Arc Minimization in Finite State Decoding
Graphs with Cross-Word Acoustic Context

Francois Yvon ! Geoffrey Zweig? George Saon®

& GET ENST and CNRS LTCI
46 Tue Barrault, F-75013 Paris

b IBM T.J. Watson Research Center
P.O. Box Yorktown Height, NY 10958, USA

Abstract

Recent approaches to large vocabulary decoding with weighted finite-state trans-
ducers have focused on the use of determinization and minimization algorithms to
produce compact decoding graphs.This paper addresses the problem of compiling
decoding graphs with long span cross-word context dependency between acoustic
models. To this end, we extend the finite-state approach by developing complemen-
tary arc factorization techniques that operate on non-deterministic graphs. The use
of these techniques allows us to statically compile decoding graphs in which the
acoustic models utilize a full word of cross-word context. This is in significant con-
trast to typical systems which use only a single phone. We show that the particular
arc-minimization problem that arises is in fact an NP-complete combinatorial opti-
mization problem. Heuristics for this problem are then presented, and are used in
experiments on a Switchboard task, illustrating the moderate sizes and runtimes of
the graphs we build.

1 Introduction

In the past, there has been a significant division between the decoding pro-
cesses used for highly constrained, small vocabulary speech recognition tasks,
and those used for large vocabulary unconstrained tasks. In the small vocab-
ulary arena, and in domains where a relatively compact grammar is appropri-
ate, it is common to pre-compile a static state-graph. Given such a graph, a
simple and efficient implementation of the Viterbi algorithm can be used for

! This work was performed while F. Yvon was visiting the IBM T.J. Watson Re-
search Center

Preprint submitted to Elsevier Science 8th August 2003

subsequent decoding (Viterbi, 1967). For large vocabulary tasks with n-gram
language models (LMs), however, it has traditionally been common to avoid a
static search space, and to instead dynamically expand the language model as
needed (Jelinek et al., 1975; Odell, 1995; Ney and Ortmanns, 1999). While the
latter approach has the advantage of never touching potentially large portions
of the search space, it has the important disadvantage that dynamic expansion
is significantly more complex, and incurs a run-time overhead of its own.

Remarkably, over the course of the past several years, algorithmic and compu-
tational advances have made it possible to handle large vocabulary recognition
in essentially the same way as grammar-based tasks. In a recent series of pa-
pers (Mohri et al., 1998, 2000; Willett et al., 2001), it has been shown that
it is in fact possible to statically compile a state graph that encodes the con-
straints of both a state-of-the-art language model, and cross-word acoustic
context. One of the main algorithmic methods that is used in the process is
that of determinization and minimization of the resulting weighted finite-state
transducer.

While this previous work (Mohri et al., 1998, 2000) has established Viterbi
decoding on statically compiled graphs to be an effective method for large
vocabulary decoding, its use with very long-span acoustic models presents
problems that have not been previously solved. As an initial step in this pro-
cess, a cross-word acoustic-context model (typically triphone or quinphone) is
encoded as a finite state transducer, and used in subsequent operations. As
the amount of acoustic context increases, this transducer grows dramatically
in size. Quoting (Mohri et al., 2000) “More generally, when there are n con-
text independent phones, this triphonic construction gives a transducer with
O(n?) states and O(n?) transitions. A tetraphonic construction would give a
transducer with O(n?) states and O(n*) transitions.” Further evidence of this
increase of complexity is given in (Chen, 2003).

The motivation of this paper arises from a desire to utilize acoustic models with
very long-span context sensitivity, where simply writing down a reasonably
sized transducer that encodes the context sensitivity becomes a significant
challenge. In particular, we are interested in utilizing a full-word of cross-word
acoustic context, and in this case the number of arcs required to encode the
context is very large (proportional to the square of the vocabulary size), and
must be minimized.

To this end, we explore a graph building strategy which introduces supple-
mentary states into selected portions of the decoding graph, in return for a
large reduction in the number of arcs. The key difference from previous work
is that we present a method for introducing non-determinism and extra states
in return for reducing the number of arcs. Classical minimization operates on
deterministic graphs.

A first question we study concerns the existence of tractable algorithms for
building a graph with a minimal number of arcs. While it is already known
that the related problem of minimizing non-deterministic finite-state automata
(NFA) is NP-hard (see, e.g. (Jiang and Ravikumar, 1993)), it is important to
note that on the face of it, our problem is significantly more constrained, and
therefore perhaps not in the same complexity class. Nonetheless, through a
reduction from the known NP-complete optimization problem of Clique Bipar-
titioning (Feder and Motwani, 1991), we demonstrate that in fact the problem
we are faced with is also NP-complete.

We then propose several simple heuristics to reduce the number of arcs in the
graph. The key to our factorization methods is the fact that it is relatively
straightforward to enumerate - for each word - the sets of predecessor words
that give rise to distinct context dependent acoustic realizations. We refer to
such sets of predecessor words as context sets. By carefully identifying subsets
of words that occur in multiple context sets, we will show that it is possible
to factor them in such a way as to produce highly compact graphs, with a full
word of acoustic context, even for large-vocabulary systems.

This paper is organized as follows. In Section 2.2, we present the basic structure
of the decoding graphs and proceed in section 2.3 and 2.4 to illustrate the
problem of arc minimization in the case of a unigram language model with
various kinds of cross-word contextual dependencies. When larger n-grams are
used, this unigram portion occurs as a subgraph, and accounts for the majority
of the context-induced arcs.

In Section 3, we cast the problem formally, show that it is NP-complete, and
present two simple heuristics for generating compact graphs. In Section 4 we
apply these techniques, and present results on graph size, runtime, and word-
error rate with various acoustic and linguistic models on the Switchboard and
EARS Rich Transcription evaluations.

