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Abstract System Name Accur acy

Wi | model for ioint inf . kunlp 57.6

e propose a general model for joint inference in corre- jhu-english-JAU-final | 56.6

lated natural language processing tasks when fully anno- SMUIs 563
tated training data is not available, and apply this model . .

. ; 4 LIA-Sinequa-Lexsample 53.5

to the dual tasks of word sense disambiguation and verb MARNINA-CS224n £53
subcategorization frame determination. The model uses 9 -

the EM algorithm to simultaneously complete partially Table 1:
annotated training sets and learn a generative prObabi"%’isambi
tic model over multiple annotatior?s. When appliedto theon the 29 verbs. Systems not guessing on all instances
word sense and verb subcategorization frame determmeh-ave been omitted

tion tasks, the model learns sharp joint probability dis- '

tributions which correspond to linguistic intuitions albou

the correlations of the variables. Use of the joint modelpaper we examine these problems in the context of
leads to error reductions over competitive independenjoint inference over verb senses and their subcate-

models on these tasks. gorization frames (SCFs).

Performance of the top 5 Senseval-2 word sense
guation systems when considering accuracy only

1 Introduction 1.1 Verb Senseand Subcategorization

Natural language processing research has traditiodf the syntactic categories tested in the Senseval
ally been divided into a number of separate tasksyord sense disambiguation (WSD) competitions,
each of which is believed to be an important sub-verbs have proven empirically to be the most dif-
task of the larger language comprehension or geneficult. In Senseval-1, Kilgarriff and Rosenzweig
ation problem. These tasks are usually addresse®000) found a 10-point difference between the
separately, with systems designed to solve a sinbest systems’ performance on verbs compared with
gle problem. However, many of these tasks are noother parts-of-speech. In Senseval-2, Yarowsky and
truly independent; if solutions to one were known Florian (2002) also found that while accuracies of
they would facilitate finding solutions to the others. around 73% were possible for adjectives and nouns,
For some sets of these problems, one would like t@ven the most competitive systems have accuracies
be able to do joint inference, where information of of around 57% when tested on verbs (see Table 1).
one kind can influence decisions about informationA likely explanation for this discrepancy is that dif-
of another kind and vice versa. For instance, in-ferent senses of common verbs can occur in sim-
formation about named entities can usefully informilar lexical contexts, thereby decreasing the effec-
the decisions of a part-of-speech tagger, but equallytjveness of “bag-of-words” models.

part-of-speech information can help a named entity Verbs also pose serious challenges in a very dif-
recognizer. If one had a large corpus annotated witlfierent task: syntactic parsing. Verb phrases are syn-
all the information types of interest, one could es-tactically complex and frought with pitfalls for auto-
timate a joint distribution over all of the variables mated parsers, such as prepositional phrase attach-
simply by counting. However, it is more often the ment ambiguities. These challenges may be par-
case that one lacks any jointly annotated corpustially mitigated by the fact that particular verbs often
or at least one that is sufficiently large, given thathave strong preferences for particular SCFs. Unfor-
the joint distribution is necessarily sparser than thedunately, it is not the case that each verb consistently
marginal distributions. It would therefore be useful takes the same SCF. More often, a verb has several
to be able to build a model for this joint inference preferred SCFs, with rarer forms also occurring, for
task using only partially supervised data. In thisexample, in idioms. Jurafsky (1998) proposes us-
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Table 2: The learned joint distribution over the senses| L earning a Joint M odel

and subcategorizations of the vebegin (in percent o . . .
probability). Low probability senses and subcategoriza.P€rforming joint inference requires learning a joint
tions have been omitted. distribution over sense and SCF for each verb. In

order to estimate the joint distribution directly from
data we would need a large corpus that is annotated

gorization preferences, where each lexical item halP" Poth verb sense and SCF. Unfortunately, no such

a corresponding distribution over the possible set£CrPUs oOf adequate size exidtdnstead, there are
eSome corpora such as SemCor and Senseval-2 la-

useful: Collins (2003) has shown that verb subcateP€€d for sense, and others that are parsed and from

gorization information can be used to improve syn-WhiCh itis possible to compute verb SCFs determin-
tactic parsing performance istically. In the current work we use two corpora to

