solutions to one were known
they would facilitate finding solutions to the others.
For some sets of these problems, one would like to
be able to do joint inference, where information of
one kind can influence decisions about information
of another kind and vice versa. For instance, in-
formation about named entities can usefully inform
the decisions of a part-of-speech tagger, but equally,
part-of-speech information can help a named entity
recognizer. If one had a large corpus annotated with
all the information types of interest, one could es-
timate a joint distribution over all of the variables
simply by counting. However, it is more often the
case that one lacks any jointly annotated corpus,
or at least one that is sufficiently large, given that
the joint distribution is necessarily sparser than the
marginal distributions. It would therefore be useful
to be able to build a model for this joint inference
task using only partially supervised data. In this

System Name Accuracy
kunlp 57.6
jhu-english-JHU-final 56.6
SMUls 56.3
LIA-Sinequa-Lexsample 53.5
manning-cs224n 52.3

Table 1: Performance of the top 5 Senseval-2 word sense
disambiguation systems when considering accuracy only
on the 29 verbs. Systems not guessing on all instances
have been omitted.

paper we examine these problems in the context of
joint inference over verb senses and their subcate-
gorization frames (SCFs).

1.1 Verb Sense and Subcategorization

Of the syntactic categories tested in the Senseval
word sense disambiguation (WSD) competitions,
verbs have proven empirically to be the most dif-
ficult. In Senseval-1, Kilgarriff and Rosenzweig
(2000) found a 10-point difference between the
best systems’ performance on verbs compared with
other parts-of-speech. In Senseval-2, Yarowsky and
Florian (2002) also found that while accuracies of
around 73% were possible for adjectives and nouns,
even the most competitive systems have accuracies
of around 57% when tested on verbs (see Table 1).
A likely explanation for this discrepancy is that dif-
ferent senses of common verbs can occur in sim-
ilar lexical contexts, thereby decreasing the effec-
tiveness of “bag-of-words” models.

Verbs also pose serious challenges in a very dif-
ferent task: syntactic parsing. Verb phrases are syn-
tactically complex and frought with pitfalls for auto-
mated parsers, such as prepositional phrase attach-
ment ambiguities. These challenges may be par-
tially mitigated by the fact that particular verbs often
have strong preferences for particular SCFs. Unfor-
tunately, it is not the case that each verb consistently
takes the same SCF. More often, a verb has several
preferred SCFs, with rarer forms also occurring, for
example, in idioms. Jurafsky (1998) proposes us-



∅ NP PP NPPP VPto VPing
2:30:00 4 1 0 0 20 33
2:30:01 1 7 0 4 0 0
2:42:04 12 0 3 0 0 1

Table 2: The learned joint distribution over the senses
and subcategorizations of the verbbegin (in percent
probability). Low probability senses and subcategoriza-
tions have been omitted.

ing a probabilistic framework to represent subcate-
gorization preferences, where each lexical item has
a corresponding distribution over the possible sets
of arguments. Modeling these distributions may be
useful: Collins (2003) has shown that verb subcate-
gorization information can be used to improve syn-
tactic parsing performance.

It has also been recognized that a much more ac-
curate prediction of verb subcategorization prefer-
ence can be made if conditioned on the sense of
the verb. Roland and Jurafsky (2002) conclude that
for a given lexical token in English, verb sense is
the best determiner of SCF, far outweighing either
genre or dialect. Demonstrating the utility of this,
Korhonen and Preiss (2003) achieve significant im-
provement at a verb subcategorization acquisition
task by conditioning on the verb sense as predicted
by a statistical word sense disambiguation system.
Conversely, if different senses have distinct subcat-
egorization preferences, it is reasonable to expect
that information about the way a verb subcatego-
rizes in a particular case may be of significant util-
ity in determining the verb’s sense. As an example,
Yarowsky (2000) makes use of rich syntactic fea-
tures to improve the performance of a supervised
WSD system.