2 Decoding with static graphs

2.1 Motiwwations

Over the past few years, the technology of LVCSR systems has significantly
evolved, making them able to accommodate increasingly large vocabularies
and richer knowledge sources, while keeping computing costs at a reasonable
level. In this section, we discuss the benefits of precompiling the search network

into a finite-state graph in the context of single pass search strategies. ? In
fact, we will only be considering single pass algorithms, since we believe that
the benefits (in terms of pruning and search efficiency) of including all the
available knowledge sources as early as possible largely compensate for the
increased complexity of the search space.

(Aubert, 2000) presents a thorough review of the main search algorithms,
showing that they basically fall into two major categories:

e those which use a static expansion of the search space, which is then searched
using traditional DP techniques and beam pruning: this approach is remi-
niscent of the traditional approach to small vocabulary speech recognition.
General algorithms for weighted finite-state transducer (FST) determiniza-
tion and minimization (Mohri and Riley, 1998) can additionally help reduce
the search space size.

e those which expand the search space on-the-fly; this strategy accommodates
arbitrary search strategies such as word synchronous or time synchronous
beam search, and depth first search or stack decoding

The benefits of statically precompiling an optimized version the search space
are numMerous:

e searching a weighted finite-state graph is a well understood task, for which
simple, general, yet efficient algorithms can be readily used. Furthermore,
the speed vs accuracy tradeoff is controlled by a single parameter: the beam
width.

e empirically, when pruning is done, reducing the amount of non-determinism
in the searched network reduces the work done by the decoder. (Note,
though, that the basic Viterbi HMM recursions make no distinction be-
tween deterministic and non-deterministic graphs. Therefore this observa-
tion is specific to the kind and amount of pruning that is used.)

e the minimization of weighted FSTs (Mohri, 1994) has the beneficial effect
of redistributing transition costs in such a way that language models prob-
abilities are applied as early as possible, in a way similar to language model
look-ahead techniques (Ortmanns et al., 1997). This dramatically improves
the efficiency of pruning.

These observations are reinforced by the results of a head-to-head comparison
of these two search strategies (Kanthak et al., 2002), which demonstrate that
the FST approach permits significantly better operating points than on-the-fly
expansion strategies.

2 In this paper, we use the terms “finite-state decoding graph ” and “static decoding
graph” to refer to what might more properly be termed a (weighted) finite state
automaton. As we associate acoustic emissions with the states and transition prob-
abilities with the arcs, this is also essentially a standard HMM.

Static decoding graph compilation is often performed through the formal com-
position of several weighted finite-state transducers (Mohri et al., 2000), for-
mally expressed as: D = H o C' o L o G, where H denotes the HMM FST;
C denotes the context-dependency FST, mapping context-dependent acoustic
units to phones; L denotes the lexical transducer, mapping phone sequences
to word sequences; and G denotes the language model, associating word se-
quences with probabilities. Further, this compilation involves the additional
optimizations of determinization and minimization.

Given the inherent non-determinism present in C' (due to the presence of
homophones) and L (due to back-off transitions), D is not fully deterministic.
Nevertheless, using various tricks, such as determinizing the lexical transducer
with additional phonetic symbols, and treating epsilon as a regular symbol in
the determinization procedure, very compact graphs can be produced allowing
for fast and efficient decoding in many circumstances.

In this context, our goal is to explore the integration of long span contextual
dependencies in this architecture. As pointed out in (Aubert, 2000), inte-
grating triphone cross-word acoustic dependencies hardly increases the overall
network size. However, as discussed in (Mohri et al., 2000), and more re-
cently in (Chen, 2003), integrating increasingly large contexts make C' grow
tremendously in size, rendering the compilation of the static graph a serious
computational challenge. The problem we address here consists in compiling
D in a case where the contextual dependencies modeled in C' extend up to one
full word of context on the left or on the right. It is important to realize that
while our experiments only involve specific forms of cross-word dependencies
relying on a decision tree to select acoustic context dependent acoustic units,
our graph compilation algorithm can in principle accommodate more general
patterns of cross words dependencies.

Other work aimed at modeling complex phenomena in the finite-state frame-
work , while keeping the search space reasonably small, includes an a priori
simplification of the LM (Mohri et al., 2000) using a compression technique
originally proposed in (Seymore and Rosenfeld, 1996); alternative strategies for
disambiguating the phonological and lexical transducer (Smaili et al., 2002); a
factorization of the LM into a simple LM, which is included in the static graph,
and a dynamic LM, expanded on the fly (Dolfing and Hetherington, 2001; Wil-
lett and Katagari, 2002); and heuristic state merging strategies (Zheng and
Franco, 2002).

n—gram history states Successor words

h="The dog ran" ngram prob _._.ﬂ_a.s_t._._. ————— >
-0-0-0-0-0- - - - - >
Backoff factor ~ "home"
"quickly"
h="dog ran"o——=e-0-0-0-000- - - - - >
- “amok” h’= "ran amok"
h="ran"o——=e-0-0-0-0-0-0- - - - - >
"blue” h’= "blue"
h="" ¥<.-.—H—.—.—. ————— >
) 0000000 - -- >
unigram state hazy

Figure 1. A graph with word internal context only. Arcs emanating from the
right-hand side loop back to states on the left.

2.2 Word-Internal Graphs

We begin our discussion of graph structures by illustrating the basic structure
of a classical n-gram language model viewed as a stochastic finite-state ma-
chine (Jelinek et al., 1975). When LM probabilities are smoothed according
to a back-off scheme (Katz, 1987), this automaton can be efficiently factored
with the help of non-deterministic transitions (Placeway et al., 1993; Riccardi
et al., 1996). Each history h appearing in the LM corresponds to a history
state Nj, in the FST; each word w such that P(w | h) occurs in the LM cor-
responds to a transition weighted with P(w | h), labeled with w, between N,
and Ny, where h' is the history having the longest common suffix with hw.
This basic structure is complemented to account for the back-off model: each
history state N}, also has an outgoing epsilon transition to N5, where h is a
truncated history. This transition is weighted with the back-off coefficient of
history h. The case where A is empty is handled via one additional unigram
state, which has an outgoing transition for every word in the vocabulary V,
weighted with the corresponding unigram probability.