It has also been recognized that a much more a‘%aarn a joint model: Senseval-2, labeled for sense
curate prediction of verb subcategorization prefer- ut not syntax, and the Penn Treebank,'labeled for
ence can be made if conditioned on the sense oY/l but not sense. We do so by treating the two

the verb. Roland and Jurafsky (2002) conclude thafIata sets as a singl_e one with incompletely Iapeled
for a given lexical token in English, verb sense isinstances. This partially labeled data set then yields

the best determiner of SCF, far outweighing either? semi-sgpervise_d I.eaming problem, ;uitable for the
genre or dialect. Demonstrating the utility of this, EXPectation-Maximization (EM) algorithm (Demp-

Korhonen and Preiss (2003) achieve significant im Ster et al., 1977).

provement at a verb subcategorization acquisitio Tasks and Data Sets

task by conditioning on the verb sense as predicte

by a statistical word sense disambiguation system/Ve evaluate our system on both the WSD task and
Conversely, if different senses have distinct subcatthe verb SCF determination task. We describe each

egorization preferences, it is reasonable to exped@sk in turn.

that information about the way a verb subcatego- 1 \word Sense Disambiguation

rizes in a particular case may be of significant utiI-We used as our sense-annotated corous the data
ity in determining the verb’s sense. As an example, P

Yarowsky (2000) makes use of rich syntactic fea—setS from the English Iexipal sa_mple_ portion of Fhe
tures to improve the performance of a supervise enseval-2 word sense disambiguation competition
WSD system Kilgarriff and Rosenzweig, 2000). This data set

As an illustration of this correlation, Table 2 contains multiple instances of 73 different English

shows a learned joint distribution over sense anaNOrd types, divided mt_o training and testing exam-
SCF for the common verlbegin® Its common ples. Each word type is marked for part of speech,

senses, taken from WordNet, are as follows: sens 00 ;[jrils'[tirtlhiiz(ra\nzit\c/l\;zzrr?Zgﬁgggntﬁz?khi?/is(;}?f;p:rid
2:30:00, to initiate an action or activity, (“begin 9

o . . . arts of speech. We selected from this data set all
working”), sense 2:30:01, to set in motion or caus
g . ; A 29 words that were marked as verbs.
to start, (“to begin a war”), and sense 2:42:04, to

have a beginning, (‘the day began”). The SCFSth Each example consists of a marked occurrence of

shown here are a subset of the complete set of SCF e target word in approximately 100 words of sur-

S .
described in Table 3. Note that the sense and Scpundmg context. The correct sense of the word,

variables are highly correlated for this verb. Sensemarked b_y human annotators, is also given. Each
instance is labeled with a sense corresponding to a

2:30:00 occurs almost entirely with verb phrase ar- nsetfrom WordNet (Miller, 1995). The number

. S
guments, sense 2:30:01 occurs almost entirely as %’ . ]
Of senses per word varies enormously: some words

transitive verb, and sense 2:42:04 occurs as an iqﬁave more than 30 senses. while others have five
transitive verb (no arguments following the verb). '

It should be evident that the strong correlation be-  2a portion of the Brown corpus has been used both in the
construction of the SemCor word sense database and in the con

IWe cannot show an empirical joint distribution because ofstruction of the Penn Treebank, but coverage is very love-esp
the lack of a sufficiently large jointly annotated corpusdas cially for sense markings, and the individual sentences hat
cussed below. to our knowledge been explicitly aligned.

ing a probabilistic framework to represent subcate




or fewer. These “fine-grained” senses are also par- | Subcat Description
titioned into a smaller number of “coarse-grained” 4 No arguments

senses, and systems are evaluated according to both ’F\)'E gzgggi\:ieo FaTpRTase
metrics. The number of training and testing exam- NP PP Trans. with prep. phrase

ples per word varies from tens to nearly a thousand.