As an illustration of this correlation, Table 2
shows a learned joint distribution over sense and
SCF for the common verbbegin.1 Its common
senses, taken from WordNet, are as follows: sense
2:30:00, to initiate an action or activity, (“begin
working”), sense 2:30:01, to set in motion or cause
to start, (“to begin a war”), and sense 2:42:04, to
have a beginning, (“the day began”). The SCFs
shown here are a subset of the complete set of SCFs,
described in Table 3. Note that the sense and SCF
variables are highly correlated for this verb. Sense
2:30:00 occurs almost entirely with verb phrase ar-
guments, sense 2:30:01 occurs almost entirely as a
transitive verb, and sense 2:42:04 occurs as an in-
transitive verb (no arguments following the verb).
It should be evident that the strong correlation be-

1We cannot show an empirical joint distribution because of
the lack of a sufficiently large jointly annotated corpus, asdis-
cussed below.

tween these two variables can be exploited to in-
crease performance in the tasks of predicting their
values in either direction, even when the evidence is
weak or uncertain.

1.2 Learning a Joint Model
Performing joint inference requires learning a joint
distribution over sense and SCF for each verb. In
order to estimate the joint distribution directly from
data we would need a large corpus that is annotated
for both verb sense and SCF. Unfortunately, no such
corpus of adequate size exists.2 Instead, there are
some corpora such as SemCor and Senseval-2 la-
beled for sense, and others that are parsed and from
which it is possible to compute verb SCFs determin-
istically. In the current work we use two corpora to
learn a joint model: Senseval-2, labeled for sense
but not syntax, and the Penn Treebank, labeled for
syntax but not sense. We do so by treating the two
data sets as a single one with incompletely labeled
instances. This partially labeled data set then yields
a semi-supervised learning problem, suitable for the
Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977).

2 Tasks and Data Sets
We evaluate our system on both the WSD task and
the verb SCF determination task. We describe each
task in turn.

2.1 Word Sense Disambiguation
We used as our sense-annotated corpus the data
sets from the English lexical sample portion of the
Senseval-2 word sense disambiguation competition
(Kilgarriff and Rosenzweig, 2000). This data set
contains multiple instances of 73 different English
word types, divided into training and testing exam-
ples. Each word type is marked for part of speech,
so that the sense disambiguation task does not need
to distinguish between senses that have different
parts of speech. We selected from this data set all
29 words that were marked as verbs.

Each example consists of a marked occurrence of
the target word in approximately 100 words of sur-
rounding context. The correct sense of the word,
marked by human annotators, is also given. Each
instance is labeled with a sense corresponding to a
synsetfrom WordNet (Miller, 1995). The number
of senses per word varies enormously: some words
have more than 30 senses, while others have five

2A portion of the Brown corpus has been used both in the
construction of the SemCor word sense database and in the con-
struction of the Penn Treebank, but coverage is very low, espe-
cially for sense markings, and the individual sentences have not
to our knowledge been explicitly aligned.



or fewer. These “fine-grained” senses are also par-
titioned into a smaller number of “coarse-grained”
senses, and systems are evaluated according to both
metrics. The number of training and testing exam-
ples per word varies from tens to nearly a thousand.
We used the same train/test division as in Senseval-
2, so that our reported accuracy numbers are directly
comparable with those of other Senseval-2 submis-
sions, as given in Table 1.

2.2 Verb Subcategorization
We use as our SCF-annotated corpus sentences
drawn from the Wall Street Journal section of the
Penn Treebank. For each target verb we select sen-
tences containing a form of the verb (tagged as a
verb) with length less than 40 words. We select
training examples from sections 2 through 21, and
test examples from all other sections.3

There are many conceivable ways to partition
the set of possible verb argument combinations into
SCFs. One possible approach would be to use as the
SCF representation the raw sequence of constituents
occurring in the verb phrase. This is certainly an
unbiased representation, but as there are many thou-
sands of rewrites for VP in the Penn Treebank, data
sparsity would present a significant problem. In ad-
dition, many of the variants do not contain useful
information for our task: for example, we wouldn’t
expect to get much value from knowing about the
presence or absence of an adverb in the phrase. In-
stead, we chose to use a small number of linguis-
tically motivated SCFs which form a partition over
the large space of possible verb arguments.

We chose as a starting point the SCF partition
specified in Roland (2001). These SCFs are defined
declaratively using a set of tgrep expressions that
match appropriate verb phrases.4 We made signifi-
cant modifications to the set of SCFs, and also sim-
plified the tgrep expressions used to match them.