Replacing word labels with the sequence of acoustic states induced by their
pronunciation yields the final decoding graph (see on Figure 1). Such graphs
can be further processed with general algorithms for weighted FSTs, such as
determinization and minimization.

Figure 2. Graph representing left-word acoustic context constraints. There are three
vocabulary words, each with two context-sensitive variants. These are separated by
dotted lines. Arcs out of the variant-states are labeled with the word value; the
others are epsilon arcs.

2.8 Left-Context Graphs

We now consider the case when the acoustic realization of a given word is
a function of the previous word occurrence, as is the case with cross-word
contextual models. For this purpose, we now assume that each word w; has
l; acoustic variants p; ... pé", and that each variant pf can only occur if the
previous word belongs to the set Left(pF). We denote the total number of
acoustic variants by P. As for transitions out of history states, this new sit-
uation is straightforwardly taken care of, by making the outgoing transitions
of N, comply with the pronunciation constraints induced by the last word of
history h. To illustrate this situation, imagine that “home” has two contextual
variants: we would instantiate on the arc from the history node labeled “The
dog ran” on Figure 1 the one single variant which can occur in the context
of a preceding “ran”. However, for the unigram state, the simple factorization
described above fails: upon reaching this state, the identity of the previous
word is lost, making it no longer possible to apply the contextual constraint.

An obvious solution to this, in which there is a distinct unigram-history state
for each word, is illustrated in Figure 2. This kind of brute-force solution is
straightforward, and can accommodate any context-sensitivity pattern. How-
ever, it is possible to significantly improve on it by carefully grouping words
on the basis of the left context variants they induce, as illustrated in Figure 3.
This second example uses a four word vocabulary, where each word, except
the last, has a single left-context variant. The last word has four variants. The
graph on the left indicates which variants are licensed by which words, in a
brute-force fashion. It uses 16 arcs, and has a minimal number of vertices.
The graph on the right models the very same dependencies by introducing an
extra vertex , and in return reduces the number of arcs to 11. Graphs of this
form - having n words where the first n — 1 have a single variant, and the last

Unfactored graph Factored graph

Figure 3. Factoring left contexts. The backwards loops from variants to words have
been omitted for clarity. The shared left-context of pi1,po1,ps31, composed of the
words w1, we, w3, wq P is factored out on the right.

has a unique variant for each of the n words - will in general require n? arcs
if constructed in the straightforward way, but just 3n — 1 arcs when factored.

By factoring the unigram portion of a left-context decoding graph, we can
produce graphs that have many fewer arcs than the theoretical limit of O(V?).
Further, with a small amount of additional effort, the classical techniques of
determinization ® and minimization for weighted FSTs can also be used. In
order to avoid an explosion in the size of the determinized graphs, we employ
a two-step process:

(1) Label each outgoing edge from a history-set state by a dummy label
consisting of the index of the history-set.

(2) Determinize and minimize this graph.

(3) Replace the dummy labels with epsilon

(4) Determinize and minimize the graph

The first step is necessary because without it, there are so many epsilon tran-
sitions that the process of determinization uses over 4GB of memory and fails.
This is the case even though epsilon is treated as a normal label. It is well
known that determinization may exponentially increase the size of a graph
(Hopcroft and Ullman, 1979), and in this case the theoretical problem mani-
fests itself in reality.

We have found that the process of determinization and minimization reduces
the size of the graph somewhat, and produces a significant improvement in
pruning properties. Therefore, all the experimental results presented in Section
4 are for weighted FSTs that have been (pseudo)-determinized and minimized

3 As is common practice, the determinization procedure does not include full epsilon
removal: epsilon transitions are thus treated just like regular (labeled) transitions.
Hence the term 'pseudo-determinization.

after our arc-factored construction process.
To summarize, the graph building procedure requires the following steps:

(1) build the unigram graph and compact it using the arc factorization pre-
sented in section 3

(2) combine the unigram portion with higher-order components

(3) apply (pseudo) determinization and minimization

In comparison with earlier methods of graph construction (Mohri et al., 2000),
we avoid the step of writing down the extremely large context transducer
(O(n*) with n phones and a window size of k) while still being able to apply
weighted determinization and minimization. It is also worth noting that our
method is actually completely insensitive to the number of phones in the
context window, depending only on the fact that there is a single word to the
left.

2.4 Rught-Context graphs

Dealing with right context dependency patterns, ie. with cases where the pro-
nunciation of a word depend on the successor words, implies a small change
from the graph structure presented in Figure 1. Ignoring the special case of the
unigram back-off state for a moment, what makes the implementation of left-
contextual constraints so straightforward is that each history state encodes
the knowledge of the last words, including crucially the last seen one. As a
consequence, it is trivial to constrain any arc going out of history state N,
with h = aw, to be labeled with a pronunciation p such that w € Left(p).

With right context dependencies, the syntactic constraints imposed by the
language model no longer operate in a synchronous fashion with the pro-
nunciation restrictions: while the former constraints still apply depending on
the past history, the latter now vary according to the future word. Neverthe-
less, these dependencies can be accommodated in the finite-state framework
in the following manner: for each history h = aw; in the language model,
we introduce as many history states N,, as there are right context variants
pi...pF of w;. For each successor word v of h, G includes an arc from N,
labeled with (the sequence of HMM states corresponding to) p;, if and only
if v € Right(ps,). This arc will point to all the history states N, where A’
is, as before, the history having the longest common suffix with hw. Epsilon
transition weighted with back-off factors will continue to joint history nodes
Ny, with N, with h the truncated history (see Figure 4). As previously,
determinization and minimization can be further applied to this graph.