We used the same train/test division as in Sengeval- \N/E”\]/gping S::ggstlzglvgra&gﬁseit

2, so that our reported accuracy numbers are directly /pig Intrans. w/ infinitival VP

comparable with those of other Senseval-2 submis- [NPVPto | Trans. w/ infinitival VP

sions, as given in Table 1. S for to Intrans. wffor PP and infin. VP
N NP SBAR | Trans. w/ finite clause

2.2 Verb Subcategorization NP NP Diransiive

We use as our SCF-annotated corpus sentences [ PRT Particle and no args.

drawn from the Wall Street Journal section of the NP PRT Transitive w/ particle

Penn Treebank. For each target verb we select sen- | PP PRT Intrans. w/ PP and particle

tences containing a form of the verb (tagged as a | VP PRT Intrans. w/ VP and particle

verb) with length less than 40 words. We select | SBAR PRT]| Intrans. w/fin. clause and part.

training examples from sections 2 through 21, and [ Other None of the above

test examples from all other sectiohs.

There are many conceivable ways to partition
the set of possible verb argument combinations into
SCFs. One possible approach would be to use as ththat unlike Roland, we do not put passive verb con-
SCF representation the raw sequence of constituentsructions in a separate “passive” SCF, but instead
occurring in the verb phrase. This is certainly anwe undo the passivization and put them in the un-
unbiased representation, but as there are many thoderlying category. Although one might expect that
sands of rewrites for VP in the Penn Treebank, dat@assivization itself is a weak indicator of sense, we
sparsity would present a significant problem. In ad-believe that the underlying SCF is more useful. Our
dition, many of the variants do not contain usefulfinal set of SCFs is shown in Table 3.
information for our task: for example, we wouldnt  Gjven a sentence annotated with a syntactic
expect to get much value from knowing about theparse, the SCF of the target verb can be computed by
presence or absence of an adverb in the phrase. lattempting to match each of the SCF-specific tgrep
stead, we chose to use a small number of linguisexpressions with the verb phrase containing the tar-
tically motivated SCFs which form a partition over get verb. Unlike those given by Roland, our tgrep
the large space of possible verb arguments. expressions are not designed to be mutually exclu-

We chose as a starting point the SCF partitionsjve; instead we determine verb SCF by attempting
specified in Roland (2001). These SCFs are deﬁneﬁ']atches in a prescribed sequence, using “if-then-
declaratively using a set of tgrep expressions thag|se” logic.
match appropriate verb phrasesVe made signifi-
cant modifications to the set of SCFs, and also sim3 Mode Structure and I nference
plified the tgrep expressions used to match them.

One difference from Roland’s SCF set is that weOur generative probabilistic model can be thought
analyze verb particles as arguments, so that severaf as having three primary components: the sense
SCFs differ only in the existence of a particle. Thismodel, relating the verb sense to the surrounding
is motivated by the fact that the particle is a syntacticcontext, the subcategorization model, relating the
feature that provides strong evidence about the verberb subcategorization to the sentence, and the joint
sense. One might argue that the presence of a pamodel, relating the sense and SCF of the verb to
ticle should be considered a lexical feature modeleagach other. More formally, the model is a factored
independently from the SCF, but the distinction isrepresentation of a joint distribution over these vari-
blurry, and we have instead combined the variablesbles and the data: the verb sengg, the verb SCF
in favor of model simplicity. A second difference is (C), the unordered context “bag-of-wordsWj,
and the sentence as an ordered sequence of words

3 . .
Sections 2 through 21 of the WSJ are typically used for . trilg i ;
training PCFG parsers, and section 23 is typically usedefsir t (S). Tge joint distribution RV, C, W, S) is then
Jdpctored as

ing. Because of sparse data we drew our test examples from
non-training sections.

4tgrep is a tree node matching program written by Richard P(V)P(C|V)P(S|C) l_[ P(W V)
Pito, distributed with the Penn Treebank. .