One difference from Roland’s SCF set is that we
analyze verb particles as arguments, so that several
SCFs differ only in the existence of a particle. This
is motivated by the fact that the particle is a syntactic
feature that provides strong evidence about the verb
sense. One might argue that the presence of a par-
ticle should be considered a lexical feature modeled
independently from the SCF, but the distinction is
blurry, and we have instead combined the variables
in favor of model simplicity. A second difference is

3Sections 2 through 21 of the WSJ are typically used for
training PCFG parsers, and section 23 is typically used for test-
ing. Because of sparse data we drew our test examples from all
non-training sections.

4tgrep is a tree node matching program written by Richard
Pito, distributed with the Penn Treebank.

Subcat Description
∅ No arguments
NP Transitive
PP Prepositional phrase
NP PP Trans. with prep. phrase
VPing Gerundive verb phrase
NP VPing Perceptual complement
VPto Intrans. w/ infinitival VP
NP VPto Trans. w/ infinitival VP
S for to Intrans. w/for PP and infin. VP
NP SBAR Trans. w/ finite clause
NP NP Ditransitive
PRT Particle and no args.
NP PRT Transitive w/ particle
PP PRT Intrans. w/ PP and particle
VP PRT Intrans. w/ VP and particle
SBAR PRT Intrans. w/ fin. clause and part.
Other None of the above

Table 3: The 17 subcategorization frames we use.

that unlike Roland, we do not put passive verb con-
structions in a separate “passive” SCF, but instead
we undo the passivization and put them in the un-
derlying category. Although one might expect that
passivization itself is a weak indicator of sense, we
believe that the underlying SCF is more useful. Our
final set of SCFs is shown in Table 3.

Given a sentence annotated with a syntactic
parse, the SCF of the target verb can be computed by
attempting to match each of the SCF-specific tgrep
expressions with the verb phrase containing the tar-
get verb. Unlike those given by Roland, our tgrep
expressions are not designed to be mutually exclu-
sive; instead we determine verb SCF by attempting
matches in a prescribed sequence, using “if-then-
else” logic.

3 Model Structure and Inference

Our generative probabilistic model can be thought
of as having three primary components: the sense
model, relating the verb sense to the surrounding
context, the subcategorization model, relating the
verb subcategorization to the sentence, and the joint
model, relating the sense and SCF of the verb to
each other. More formally, the model is a factored
representation of a joint distribution over these vari-
ables and the data: the verb sense (V), the verb SCF
(C), the unordered context “bag-of-words” (W),
and the sentence as an ordered sequence of words
(S). The joint distribution P(V, C, W, S) is then
factored as

P(V)P(C|V)P(S|C)
∏

i

P(Wi |V)
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Figure 1: A graphical representation of the combined
sense and subcategorization probabilistic model. Note
that the box defines aplate, indicating that the model
containsn copies of this variable.

where Wi is the word type occurring in each po-
sition of the context (including the target sentence
itself). The first two terms together define a joint
distribution over verb sense (V) and SCF (C), the
third term defines the subcategorization model, and
the last term defines the sense model. A graphical
model representation is shown in Figure 1.

The model assumes the following generative pro-
cess for a data instance of a particular verb. First we
generate the sense of the target verb. Conditioned
on the sense, we generate the SCF of the verb. (Note
that the decision to generate sense and then SCF
is arbitrary and forced by the desire to factor the
model; we discuss reversing the order below.) Then,
conditioned on the sense of the verb, we generate
an unordered collection of context words. (For the
Senseval-2 corpus, this collection includes not only
the words in the sentence in which the verb occurs,
but also the words in surrounding sentences.) Fi-
nally, conditioned on the SCF of the verb, we gen-
erate the immediate sentence containing the verb as
an ordered sequence of words.

An apparent weakness of this model is that it
double-generates the context words from the en-
closing sentence: they are generated once by the
sense model, as an unordered collection of words,
and once by the subcategorization model, as an or-
dered sequence of words. The model is thus defi-
cient in that it assigns a large portion of its probabil-
ity mass to impossible cases: those instances which
have words in the context which do not match those
in the sentence. However because the sentences are
always observed, we only consider instances in the
set of consistent cases, so the deficiency should be
irrelevant for the purpose of reasoning about sense
and SCF.

