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Abstract

Optimistic reconciliation alows, multiple update of shared
data without synchronization. The assumption isthat the vast
majority of the actions will not conflict. In those systems,
write availability israised in the presence of network failures,
high latencies or parallel development. However, in order to
remain consistent, optimistic systems repair divergences. To
produce a new consistent state, they use the logs of each user
in a process called log-based reconciliation. The purpose of
an efficient reconciliation engine is then to compute a new
consistent state which preserves the maximum of previous ac-
tions. Thiswork leverages the efficiency of constraint-based
reconciliation. It provides a new efficient two step proce-
dure built by connecting theoretical results on backtrack-free
search with this hard optimisation problem.

Keywords: Cycle-cut set decomposition, Reconcilia-
tion, Constraint Programming.

I ntroduction

In many situations, applications perform actions on the same
set of objects. In order to keep efficiency, object replica-
tion is introduced (Satyanarayanan et al. 1990; Petersen et
al. 1996). When the users or applications are connected
(groupware) it is possible to avoid potential conflictsthrough
on-the-fly updates of object states. However, high networks
latencies and disconnections make those online operations
difficult. Log-based reconciliationis an optimistic technique
which assumes that users or applications work in a discon-
nected environment. They share aninitial consistent state of
the objects and perform actions locally. Those isolated ac-
tions can introduce divergence in object states. When they
reconnect, they transfer the log of their local actions to the
system which performs reconciliation. The result is a new
consistent state for each object. In this process, conflicts can
appear between mobile users and the system may have to
drop some actions to achieve consistency. The purpose of a
log-based reconciliation engine is then to preserve the work
done offline while removing any conflicting action. The en-
gine computes a conflict-free plan with users' actions. This
plan applied to the previous consistent state of the objects
raises a new consistent state for each mobile user.
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An efficient reconciliation engine must be able to quickly
compute a planning maximizing® the number of actions. In
this paper we propose such anew engine. Our method usesa
problem decomposition based on the theoretical analysis of
backtrack-free search (Freuder 1982). Theideaisto split the
actionsin two sets. Thefirst set is made by acycle-cut. The
second set represents an induced forest of actions. The solv-
ing processis then decomposed in two stages. A first branch
and bound maximizes the number of selected actionsin the
cycle-cut. A second branch and bound extends the previous
solution on the forest and still maximizes the number of non
conflicting actions. The previous split makes the search sub-
optimal. However it greatly improves the backtrack com-
plexity. Experimental results show a large improvement in
time performance with asmall loss in solution quality.

The paper is organized as follow. In section 2, we present
some previouswork. Section 3 presentsour initial constraint
programming modeling. Problem’s decomposition is de-
tailed and discussed in section 4. Finally, before giving a
conclusion, section 5 describes experimental results.

Previouswork

The vast mgjority of reconciliation engines use dedicated
heuristics to compute a valid plan of actions. For example,
(Preguia et al. 2003; Kermarrec et al. 2001) computes a
conflict-free plan of actions through a greedy algorithm suc-
cessively applying specific heuristic rulesto select an action.

More general approaches use generic constraint solversto
perform reconciliation (Fages 2001). The modeling uses the
abstraction level of (Kermarrec et al. 2001) to define con-
straintsrelations. The main advantages of a constraint based
approach are optimality combined to modeling simplicity
and system integration. The main drawback is combinatorial
explosion. In order to improve this last point, (Fages 2001)
considered the use of local search. However, his conclu-
sionisthat it performs badly, according to the mix between
boolean and integer variables.

An interesting challenge is then to raise the performance
level of constraint-based reconciliation engines. In the fol-
lowing we show how to exploit theoretical complexity re-

'Unlike classical planning, here the new consistent state is

reached by using the largest possible set of actions.



sults in order to raise the applicability level of constraint-
based reconciliation engines.

Constraint programming modeling

We detail here our constraint modeling of 1og-based recon-
ciliation. We build on the abstract definition of (Kermarrec
et al. 2001). This alows an application-independent view
of the problem which disconnects the engine from the
application. As an immediate result, the applicability of our
work is broadened.