The case of the unigram backoff arc can be dealt with in a manner that is

Successor words

“ran(01)" ngram prob
0-0-00000— >

0-0-00000———>

"ran(02)"
"dog(01)" -)
o—o—o—o—o—o—oLo h'=dog ran

h="the dog"
J eooo0o000 o Nh='dogbarked"

"dog(02)" | "barked"

h="'dog" e-e-e0-0-@-0@-0

"dOQ(OZ)" Backoff factor

h="" O

unigram state

Figure 4. A graph with right word context only. Arcs emanating from the right-hand
side loop back to states on the left. Indices (01) and (02) refer to the acoustic
realizations of a word.

exactly similar to the left-context case: first by introducing a unigram backoff
node for each possible pronunciation variant, then by factoring out the result-
ing bipartite graph is such a way that the total number of resulting arcs is
made minimal.

3 Arc minimization of decoding graphs

3.1 Problem Definition

Before presenting our graph minimization strategies, we introduce some def-
initions. (G = (X = (L, R), E) is a bipartite graph if the vertices in X can
be partitioned as X = L U R, and all edges in F link a vertex in L with a
vertex in R. We denote n(G) the order of G (= the total number of vertices).
A biclique B = (X' = (L', R'), E’) in G is a complete partial subgraph of G,
meaning that £’ includes every possible edge from L' to R'. An edge cover of
G into biclique is provided by subsets FE ... Ey of E such that (i) each E; is a
biclique and (ii) £ = U E;. When the E; are pairwise disjoint, then F; ... Ej
further defines a partition of E. We call the order of a cover (or partition) the
sum of the orders of all bicliques it contains.

Turning back to our decoding graph, we can see that the unigram backoff
portion of it defines such a bipartite graph with L = V (the vocabulary),

10

Figure 5. Simple bicliques: 1 x 3-star and Koo

R = P (the acoustic variants), and F containing one edge between the unigram
state for word w; and each left-context variant pf which can follow w; (see
Figure 3). G has a total of |V| + |P| vertices, and |V|? arcs. To make the
decoding graph smaller, we are looking for ways to factor out dependencies
expressed in G by introducing new vertices so as to reduce the number of arcs
in the final decoding graph. Each biclique B = (V', P') in G expresses the
fact that any variant in P’ can follow any word in V’: this means that if we
introduce an extra state as we did on the graph Figure 3, we can replace the
[V'| % |P'| arcs in the decoding graph by just |V'| + |P'|= n(B). Minimizing the
number of arcs in the graph expressing contextual dependencies thus amounts
to finding a set of bicliques B; = (V;, P;) in G such that:

Ve € E,dist. e € B; (1)

i=k
> n(B;) is minimal (2)

=1

or, in other words, to finding the minimal order cover of edges in G into
bicliques.

3.2 NP Completeness

The decision problem associated with this minimization program is clearly in
NP. In this section, we show that this minimization problem is, in fact, NP-
hard. The proof directly derives from a result of (Feder and Motwani, 1991),
which states than finding the minimum order partition into bicliques for any
given graph is NP-hard. Their argument relies on a variation of a reduction of
3-SAT originally proposed in (Holyer, 1981), and proceeds along the following
lines. First, a polynomial transformation of any formula F' into a graph G(F)
is exhibited, which is such that G(F’) only contains ’simple’ bicliques: the only
bicliques included in G(F') are either Ky, the 2x2 biclique, or stars (gx1
bicliques) (see Figure 5).

(Feder and Motwani, 1991) further shows that F' is satisfiable if and only if
the edges in G(F') can be partitioned into Ky 5. Furthermore, any partition of
G(F) into bicliques is bound to have an order greater than the total number
of edges in G(F'), since each biclique type contains at least as many vertices as

11

edges. This lower bound is only achieved in the case all the bicliques are of the
kind Ky, as 1xk-stars have indeed more vertices (k + 1) than arcs (k). Since
the total number of edges in the partition is fixed, (Feder and Motwani, 1991)
claim that if we could find in polynomial time the minimum order partition, we
could decide whether the edges of G' can be partitioned using only K ss, and
thus answer the satisfiability question. Extending their argument to covers is
fairly simple, as the minimum order cover of G(F’) necessarily contains fewer
vertices than the minimal order partition (a partition being a special case of
a cover). Since the cover only involves Ky o and stars, we know that the total
order of the cover will still be at least equal to the number of edges it covers,
which is greater than the number of edges in G(F); furthermore, this bound
can only be attained by a partition, as covers can include duplicate edges. We
can conclude, by the same argument, that finding the minimal order cover is
also a NP-hard problem.

3.8 Alternative formulations

We have focused so far one of the several possible formulations of the arc
minimization problem. Before introducing various heuristic solutions for get-
ting through this combinatorial problem, we introduce here two alternative
formulations which will help getting a better intuition of our heuristics.

3.3.1 Set theoretic formulation

The relationship R between words and valid successor pronunciation variants
can be represented based on set theoretic concepts only. Any biclique in G
defines a pair of sets (X,Y) with X € 2" and YV € 2F, such that V(w,p) €
X x Y,w € Left(p). The set B of all bicliques in G can then be naturally
ordered with the < defined as: (X,Y) < (X', Y’) if and only if X C X' and
Y' CY. (B, <) defines a lattice structure, known as the Galois lattice of the
relationship, and denoted L. The infimum of two elements (X,Y") and (X', Y”)
is computed as: (XNX', YUY"). Given this new definitions, we can reformulate
our optimization problem as finding a set of bicliques (V;, P;) in £ such that:

UVixP=VxP (3)
Z \Vi| + |P;] is minimum (4)

This formulation of the problem allows the following observation: if (V, P)
and (V', P') define a solution, and we have (V', P') < (V, P), then we can
improve on this solution by replacing (V', P') with (V, P’\ P) which must also

12

occur in £. This new solution still satisfies the constraint (3) and improve the
total cover order of a quantity equal to: |P N P'|. As a result, any optimal
solution will only include pairs of sets which are pairwise incomparable, and
will define an anti-chain in £. This fact is used in one of the heuristic for arc
minimization (see 3.4).