We discuss each of the model components in turn.

3.1 Verb Sense Model
The verb sense component of our model is an or-
dinary multinomial Naive Bayes “bag-of-words”

model: P(V)
∏

i P(Wi |V). We learn the marginal
over verb sense with maximum likelihood estima-
tion (MLE) from the sense annotated data. We learn
the sense-conditional word model using smoothed
MLE from the sense annotated data, and to smooth
we use Bayesian smoothing with a Dirichlet prior.
The free smoothing parameter is determined empir-
ically, once for all words in the data set. In the inde-
pendent sense model, to infer the most likely sense
given a context of words P(S|W), we just find theV
that maximizes P(V)

∏
i P(Wi |V). Inference in the

joint model over sense and SCF is more complex,
and is described below.

In order to make our system competitive with
leading WSD systems we made an important modi-
fication to this basic model: we added relative posi-
tion feature weighting. It is known that words closer
to the target word are more predictive of sense, so it
is reasonable to weight them more highly. We de-
fine a set of “buckets”, or partition over the position
of the context word relative to the target verb, and
we weight each context word feature with a weight
given by its bucket, both when estimating model pa-
rameters at train time and when performing infer-
ence at test time. We use the following 8 relative
position buckets:(−∞,−6], [−5,−3], −2, −1, 1,
2, [3, 5], and[6,∞). The bucket weights are found
empirically using a simple optimization procedure
on k-fold training set accuracy. In ablation tests on
this system we found that the use of relative posi-
tion feature weighting, when combined with corre-
sponding evidence attenuation (see Section 3.3) in-
creased the accuracy of the standalone verb sense
disambiguation model from 46.2% to 54.0%.

3.2 Verb Subcategorization Model

The verb SCF component of our model P(S|C)

represents the probability of particular sentences
given each possible SCF. Because there are in-
finitely many possible sentences, a multinomial rep-
resentation is infeasible, and we instead chose to
encode the distribution using a set of probabilistic
context free grammars (PCFGs). A PCFG is created
for each possible SCF: each PCFG yields only parse
trees in which the distinguished verb subcategorizes
in the specified manner (but other verbs can parse
freely). Given a SCF-specific PCFG, we can deter-
mine the probability of the sentence using theinside
algorithm, which sums the probabilities of all pos-
sible trees in the grammar producing the sentence.
To do this, we modified the exact PCFG parser of
Klein and Manning (2003). In the independent SCF
model, to infer the most likely SCF given a sen-
tence P(C|S), we just find theC that maximizes



P(S|C)P(C). (For the independent model, the SCF
prior is estimated using MLE from the training ex-
amples.) Inference in the joint model over sense and
SCF is more complex, and is described below.

Learning this model, SCF-specific PCFGs, from
our SCF-annotated training data, requires some
care. Commonly PCFGs are learned using MLE
of rewrite rule probabilities from large sets of tree-
annotated sentences. Thus to learn SCF-specific
PCFGs, it seems that we should select a set of an-
notated sentences containing the target verb, deter-
mine the SCF of the target verb in each sentence,
create a separate corpus for each SCF of the target
verb, and then learn SCF-specific grammars from
the SCF-specific corpora. If we are careful to dis-
tinguish rules which dominate the target verb from
those which do not, then the grammar will be con-
strained to generate trees in which the target verb
subcategorizes in the specified manner, and other
verbs can occur in general tree structures. The prob-
lem with this approach is that in order to create a
broad-coverage grammar (which we will need in or-
der for it to generalize accurately to unseen test in-
stances) we will need a very large number of sen-
tences in which the target verb occurs, and we do
not have enough data for this approach.