Table 3: The 17 subcategorization frames we use.




model: RV) ], P(Wi|V). We learn the marginal

over verb sense with maximum likelihood estima-
tion (MLE) from the sense annotated data. We learn
the sense-conditional word model using smoothed
! MLE from the sense annotated data, and to smooth
@ we use Bayesian smoothing with a Dirichlet prior.
n The free smoothing parameter is determined empir-

ically, once for all words in the data set. In the inde-

_ _ . ~ pendent sense model, to infer the most likely sense
Figure 1: A graphical representation _of_ the comblnedgiven a context of words®|W), we just find thev
sense and subcategorization probabilistic model. NOthhat maximizes BV) [T, P(Wi|V). Inference in the

that the box defines plate, indicating that the model . . .
containsn copies of this variable joint model over sense and SCF is more complex,
' and is described below.

In order to make our system competitive with
leading WSD systems we made an important modi-
. ) _ eNCeication to this basic model: we added relative posi-
itself).  The first two terms together define a joint i, foatyre weighting. It is known that words closer
distribution over verb sense/f and SCF €), the i\gthe target word are more predictive of sense, so it

where W is the word type occurring in each po-

tE'rO: term deﬂ;efg the iubcategorlzeguoln L\nodel,ha_m reasonable to weight them more highly. We de-
the last term defines the sense model. A graphicgi,g 5 get of “buckets”, or partition over the position

model representation is shown in Figure 1. - of the context word relative to the target verb, and

The model assumes the following generative proy,q \eight each context word feature with a weight
cess for a data instance of a particular verb. F|_r§tw iven by its bucket, both when estimating model pa-
generate the sense of the target verb. Conditione meters at train time and when performing infer-

on the sense, we generate the SCF of the verb. (No{g, ¢ 4t test time. We use the following 8 relative
that the decision to generate sense and then SCE i1 buckets{—oo, —6], [=5, —3], -2, —1, 1,

is arbitrary and forced by the desire to factor the, [3, 5, and[6, o). The bucket weights are found

mo%e_zl_; Weghscushs reversmgfthr? ordegbelow.) Thengmpirically using a simple optimization procedure
conditioned on the sense of the verb, we generatgy, | 4|4 training set accuracy. In ablation tests on
an unordered collection of context words. (For theyis gy stem we found that the use of relative posi-
Senseval-2 corpus, this collection includes not only;o 1 taature weighting, when combined with corre-

the words in the sentence in which the verb Occurssponding evidence attenuation (see Section 3.3) in-

but also the words in surrounding sentences.) Figreased the accuracy of the standalone verb sense

nally, conditioned on the SCF of the verb, we gen'disambiguation model from 46.2% to 54.0%.
erate the immediate sentence containing the verb as

an ordered sequence of words. ' _ 32 Verb Subcategorization Model

An apparent weakness of this model is that it
double-generates the context words from the enThe verb SCF component of our mode{SFC)
closing sentence: they are generated once by th&presents the probability of particular sentences
sense model, as an unordered collection of wordsgiven each possible SCF. Because there are in-
and once by the subcategorization model, as an ofinitely many possible sentences, a multinomial rep-
dered sequence of words. The model is thus defiresentation is infeasible, and we instead chose to
cient in that it assigns a large portion of its probabil-€ncode the distribution using a set of probabilistic
ity mass to impossible cases: those instances whicgontext free grammars (PCFGs). A PCFG is created
have words in the context which do not match thosdor each possible SCF: each PCFG yields only parse
in the sentence. However because the sentences dfées in which the distinguished verb subcategorizes
always observed, we only consider instances in thé the specified manner (but other verbs can parse
set of consistent cases, so the deficiency should Héeely). Given a SCF-specific PCFG, we can deter-
irrelevant for the purpose of reasoning about sens@line the probability of the sentence using theide
and SCE. algorithm, which sums the probabilities of all pos-

We discuss each of the model components in turnsible trees in the grammar producing the sentence.