3.8.2 Algebraic formulation

Denote by A € {0,1}™*" the adjacency matrix of the graph, i.e. a;; = 1 if
and only if there is an edge between node 7+ € L and j € R and a;; = 0
otherwise. Suppose first that we wish to find an edge partition of the graph.
This amounts to finding a factorization of A as

A =BC, B c {0,1}™ C € {0,1}*"

In the case of a cover, the previous equality turns into the following set of
inequalities

l

> bikcrj < aij, aj =0
k=1
I

> bk > aij, a; =1
k=1

Indeed, the cover should not introduce additional edges and the same edge can
be accounted for in at least one way (i.e. at least one k for which b, = ¢x; = 1).

For a given [, the objective function to be minimized is the sum of elements
of B and C

min Z bix + Z Crj
k,j

bix,crj €{0,1} ik

subject to the previous constraints. In order to find the minimum order cover,
the above quadratic (0, 1)-integer programming problem has to be solved for
every [= 1...mn and the best solution has to be retained.

3.4 Two Heuristics for Arc Minimization

In this section, we present two simple heuristics that have proven both to
perform reasonably well and to remain tractable even for large vocabulary
tasks. Both methods begin by identifying the variants p; . . pﬁ’ of each word
w. For the type of cross-word dependencies we have considered, this can be

13

done in a brute-force fashion by enumerating all possible predecessor words
and using a decision tree to identify the corresponding sequence of context
dependent states. Concurrently, for each word, we obtain a partitioning of V'
into the sets Le ft(pf) that induce the different variants. Since | U, Left(p¥)| =]
V|, the space required just to store all these sets is proportional to the square
of the number of vocabulary words. For vocabularies over about 10,000 words,
this is impractical, and we had to resort to simple local heuristics, which do
not require the knowledge of the entire graph. Our algorithms thus work in an
online fashion, examining each Left(p¥) as it is enumerated, and then moving
on.

The first algorithm is presented in Figure 6. It maintains a collection of history
sets, each with an associated set of acoustic variants. It proceeds word-by-word
computing the Cartesian intersection between the current set of history sets
and the sets Left(pF) of word w;. Thus, the members of each history set are
guaranteed to induce the same behavior with respect to all the words seen
so far. This strategy basically amounts to proceeding greedily upwards in the
lattice L, repeatedly computing the supremum of sets of pairs all having the
form (V = Left(p), P = {p}), while trying to avoid reaching nodes where V'
would be empty.

If run to completion (i.e. over all words w;...w,), one gets sets of words
that behave identically with respect to their successors. However, this tends
to result in overly small sets, and in practice, after a given number of sets (e.g.
100) have been generated, it is better to store them, and “reset” the algorithm
(Figure 6).

Our second heuristic (see Figure 7) relies on the following observation: a word
set S, corresponding to the left context set of a pronunciation pf, must group
words having some similarity with respect to their right acoustic environment.

In the limit, observing a two-word history set suggests that these two words
must be very similar, being the only pair in the lexicon to trigger a specific
left-context variant. It is therefore reasonable to assume that this pair will in
fact co-occur in a large number of bigger history sets. Extending the argument
to larger sets, we can see reasons why medium sized context sets should thus
provide an advantageous basis for decomposing the remaining history sets.
The heuristic of Figure 7 exploits this observation.

The main parameter of the basis set decomposition algorithm is 6;. To ap-
preciate qualitatively why, consider the extreme case of #; = 1: in that case,
we end up with |V| 1x | V| stars, corresponding to the simple-minded one-
unigram-state-per-word solution of Figure 3. Each time we increase 6; and
include a new attested basis set B = (H, P) of size |H|, we actually add |H|
supplementary vertices to the total cover order while potentially removing up

14

Input: Sequential presentation of the sets Left(pF).
Output: Set of history sets H and licensed variants P.
Data Structures:

H:{Hy, Ho,...H,}. Each H; is a set of words.

P :{P,P,,...P,}. Each P, is a set of word variants.
(1) %final — (Z) Pfinal — (Z) 1+ 1

52; H+— {{V}} P+« {0}

3) Repeat until |H| > threshold

° Proces§ wj:

- Py < PjUp}
0H<—’il,'

e PP
e 1+ 1+1
(4) ,Hfinal — Hfinal UH
(5) Pfinal — Pf'inal up
(6) if i = |V| output Hfinu and Pping and end
(7) else goto step 3.

Figure 6. Cartesian intersection algorithm for computing history sets and licensed
acoustic variants.

to | H| vertices from existing bicliques. With increasing values of |H |, | P|
actually gets smaller up to a point where increasing ¢, actually hurts the per-
formances. This is illustrated on Figure 8 for different values of 6;: while the
steady increase of ¥; |H;| is initially more than rewarded by the decrease of
Y; |Pi|, substantially reducing the total order of the cover, an optimum seems
to be reached around 3, 500, after which the total decomposition order starts
increasing.

It is important to realize that Figure 8 only shows a small portion of the
curve: for smaller values of 6, the total order in fact increases substantially.
For instance, it already attains 2.6e + 6 for 6; = 2000, demonstrating that the
choice of large enough values for 6, is crucial for building small graphs.

As we illustrate in the following section, these heuristics do a good job in
generating compact graphs. They are, however, heuristics, and consistent with
the NP-hardness of the problem are not guaranteed to find an optimal answer.

15

Input: Sequential presentation of the sets Left(pF).

Output: Set of history sets H and licensed variants P.

Data Structures:

B : Basis set.{(Hi,P),(Hs, Py)...(Hpn, P,)}. Each H; is a set of
words, each P; is a set of word variants.