Because we want to maximize the use of the
available data, we must instead make use ofevery
verb occurrencewhen learning SCF-specific rewrite
rules. We can accomplish this by making a copy
of each sentence for each verb occurrence (not just
the target verb), determining the SCF of the distin-
guished verb in each sentence, partitioning the sen-
tence copies by distinguished verb SCF, and learn-
ing SCF-specific grammars using MLE. Finally, we
change the lexicon by forcing the distinguished verb
tag to rewrite to only our target verb. The method
we actually use is functionally equivalent to this lat-
ter approach, but altered for efficiency. Instead of
making copies of sentences with multiple verbs, we
use a dense representation. We determine the SCF
of each verb in the sentence, and then annotate the
verb and all nonterminal categories occurring above
the verb in the tree, up to the root, with the SCF
of the verb. Note that some nonterminals will then
have multiple annotations. Then to learn a SCF-
specific PCFG, we count rules that have the speci-
fied SCF annotation as rules which can dominate the
distinguished verb, and then count all rules (includ-
ing the SCF-specific ones) as general rules which
cannot dominate the distinguished verb.

3.3 The Joint Model

Given a fully annotated dataset, it is trivial to learn
the parameters of the joint distribution over verb
sense and SCF P(V, C) using MLE. However, be-
cause we do not have access to such a dataset, we
instead use the EM algorithm to “complete” the
missing annotations with expectations, or soft as-
signments, over the values of the missing variable
(we present the EM algorithm in detail in the next
section). Given this “completed” data, it is again
trivial to learn the parameters of the joint proba-
bility model using smoothed MLE. We use simple
Laplace add-one smoothing to smooth the distribu-
tion.

However, a small complication arises from the
fact that the marginal distributions over senses and
SCFs for a particular verb may differ between the
two halves of our data set. They are, after all, wholly
different corpora, assembled by different people for
different purposes. For this reason, when testing
the system on the sense corpus we’d like to use a
sense marginal distribution trained from the sense
corpus, and when testing the system on the SCF
corpus we’d like to use a SCF marginal distribu-
tion trained from the SCF corpus. To address this,
recall from above that the factoring we choose for
the joint distribution is arbitrary. When performing
sense inference we use the model Pv(V)Pj (C|V)

where Pj (C|V) was learned from the complete data,
and Pv(V) was learned from the sense-marked ex-
amples only. When performing SCF inference we
use the equivalent factoring Pc(C)Pj (V |C), where
Pj (V |C) was learned from the complete data, and
Pc(C) was learned from the SCF-annotated exam-
ples only.

We made one additional modification to this joint
model to improve performance. When performing
inference in the model, we found it useful to dif-
ferentially weight different probability terms. The
most obvious need for this comes from the fact
that the sense-conditional word model employs rel-
ative position feature weighting, which can change
the relatively magnitude of the probabilities in this
term. In particular, by using feature weights greater
than 1.0 during inference we overestimate the ac-
tual amount of evidence. Even without the feature
weighting, however, the word model can still over-
estimate the actual evidence given that it encodes an
incorrect independence assumption between word
features (of course word occurrence in text is ac-
tually very highly correlated). The PCFG model
also suffers from a less severe instance of the same
problem: human languages are of course not con-
text free, and there is in fact correlation between



supposedly independent tree structures in different
parts of the tree. To remedy this evidence over-
confidence, it is helpful to attenuate or downweight
the evidence terms accordingly. More generally, we
place weights on each of the probability terms used
in inference calculations, yielding models of the fol-
lowing form:

P(V)α(v)P(C|V)α(c)P(S|C)α(s)[
∏

i

P(Wi |V)]α(w)

Theseα(·) weights are free parameters, and we
find them by simple optimization on k-fold accu-
racy. In ablation tests on this system, we found
that term weighting (particularly evidence attenua-
tion) increased the accuracy of the standalone sense
model from 51.9% to 54.0% at the fine-grained verb
sense disambiguation task.

We now describe the precise EM algorithm used.
Prior to running EM we first learn the independent
sense and SCF model parameters from their respec-
tive datasets. We also initialize the joint sense and
SCF distribution to the uniform distribution. Then
we iterate over the following steps:

• E-step: Using the current model parameters,
for each datum in the sense-annotated corpus,
compute expectations over the possible SCFs,
and for each datum in the SCF-annotated cor-
pus, compute expectations over the possible
senses.

• M-step: use the completed data to reestimate
the joint distribution over sense and SCF.