The input is made by a set of logs upcoming from m
users or gpplications {(a;, ,...,a;)|1 < i < m}. Those
digoint plans are individually consistent.

The output is made by the largest subset of users’ actions
consistent with the following conditions:

1. 'Before’ constraints (also called temporal), for any a;, a;
inthefina plana; — a;, a; comes before a; (not neces-
sarily immediately before).

2. 'Must have’ constraints (also called dependencies con-
straints), for any a; in the final plan a; > a; means that
a; isalsoin thefinal plan.

The semantic of a large set of applications can be rep-
resented through the combination of these low level con-
straints (Kermarrec et al. 2001; Preguia et al. 2003). For
instance if the method f,,, of an object o needsto start with
the call to an initialisation method f; we can use the follow-
ing constraints:

e o.fi >0.fm
e o0.fm >o.f;

A consistent planning must respect any dependency
relation and avoid oriented cycles of 'before’ constraints.

The previous problem bounded to 'Before’ constraints
can obviously be reduced to the search of the largest acyclic
network of actions (Karp 1972). The previous observation
raises NP-hardness. On the other hand, the addition of the
"must have’ dependencies globally reduces the complexity.
The reduction is even larger when the relations are symmet-
ricals (a; > a; I> a;). Indeed, the previousintroduces equiva-
lence classes between actions which is equivalent to a prob-
lem’s sizereduction (see, (Fages 2001) and our experimental
results).

Invariants

From the previous definitions, we define a Constraint Pro-
gramming model. The partition of the actions between users
is dropped to consider as the input the whole set of n. (possi-
bly conflicting) actions. Each action a ; uses two constrained
variables:

e X; = [0..1] where the value 1 is set when the action is
included in the final planning.

e S; = [0..n — 1] to represent the position of the action in
the solution.

To expressany a; — a; constraint, we put the following
invariant:

(X ==1) = (5 < 5))

We do not consider the possible exclusion of action a ;.
Since when X; == 0, the entailment of S; < S; has no
negative impact. Indeed, the pruning of position n — 1 for
S; is consistent since the schedule can be computed with
n — 1 possible slots according to X ; exclusion. The benefit
from the solver point of view isto handle a fewer number of
constraints checks.

The representation of any a; > a; usesthe following con-
straints:

2. (X; == 0) = (X; = 0)

The first invariant expresses the fact that the inclusion of
action a; cannot occur without the inclusion of action a ;.
The second invariant is redundant, i.e., it does not change
the solution space. However we found out that it improves
search efficiency at the price of handling more constraints.

Search process

Since the rationale is to keep the largest number of actions,
we define the following function which is maximized during
the search process:

n—1
ma:n(z X;)
i=0

The branch and bound search is performed over the X ;
with bound consistency on the S;. At the end of the explo-
ration, any selected action a; (s.it., X; = 1) can usethelower
bound of the S; asavalid plan location. The previousisadi-
rect exploitation of the completeness of interval propagation
with arithmetic constraints (Hentenryck 1989).

Cycle-cut decomposition

A cycle-cut set is made by a subset of the variables which
removal breaks the cycles of a constraint network (Dechter
1990). The remaining network can then be structured as
atree or more generaly as a forest induced by the cutset.
The previous has an interesting impact on search complex-
ity. Indeed, it iswell known that the complexity of a back-
track search is connected to the width of the constraint net-
work (Freuder 1982). More precisely, when the consistency
degree achieved during constraint propagation is larger or
equal to the width, we can provethat the search is backtrack
free (Freuder 1982).

The previous results can greatly benefit to our reconcili-
ation engine. Any cycle-cut computed on the X ; leaves an
induced forest of variables. Since the width of any variable
of the forest is 1 (i.e., each variable is connected to at most
one variable), we know that the interval propagation which
ensures bound consistency is backtrack free.



More clearly, the propagation of any selection of actions
computed on the cutset allows a backtrack free exploration
of the remaining set of variables.

The only pitfall hereis that we do not limit our search to
the first solution (i.e. satisfaction). Indeed, since we maxi-
mize the number of selected actions, we continuously bound
the search according to the best quality in order to find a
better solution (branch and bound). As an outcome, we will
always perform backtracking steps. However from the pre-
vious results, we can expect alarge reduction of those oper-
ations.