(1) B« {(w;,0), (u,0).. (wn, 0)}
(2) for each word variant p¥, if [Left(pF)|< 6,
B+ BU{(Left(rf),0)}
(3) For each word variant p;:
e find {]1 Ji} st.
% 71 H - Left(pz)
L |H | is maximum
oforeac]—]1 gk Py Py U {pt}
(4) for each (H;, P;) € Bif |P\< 6, and [H;[> 1
B« B\ (H;, P)
(5) if B was changed during 4 goto 3
(6) output B

Figure 7. Basis-set algorithm for computing history sets and licensed acoustic vari-
ants.

Step 1 initializes the basis set with singleton words. This ensures that the
decomposition process in step 3 always succeeds. Step 2 simply accumulates
word sets no larger than 6, as potential basis sets. Based on the basis sets
collected during 1 and 2, step 3 actually greedily computes a cover. An addi-
tional pruning step (4) removes basis sets, based on their actual contribution
to the cover, discarding those which don’t cover enough arcs. The condition
(|H;|> 1) guarantees that singletons aren’t pruned out during this stage: as
mentioned earlier, having all the singletons in the basis set is a sufficient con-
dition for the decomposition step (3) to succeed. This algorithm terminates
after exactly two iterations: if a basis set is not pruned at the first iteration,
it cannot be pruned at the second, as its contribution may only increase as
other basis sets get discarded.

4 Experimental Results

4.1 System description

For the experiments reported in Section 4.2, we used a Switchboard system
based on a 18K vocabulary, with more than 300K left-context variants. Speech
features are derived from 24-dimensional MFCCs, further transformed into a
canonical space through the application of normalization techniques (VTLN
and FMLLR), and then projected onto a discriminative 60-dimensional space
using heteroscedastic discriminant analysis (HDA) (Saon et al., 2000). Acous-
tic modeling uses cross-word context-dependent HMMs: the context depen-
dent states of any given phone are determined through the application of a

16

2e+06

1.8e+06

1.6e+06

1.4e+06

1.2e+06

cover order

le+06

800000 [~

600000

total order SR N
order of Ps ~ ------—-
order c)\“ Hs S

400000
2500 3000 3500 4000 4500 5000 5500 6000

Figure 8. Choosing the right basis set size
This figure plots the total order of the cover for various value of 0; (see Figure
7). For these experiments, the value of 6 is fixed and equals to 5.

decision-tree making its decision based on a 11-phone window. This window
can potentially look at all the surrounding phones up to one full word of con-
text on the left; the right context can extend up to the current word boundary.

The complete acoustic model set includes 142K Gaussian models and about
3. 7K HMM states for the word internal system, and about 160K Gaussian
models and 4.6K HMM states for the cross-word system. The acoustic mod-
els were trained on a combination of Switchboard and Callhome data using
discriminative training (MMI) techniques (Nadas et al., 1988; Woodland and
Povey, 2000). Language models (bigram and trigram) were trained on Switch-
board transcripts and were smoothed with a modified version of Kneser-Ney
backoff (Chen and Goodman, 1996); the cut-off counts were set to 1 for tri-
gram. n-gram counts are given in Table 1.

Table 1

Language model size

l-gram | 2-gram | 3-gram

175K | 388K 327K

4.2 Results

In this section, we present experimental results obtained using the Switch-
board’00 evaluation set (Switchboard part).

The first results we report here concern the comparative efficiency of the graph

17

factorization procedures presented in Section 3.4. These results, which only
concern the unigram back-off section of the graph, are displayed in Table 2.
Table 2

Arc factorization results: the number of vertices and edges in the unigram backoff
subgraph.

M vertices | # M edges

Un-factored graph 0.300 306
Cartesian Product 0.310 5.5
Basis Set 0.320 1.8

As can be seen from the figures in Table 2, arc factorization dramatically re-
duces the graph size, trimming it down by more that two orders of magnitude.
The basis set decomposition significantly outperforms the Cartesian product
heuristic, reflecting the fact that the multi-pass strategy it implements allows
it to reach a much better covering. The number of arcs in the factored bipar-
tite graph has 2 orders of magnitude fewer arcs than the unfactored graph,
with only a marginal increase of the number of states.

The primary goal of our approach is to reduce the size of decoding graphs to
the point where it becomes feasible to employ an entire word of cross-word
acoustic context, and our factoring procedures have allowed us achieve this
goal. Using the basis set algorithm, we were able to build left-context graphs
which were only twice the size of a graph with purely word-internal contexts,
while providing us with a substantial reduction in error rate.

Tables 3 and 4 summarize our main results, giving graph sizes, run-times, and
word error rates for increasingly complex language models. Since it is straight-
forward to build decoding graphs that use only within-word context, these are
the baseline for improvement. Runtimes cited are inclusive of the Gaussian
computation and were obtained using a relatively narrow beam parameter:
at each time frame, only the best 5,000 state hypotheses are kept. All the
experiments used a 4GHz pentium IV PC with 512 Megabytes of memory.

Table 3
Graph sizes after minimization and determinization. For left-word acoustic context,

these operations cannot complete without our graph factorization method.
2-gram 3-gram
M states | # M arcs || # M states | # M arcs
Word Internal Baseline 0.822 2.009 1.85 4.26
Unfactored Left Context - - - -
Factored Left Context 0.934 2.464 2.03 4.95

It is remarkable that the graphs obtained using cross-word left-context de-

18

pendencies are only marginally bigger that the corresponding baseline word
internal graphs, demonstrating the effectiveness of our arc minimization strat-
egy. We have observed that this is the case for fourgram as well as trigram
language models, and are able to produce fourgram graphs (Zweig et al., 2002).
Table 4

Word Error and run times. Without graph factorization, it is not possible to con-
struct the left-context graph and decode.

2-gram 3-gram

WER | xRT || WER | xRT
Word Internal Baseline 26.5 0.9 24.7 1

Unfactored Left Context - - - -

Factored Left Context 24.5 1.1 22.6 1.1

The results in Table 4 were obtained using a beam large enough to ensure that
there were virtually no search errors; identical word error rates were achieved
using 100,000 active states. In fact, we have observed that the word error rate
remains relatively constant as long as the number of live states exceeds the
number of context-dependent units in the acoustic model.