To do this, we modified the exact PCFG parser of

3.1 Verb SenseModel Klein and Manning (2003). In the independent SCF
The verb sense component of our model is an ormodel, to infer the most likely SCF given a sen-
dinary multinomial Naive Bayes “bag-of-words” tence RC|S), we just find theC that maximizes



P(SIC)P(C). (For the independent model, the SCF3.3 The Joint Modédl

prior is estimated using MLE from the training ex- &iven a fully annotated dataset, it is trivial to learn

e parameters of the joint distribution over verb
sense and SCF(W, C) using MLE. However, be-
cause we do not have access to such a dataset, we

Learning this model, SCF-specific PCFGs, fromin,Ste,aOI use the_ EM a_Igorithm to _“complete” the
our SCF-annotated training data, requires som&iSSINg annotations with expectations, or soft as-
care. Commonly PCFGs are learned using MLESIgNments, over the values of the missing variable
of rewrite rule probabilities from large sets of tree- (W€ present the EM algorithm in detail in the next

annotated sentences. Thus to learn SCF-speciffcction). Given this “completed” data, it is again
PCFGs, it seems that we should select a set of arg.“.’Ial to learn _the parameters of the joint proba—
notated sentences containing the target verb, dete ility model using smoothed MLE. We use s_lmple
mine the SCF of the target verb in each sentenceljaplace add-one smoothing to smooth the distribu-
create a separate corpus for each SCF of the targHPn' o ,

verb, and then learn SCF-specific grammars from However, a small complication arises from the
the SCF-specific corpora. If we are careful to dis-fact that the marginal distributions over senses and
tinguish rules which dominate the target verb fromSCFS for a particular verb may differ between the
those which do not, then the grammar will be con-tWO halves of our data set. They are, after all, wholly
strained to generate trees in which the target verfdlifferent corpora, assembled by different people for
subcategorizes in the specified manner, and othdfifferent purposes. For this reason, when testing
verbs can occur in general tree structures. The proti—he system on th(_% sense corpus we'd like to use a
lem with this approach is that in order to create aS€Nse marginal distribution trained from the sense
broad-coverage grammar (which we will need in or-CO'PUS, and when testing the system on the SCF
der for it to generalize accurately to unseen test in€0rPus we'd like to use a SCF marginal distribu-
stances) we will need a very large number of senfion trained from the SCF corpus. To address this,
tences in which the target verb occurs, and we ddecall from above that the factoring we choose for

not have enough data for this approach. the joint distribution is arbitrary. When performing
sense inference we use the mode(\P/P;(C|V)

where R(C|V) was learned from the complete data,

Because we want to maximize the use of theand R(V) was learned from the sense-marked ex-
available data, we must instead make usewdry amples only. When performing SCF inference we
verb occurrencaevhen learning SCF-specific rewrite use the equivalent factoring.®)P; (V|C), where
rules. We can accomplish this by making a copyP;(V|C) was learned from the complete data, and
of each sentence for each verb occurrence (not just:(C) was learned from the SCF-annotated exam-
the target verb), determining the SCF of the distin-ples only.
guished verb in each sentence, partitioning the sen- We made one additional maodification to this joint
tence copies by distinguished verb SCF, and learnmodel to improve performance. When performing
ing SCF-specific grammars using MLE. Finally, we inference in the model, we found it useful to dif-
change the lexicon by forcing the distinguished verbferentially weight different probability terms. The
tag to rewrite to only our target verb. The methodmost obvious need for this comes from the fact
we actually use is functionally equivalent to this lat- that the sense-conditional word model employs rel-
ter approach, but altered for efficiency. Instead ofative position feature weighting, which can change
making copies of sentences with multiple verbs, wethe relatively magnitude of the probabilities in this
use a dense representation. We determine the SQErm. In particular, by using feature weights greater
of each verb in the sentence, and then annotate thtban 10 during inference we overestimate the ac-
verb and all nonterminal categories occurring abovedual amount of evidence. Even without the feature
the verb in the tree, up to the root, with the SCFweighting, however, the word model can still over-
of the verb. Note that some nonterminals will thenestimate the actual evidence given that it encodes an
have multiple annotations. Then to learn a SCF-incorrect independence assumption between word
specific PCFG, we count rules that have the specifeatures (of course word occurrence in text is ac-
fied SCF annotation as rules which can dominate théually very highly correlated). The PCFG model
distinguished verb, and then count all rules (includ-also suffers from a less severe instance of the same
ing the SCF-specific ones) as general rules whiclproblem: human languages are of course not con-
cannot dominate the distinguished verb. text free, and there is in fact correlation between

amples.) Inference in the joint model over sense an
SCF is more complex, and is described below.