We run EM to convergence, which for our dataset
occurs within 6 iterations. Additional iterations do
not change the accuracy of our model. Early stop-
ping of EM after 3 iterations was found to hurt k-
fold sense accuracy by 0.1% and SCF accuracy by
0.2%. Early stopping of EM after only 1 iteration
was found to hurt k-fold sense accuracy by a total of
0.2% and SCF accuracy by 0.4%. These may seem
like small differences, but significant relative to the
advantages given by the joint model (see below).

In the E-step of EM, it is necessary to do infer-
ence over the joint model, computing posterior ex-
pectations of unknown variables conditioned on ev-
idence variables. During the testing phase, it is also
necessary to do inference, computingmaximum a
posteriori (MAP) values of unknown variables con-
ditioned on evidence variables. In all cases we do
exact Bayesian network inference, which involves
conditioning on evidence variables, summing over
extraneous variables, and then either maximizing

over the resulting factors of query variables, or nor-
malizing them to obtain distributions of query vari-
ables. At test time, when querying about the MAP
sense (or SCF) of an instance, we chose to max-
imize over the marginal distribution, rather than
maximize over the joint sense and SCF distribution.
We found empirically that this gave us higher accu-
racy at the individual tasks. If instead we were do-
ing joint prediction, we would expect high accuracy
to result from maximizing over the joint.

4 Results and Discussion

In Figures 2, 3 and 4 we compare the perfor-
mance of the independent and joint models on the
verb sense disambiguation and verb SCF determina-
tion problems, evaluated using both 10-fold cross-
validation accuracy and test set accuracy. In Figure
2, we report the performance of a system resulting
from doing optimization of free parameters (such as
feature and term weights) on a per-verb basis. We
also provide a baseline computed by guessing the
most likely class.

Although the parameter optimization of Figure
2 was performed with respect to 10-fold cross-
validation on the training sets, its lower perfor-
mance on the test sets suggests that it suffers from
overfitting. To test this hypothesis we also trained
and tested on the test sets a version of the system
with corpus-wide free parameter optimization, and
the results of this test are shown in Figure 3. The
lower gap between the training set cross-validation
and test set performance on the WSD task confirms
our overfitting hypothesis. However, note that the
gap between training set cross-validation and test
set performance on the SCF determination task per-
sists (although it is diminished slightly). We believe
that this results from the fact that there is significant
data drift between the training sections of the WSJ
in the Penn Treebank (sections 2 through 21) and all
other sections.

Using corpus-wide optimization, the joint model
improves sense disambiguation accuracy by 1.9%
over the independent model, bringing our system
to 55.9% accuracy on the test set, performance that
is comparable with that of the state of the art sys-
tems on verbs given in Table 1. The joint model re-
duces sense disambiguation error by 4.1%. On the
verb SCF determination task, the joint model yields
a 2.1% improvement in accuracy over the indepen-
dent model, reducing total error by 5.1%.

We also report results of the independent and
joint systems on each verb individually in Table 4
Not surprisingly, making use of the joint distribution
was much more helpful for some verbs than others.
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Figure 2: Chart comparing results of independent and
joint systems on the verb sense and SCF tasks, evaluated
with 10-fold cross-validation on the training sets and on
the test sets. The baseline shown is guessing most likely
class. These systems used per-verb optimization of free
parameters.
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Figure 3: Chart comparing results of independent and
joint systems on the verb sense and SCF tasks. These
systems used corpus-wide optimization of free parame-
ters.
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Figure 4: Chart comparing results of independent and
joint systems on the verb sense and SCF tasks. This sys-
tem has no relative position word feature weighting and
no term weighting.