In a novel application of static decoding graph technology, we have used our
graphs to perform MMI training without the need for creating lattices. The
basic procedure we follow is that of (Woodland and Povey, 2000), except that
instead of constructing separate denominator lattices for each training utter-
ance, we simply use the entire unigram decoding graph. This dispenses with
the extra step of creating lattices, and removes the approximation present in
using them to represent all possible word sequences. As the runtimes presented
here indicate, we can achieve real-time performance thus allowing for large-
scale training. In the context of MMI training, it is interesting to note that it is
in fact unnecessary to store word labels in the decoding graph, as the training
procedure merely accumulates posterior occupancy counts for HMM states.
Removing word labels does not change the probability distribution over state
sequences (all that matters for MMI), but it does make the determinization /
minimization of the decoding graph much more effective, speeding the train-
ing procedure by a significant margin. For the unigram case, for instance, we
observed a reduction in size of the word internal graph by factor of 2; for the
cross-word graph the reduction was close to 30% (see Table 5).

4.8 Results in the 2008 DARPA EARS FEvaluation

In a further application of this technology, factored left-context decoding
graphs were constructed and used in the 2003 DARPA EARS competition (Ex-
tensible, Affordable, Reusable Speech-to-Text). This resulted in the winning

19

Table 5
Unigram graphs for MMI training

Word internal Left context

states | # edges | # states | # edges
Unigram with word labels 170 K 358 K 227 K 700 K
Unigram without word labels 74.5 K 162 K 142 K 524 K

Table 6
Number of n-grams, states and arcs for the speaker independent and speaker adapted
decoding graphs. Runtime is on the bottom line.

Number of SI SA
ngrams 0.2M 3.3M
states 0.6M 9.6M
arcs 1.7M 23.9M
Runtime 0.11xRT | 0.63xRT

entry in the sub-realtime category, with a word error rate of 29.0%, compared
with the next closest competitor at 34.4% (Le, 2003). For this task, a two-
pass decoding strategy was used, the first pass using a smaller decoding graph
and unadapted acoustic model, and the second pass using speaker-adapted
models (Saon et al., 2003). The main difference lies in the choice of the lan-
guage model: for the speaker independent decoding we opted for a bigram
LM whereas the final decoding step uses a 4-gram LM. The latter was trained
on the following corpora: 3M words of Switchboard, 58M words from web
scripts publicly available from the University of Washington, 3M Broadcast
news words relevant to Switchboard topics and 7TM words of the English Giga-
word corpus. The acoustic-context model for the speaker adapted system was
the same as that discussed in the preceding sections. The speaker-independent
system was similar but trained on unadapted feature vectors. The language
model and graph sizes are presented in Table 6, along with the runtime on a
3GHz pentium.

The number of n-grams used in the speaker-adapted decoding graph is an
order-of-mangnitude greater than than the graphs for which results are pre-
sented in the previous section. Further, the n-gram context is four rather than
three. Thus, these results indicate that our method scales well to larger sys-
tems, and that the method produces graphs that outperform other methods
in the literature.

20

5 Conclusion and perspectives

In this paper, we have proposed a new methodology for building static de-
coding graphs for LVCSR systems which can accommodate acoustic models
exhibiting patterns of long distance contextual dependencies (up to one word
on the left). We have shown that the same minimization problem occurs for
both left and right cross-word dependencies, and that this problem is in fact
NP-hard. By developing heuristics for decomposing the connectivity in the uni-
gram portion of the graph, we are able now to generate static decoding graphs
for state-of-the-art Switchboard systems. The resulting graphs are compact
enough to allow real-time decoding, and MMI training where the entire lan-
guage model is used as the “denominator lattice.”

While the paper has been concerned with the application of arc minimization
in a very specific case - where the acoustic realizations of words are sensitive
to the identity of the preceding words - we believe that there are a number of
related problems that make the paradigm of general interest, for example:

e Language model factorization. The arcs that encode the bigram portion of a
language model can be thought of as a bipartite graph going from words to
words. Minimizing the size of this graph can be seen as a natural extension
of this work to the case of weighted graphs.

e Introducing non-determinism in a more general way. Our work has focused
on introducing non-determinism in the unigram portion of a decoding graph.
Our results prove that this additional non-determinism does not seem to
hurt the experimental performance. This suggests that trading off a small
amount of non-determinism for a large reduction in the number of arcs -
anywhere in a graph - might be worth considering.

e Decoding without pruning. The runtime of a Viterbi decoding without prun-
ing is proportional to AT, where A is the number of arcs and 7" the number
of time frames. Using the technique of (Zweig and Padmanabhan, 2000)
for reducing the space complexity to O(logT'), this is easily attainable in
practice and guaranteed to eliminate all search errors. In this case, arc min-
imization is the most relevant optimization criterion.

Acknowledgements

The authors thank Brian Kingsbury, Lidia Mangu, and Stanley Chen for useful
comments, insights, and portions of the language and acoustic models. The
authors further wish to thank the two anonymous reviewers for helping to
sharpen the presentation.

21

References

Aubert, X., 2000. A brief overview of decoding techniques for large vocabulary
continuous speech recognition. In: Proceedings of the ISCA Tutorial and
Research Workshop, Automatic Speech Recognition: Challenges for the new
Millenium (ASR2000). Paris, France, September 2000. Paris, France, pp.
91-96.

Chen, S. F.; 2003. Compiling large context phonetic decision trees into finite-
state transducers. In: Proceedings of Eurospeech/Interspeech 2003. Vol. to
appear. Geneva, Switzerland.

Chen, S. F., Goodman, J., 1996. An empirical study of smoothing techniques
for language modeling. In: Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics. Santa Cruz, pp. 310-318.

Dolfing, H. J., Hetherington, I. L., 2001. Incremental language models for
speech recognition using finite-state transducers. In: Proceeding of the IEEE
workshop on Automatic Speech Recognition and Understanding (ASRU’01).
Madonna di Campiglio Trento, Italy, pp. 58-62.