supposedly independent tree structures in differenbver the resulting factors of query variables, or nor-
parts of the tree. To remedy this evidence overmalizing them to obtain distributions of query vari-
confidence, it is helpful to attenuate or downweightables. At test time, when querying about the MAP
the evidence terms accordingly. More generally, wesense (or SCF) of an instance, we chose to max-
place weights on each of the probability terms usedmize over the marginal distribution, rather than
in inference calculations, yielding models of the fol- maximize over the joint sense and SCF distribution.

lowing form: We found empirically that this gave us higher accu-
racy at the individual tasks. If instead we were do-
P(V)*VP(C|V)*© p(s|c)a(5>[1_[ P(W, V)%™ ing joint prediction, we would expect high accuracy

i

to result from maximizing over the joint.

Thesea(-) weights are free parameters, and we4 Resultsand Discussion

find them by simple optimization on k-fold accu- In Figures 2, 3 and 4 we compare the perfor-

racy. In ablation tests on this system, we found . o
y y mance of the independent and joint models on the

that term weighting (particularly evidence attenua- - ) ) .
tion) increased the accuracy of the standalone sen%’ée b sense disambiguation and verb SCF determina-

model from 51.9% to 54.0% at the fine-grained verb lon prpblems, evaluated using both 10-fold Cross-
validation accuracy and test set accuracy. In Figure

sense disambiguation task. 2, we report the performance of a system resultin
We now describe the precise EM algorithm used,’ P P y 9

Prior to running EM we first learn the independentfrom doing optimization of free parameters (such as

sense and SCF model parameters from their respefce-}ature and term weights) on a per-verb basis. We

tive datasets. We also initialize the joint sense andp7lISO provide a baseline computed by guessing the

SCEF distribution to the uniform distribution. Then most likely class. L .
we iterate over the following steps: Although the parameter optimization of Figure

2 was performed with respect to 10-fold cross-

e E-step: Using the current model parametersva“dat'on on the training sets, its lower perfor-

for each datum in the sense-annotated Corpugnance on the test sets suggests that it suffers from
dverfitting. To test this hypothesis we also trained

pus, compute expectations over the possibl%’}'}'th corpus-mdg free parameter o_ptlmlzatlon, and
senses. e results of this test are's'hown in Figure 3. T_he
lower gap between the training set cross-validation
e M-step: use the completed data to reestimatend test set performance on the WSD task confirms
the joint distribution over sense and SCF. our overfitting hypothesis. However, note that the
gap between training set cross-validation and test
We run EM to convergence, which for our datasetset performance on the SCF determination task per-
occurs within 6 iterations. Additional iterations do sists (although it is diminished slightly). We believe
not change the accuracy of our model. Early stopthat this results from the fact that there is significant
ping of EM after 3 iterations was found to hurt k- data drift between the training sections of the WSJ
fold sense accuracy by 0.1% and SCF accuracy bin the Penn Treebank (sections 2 through 21) and all
0.2%. Early stopping of EM after only 1 iteration other sections.
was found to hurt k-fold sense accuracy by atotal of Using corpus-wide optimization, the joint model
0.2% and SCF accuracy by 0.4%. These may seeimproves sense disambiguation accuracy by 1.9%
like small differences, but significant relative to the over the independent model, bringing our system
advantages given by the joint model (see below). to 55.9% accuracy on the test set, performance that
In the E-step of EM, it is necessary to do infer- is comparable with that of the state of the art sys-
ence over the joint model, computing posterior ex-tems on verbs given in Table 1. The joint model re-
pectations of unknown variables conditioned on ev-duces sense disambiguation error by 4.1%. On the
idence variables. During the testing phase, it is alsoverb SCF determination task, the joint model yields
necessary to do inference, computimgximum a a 2.1% improvement in accuracy over the indepen-
posteriori(MAP) values of unknown variables con- dent model, reducing total error by 5.1%.
ditioned on evidence variables. In all cases we do We also report results of the independent and
exact Bayesian network inference, which involvesjoint systems on each verb individually in Table 4
conditioning on evidence variables, summing ovemot surprisingly, making use of the joint distribution
extraneous variables, and then either maximizingvas much more helpful for some verbs than others.