Indep Joint Indep Joint
Verb Sense Sense Subcat Subcat
begin 76.8 84.3 57.0 63.3
call 39.4 42.4 44.9 49.0
carry 45.5 40.9 63.3 70.0
collaborate 90.0 90.0 100.0 100.0
develop 42.0 39.1 69.7 69.7
draw 29.3 26.8 72.7 63.6
dress 59.3 59.3 NA NA
drift 43.8 40.6 50.0 50.0
drive 45.2 52.4 54.5 54.5
face 81.7 80.6 82.4 82.4
ferret 100.0 100.0 NA NA
find 23.5 29.4 61.1 64.8
keep 46.3 58.2 52.1 53.5
leave 47.0 54.5 36.4 40.0
live 62.7 65.7 85.7 85.7
match 57.1 54.8 58.3 66.7
play 42.4 45.5 66.7 61.9
pull 28.3 26.7 44.4 55.6
replace 57.8 62.2 56.0 60.0
see 40.6 39.1 53.6 55.1
serve 60.8 52.9 72.0 72.0
strike 37.0 27.8 50.0 50.0
train 55.6 55.6 40.0 40.0
treat 52.3 54.5 69.2 76.9
turn 29.9 29.9 46.3 50.0
use 65.8 68.4 69.7 68.8
wander 78.0 80.0 NA NA
wash 50.0 41.7 0.0 0.0
work 41.7 43.3 67.9 66.1

Table 4: Comparison of the performance of the indepen-
dent and joint inference models on the verb sense and
SCF tasks,evaluated on the Senseval-2 test set, for each
of the 29 verbs in the study. These results were obtained
with no per-verb parameter optimization. Note the great
variation in problem difficulty and joint model perfor-
mance across verbs.

For example, on the verbsbegin, drive, find, keep,
leave, andwork, the joint model gives a greater than
5% accuracy boost on the WSD task. In contrast, for
some other verbs, the joint model showed a slight
decrease in accuracy on the test set relative to the
independent model.

We present a few representative examples where
the joint model makes better decisions than the in-
dividual model. In the sentence

. . . pricesbeganweakening last month after
Campeau hit a cash crunch.

the sense model (based on bag-of-words evidence)
believes that the sense 2:42:04 is most likely (see
Table 2 for senses and joint distribution). How-
ever, the SCF model gives high weight to the frames
VPto and VPing, which when combined with the
joint distribution, give much more probability to



the sense 2:30:00. The joint model thus correctly
chooses sense 2:30:00. In the sentence

. . . beforebeginninga depressing eight-year
slide that continued through last year.

the sense model again believes that the sense
2:42:04 is most likely. However, the SCF model
correctly gives high weight to the NP frame, which
when combined with the joint distribution, gives
much more probability to the sense 2:30:01. The
joint model thus correctly chooses sense 2:30:01.

Given the amount of information contained in the
joint distribution it is surprising that the joint model
doesn’t yield a greater advantage over the indepen-
dent models. It seems to be the case that the word
sense model is able to capture much of the SCF in-
formation by itself, without using an explicit syn-
tactic model. This results from the relative posi-
tion weighting, since many of our SCFs correlate
highly with the presence of small sets of words in
particular positions (for instance, the infinitival “to”,
prepositions, and pronouns). We tested this hypoth-
esis by examining how the addition of SCF informa-
tion affected performance of a weaker sense model,
obtained by removing feature and term weighting.
The results are shown in Figure 4. Indeed, when us-
ing this weaker word sense model, the joint model
yields a much larger 4.5% improvement in WSD ac-
curacy.

5 Future Work

We can imagine several modifications to the ba-
sic system that might improve performance. Most
importantly, more specific use could be made of
SCF information besides modeling its joint distribu-
tion with sense, for example conditioning on head-
words of (perceived) arguments, especially parti-
cles and prepositions. Second, although we made
some attempt at extracting the “underlying” SCF of
verbs by analyzing passive constructions separately,
similar analysis of other types of movement such
as relative clauses may also be useful. Third, we
could hope to get some improvement from changing
our model structure to address the issue of double-
generation of words discussed in section 3. One way
this could be done would be to use a parser only
to estimate the probability of the sequence of word
tags (i.e., parts of speech) in the sentence, then to
use a sense-specific lexicon to estimate the proba-
bility of finding the words under the tags.

Although we chose WSD and SCF determination
as a test case, the approach of this paper is appli-
cable to other pairs of tasks. It may also be pos-
sible to improve parsing accuracy on verb phrases

or other phrases, by simultaneously resolving word
sense ambiguities, as attempted unsuccessfully by
Bikel (2000). This work is intended to introduce
a general methodology for combining disjoint NLP
tasks that is of use outside of these specific tasks.
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