Feder, T., Motwani, R., 1991. Clique partitions, graph compression and
speeding-up algorithms. In: Proceedings of the 23rd Annual ACM Sympo-
sium on Theory of Computing, New Orleans, Louisiana, 1991. pp. 123-133.

Holyer, 1., 1981. The NP-completeness of some edge partition problems. Siam
Journal of Computer Science 10 (4), 713-717.

Hopcroft, J. E.,; Ullman, J. D., 1979. Introduction to automata theory, lan-
guages and computation. Addison-Wesley.

Jelinek, F., Bahl, L. R., Mercer, R. L., 1975. Design of a linguistic statistical
decoder for the recognition of continuous speech. IEEE Transactions on
Information Theory 21, 250-256.

Jiang, T., Ravikumar, B., 1993. Minimal nfa problems are hard. STAM Journal
on Computing 22 (6), 1117-1141.

Kanthak, S., Ney, H., Riley, M., Mohri, M., 2002. A comparison of two LVR
search optimization techniques. In: Proceedings of the International Confer-
ence on Spoken Langage Processing (ICSLP). Denver, CO, pp. 1309-1312.

Katz, S. M., 1987. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing 35 (3), 400-401.

Le, A., 2003. Rich transcription 2003: Spring stt evalua-
tion results. Presentation at the RT 2003 Spring Workshop,
http://www.nist.gov /speech/tests/rt/rt03/spring/.

Mohri, M., 1994. Minimization of sequential transducers. Lecture Notes in
Computer Science 807, 151-163.

Mohri, M., Riley, M., 1998. Network optimisation for large vocabulary speech
recognition. Speech Communication 25 (3), 1-12.

Mohri, M., Riley, M., Hindle, D., Ljolje, A., Pereira, F., 1998. Full expansion
of context-dependent networks in large vocabulary speech recognition. In:
Proceedings of the International Conference on Acoustics, Speech and Signal

22

Processing (ICASSP). Vol. 2. Seattle, pp. 665-668.

Mohri, M., Riley, M., Pereira, F. C. N., 2000. Weighted finite-state transduc-
ers in speech recognition. In: Proceedings of the ISCA Tutorial and Re-
search Workshop, Automatic Speech Recognition: Challenges for the new
Millenium (ASR2000). Paris, France, September 2000. Paris, France, pp.
97-106.

Nadas, A., Nahamoo, D., Picheny, M., 1988. On model-robust training algo-
rithm for speech recognition. IEEE Transaction on Audio, Signal and Speech
Processing 36, 1432-1435.

Ney, H., Ortmanns, S., 1999. Dynamic programming search for continuous
speech recognition. IEEE Signal Processing Magazine , 64-83.

Odell, J., 1995. The use of context in large vocabulary speech recognition.
Ph.D. thesis, University of Cambridge.

Ortmanns, S., Eiden, A., Ney, H., Coenen, N., 1997. Look-ahead techniques
for fast beam search. In: Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 1783-1786.

Placeway, P., Schwartz, R., Fung, P., Nguyen, L., 1993. The estimation of pow-
erful language models from small and large corpora. In: Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Minneapolis, MN, pp. 33-36.

Riccardi, G., Pierraccini, R., Bocchieri, E., 1996. Stochastic automata for lan-
guage modeling. Computer, Speech and Language 10 (265-293).

Saon, G., Padmanabhan, M., Gopinath, R., Chen, S., 2000. Maximum like-
lihood discriminative feature spaces. In: Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Istan-
bul, pp. 1747-1751.

Saon, G., Zweig, G., Kingsbury, B., Mangu, L., Chaudhari, U., 2003. An ar-
chitecture for rapid decoding of large vocabulary conversational speech. In:
Proceedings of Eurospeech /Interspeech 2003. Geneva.

Seymore, K., Rosenfeld, R., 1996. Scalable trigram backoff language models.
In: Proceedings of the International Conference on Spoken Langage Pro-
cessing (ICSLP). Philadelphia, Pennsylvania, pp. 232-235.

Smaili, N., Cardinal, P., Boulianne, G., Dumouchel, P., 2002. Disambiguation
of finite-state transducers. In: Proceedings of COLING’02. Taipeh.

Viterbi, A., 1967. Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Transactions on Information Theory 13,
260-2609.

Willett, D., Katagari, S., 2002. Recent advances in efficient decoding combin-
ing on-line transducer composition and smoothed language model incorpo-
ration. In: Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP). Vol. I. Orlando, FL, pp. 713-716.

Willett, D., McDermott, E., Minami, Y., Katagari, S., 2001. Time and memory
efficient viterbi decoding for LVCSR using a precompiled search network.
In: Proceedings of the European Conference on Speech Communication and
Technology. Aalborg, DK, pp. 847-851.

23

Woodland, P., Povey, D., 2000. Large scale discriminative training for speech
recognition. In: Proceedings of the ISCA Tutorial and Research Work-
shop, Automatic Speech Recognition: Challenges for the new Millenium
(ASR2000). Paris, France, September 2000. Paris, France, pp. 7-16.

Zheng, J., Franco, H., 2002. Fast hierarchical grammar optimization algorithm
toward time and space efficiency. In: Proceedings of the International Con-
ference on Spoken Langage Processing (ICSLP). Vol. 1. Denver, CO, pp.
393-396.

Zweig, G., Padmanabhan, M., 2000. Exact alpha-beta computation in loga-
rithmic space with application to map graph construction. In: Proceedings
of the International Conference on Spoken Langage Processing (ICSLP).
Beijing, China.

Zweig, G., Yvon, F., Saon, G., 2002. Arc minimization in finite state decoding
graphs with cross-word acoustic context. In: Proceedings of the International
Conference on Spoken Langage Processing (ICSLP). Vol. 1. Denver, CO, pp.
389-392.

24