Indep | Joint | Indep | Joint
80 Verb Sense | Sense | Subcat | Subcat
75 T2 OBaseline begin 76.8 84.3 | 57.0 63.3
70 — O individual call 39.4 | 424 | 449 49.0
> 65 1 e 10-fold carry 455 40.9 | 63.3 70.0
N o.7puy | |BJoint 10-fold collaborate| 90.0 | 90.0 | 100.0 | 100.0
g 64.7550 B individual develop [42.0 [39.1 |69.7 69.7
7 test draw 293 | 26.8 | 72.7 63.6
=5 B Joint test dress 59.3 | 59.3 | NA NA
B s drift 43.8 | 40.6 | 50.0 50.0
40 1 ? drive 452 | 524 |545 |545
35 ‘ face 81.7 | 806 |824 82.4
Sense Subcat ferret 100.0 | 100.0 | NA NA
find 235 [294 |611 64.8
Figure 2. Chart comparing results of independent and keep 46.3 | 582 | 52.1 3.5
joint systems on the verb sense and SCF tasks, evaluateg 1€ave 470 | 545 | 364 |400
with 10-fold cross-validation on the training sets and on |_Ve 62.7 | 657 | 857 85.7
the test sets. The baseline shown is guessing most likely|_match 571 | 548 | 583 66.7
class. These systems used per-verb optimization of free| Play 424 | 455 | 66.7 | 61.9
parameters. pull 28.3 | 26.7 | 444 55.6
replace 57.8 | 62.2 | 56.0 60.0
see 40.6 | 39.1 | 53.6 55.1
80 serve 60.8 529 | 72.0 72.0
75 DBaseine strike 37.0 | 27.8 | 50.0 50.0
70 4 685%%8 train 55.6 | 55.6 | 40.0 40.0
o s | ] B el treat 52.3 [ 545 [69.2 [76.9
£ .l o sex™ | | B Joint 10-fold turn 29.9 [29.9 [463 [50.0
g | 54760050 B individual use 65.8 | 68.4 | 69.7 68.8
g 0] = test wander | 78.0 | 80.0 | NA NA
= 507 B Joint test wash 50.0 | 41.7 | 0.0 0.0
Rk I work 41.7 | 433 | 67.9 66.1
40 | 38.9
35 Table 4: Comparison of the performance of the indepen-
Sense Subcat dent and joint inference models on the verb sense and
SCF tasks,evaluated on the Senseval-2 test set, for each

of the 29 verbs in the study. These results were obtained

Figure 3: Chart comparing results of independent andyith no per-verb parameter optimization. Note the great

joint systems on the verb sense and SCF tasks. Thesgriation in problem difficulty and joint model perfor-
systems used corpus-wide optimization of free paramemance across verbs.

ters.
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Figure 4: Chart comparing results of independent andrgple 2 for senses and joint distribution).

For example, on the verlizegin drive, find, keep
leave andwork, the joint model gives a greater than
5% accuracy boost on the WSD task. In contrast, for
some other verbs, the joint model showed a slight
decrease in accuracy on the test set relative to the
independent model.

We present a few representative examples where
the joint model makes better decisions than the in-
dividual model. In the sentence

... pricesbeganweakening last month after
Campeau hit a cash crunch.

the sense model (based on bag-of-words evidence)
believes that the sense 2:42:04 is most likely (see
How-

joint systems on the verb sense and SCF tasks. This Sygver, the SCF model gives high weight to the frames
tem has no relative position word feature weighting andVPto and VPing, which when combined with the

no term weighting. joint distribution, give much more probability to



the sense 2:30:00. The joint model thus correctlyor other phrases, by simultaneously resolving word
chooses sense 2:30:00. In the sentence sense ambiguities, as attempted unsuccessfully by
Bikel (2000). This work is intended to introduce

a general methodology for combining disjoint NLP
tasks that is of use outside of these specific tasks.
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