A two step search procedure The new search scheme
uses the previously defined CP modeling. A preprocessing
step computes a partition of the X -variablesin two sets. The
first set defines a cycle-cut of the constraint network. The
algorithm starts by solving the cycle-cut subproblem. Each
time a solution is found for the first set, it is extended to
the remaining variables. The process then continues toward
a better solution for the remaining problem. If the second
search space is exhausted, the algorithm backtracks to the
current solution of the cycle-cut and tries to improveit. The
previous process is once again extended on the remaining
subproblem. The search is finished when the tree-based ex-
ploration over the cycle-cut set is over (see figure 1).

Figure 2: Cycle-cut set decomposition

Figure 2 presents a constraint network and a possible
decomposition in two sub-problems. Plain arrows figure
"before’  constraints, dashed lines represent 'mustHave'
relations. On the left part of the figure the network presents
several cycles. A cycle-cut is made of variables whose
removal breaks any cycle of the original constraint network.
In the figure at least two variables must be excluded. The
right part presents the cycle-cut {d, f} and its induced

forest.

On the second tree several orderings can be used to per-
form the branch and bound. For instance, a,b,c,e has a
width of 1 since in this ordering each variable is connected
to at most one previously instanciated variable. The ordering
¢, e, b,a haswidth 2sincebisconnectedtobothcande. The
first one is backtrack free, the second one can involve back-
tracking. It is always possible to compute the best ordering
on the second tree, however we decided to approximate this
calculation by using a max-degree variable ordering on the
second tree. Indeed, ranking the nodes through their graph
degree usualy resultsin small ordering widths.

Cycle-cut calculation Finding the smallest cycle-cut set
of agiven graph is an NP-hard task. However, some heuris-
tics give interesting results. Our preprocessing step com-
putes a cycle-cut with the following method:

e Select a variable V with the highest degree in the con-
straint network

e DoaDFSfromV

o If the DFS showsthat V is part of acycle, remove V and
put it in the cycle-cut set

o Repeat this process until no cycles are detected

The previous algorithm returns with a reasonably small
cycle-cut set.

Sub-optimality Obviously, our two step procedureis sub-
optimal. This comes from the split of the problem in two
sub-problems. The reasoning is then optimal according to
each sub-part. Indeed, the algorithm starts a full exploration
of the second tree each time aso far optimal solutionisfound
in thefirst tree. But since a problem can have an optimal so-
Iution with apoor quality on thefirst tree, our search scheme
can missit. The following section allows us to quantify the
previous observation.

Experiments

The experimentshad two main goals. Firstly, assessthetime
efficiency of thetwo-step procedureon alarge variety of rec-
onciliation problems. Secondly, evaluate the impact on the
quality of the sub-optimal exploration. To achieve those two
goals, we decided to compare our procedure against a full
branch and bound search. This second procedure is com-
plete, i.e. able to find the best quality. Both methods were
implemented using Disolver (Hamadi 2003) on a Pentium-4
running at 2Ghz.

We used two sets of problems. The first set is made by
purely random problems. The second set was defined in
collaboration with the authors of (Kermarrec et al. 2001).
It figures common features observed on a large set of
reconciliation applications.

Each problem is defined with the following parameters:
e number of actionsin theinitia logs
e tightness of 'before’ constraints



e tightness of 'mustHave’ constraints

The tightness represents a proportion over the complete
graph of constraints. For instance a problem with 40 actions
and atightness of 0.5 has 0.5 x 40 x 39 = 780 constraints.

The measures involve the CPU time, the number of back-
track and the final quality. Figured values represent the me-
dian of 50 instances.

Random problems

Randoms problems alow a general characterization of al-
gorithm performances. They are well known to exhibit for
some parameters very hard instances (Cheeseman, Kanef-
sky, & Taylor 1991; Slaney & Thiebaux 1998). Those in-
stances are important to get a clear picture of agorithms
performances.

In order to assess the agorithms over a large set of pa-
rameters, we decided to limit the size of the problemsto 40
actions. This limitation was raised by the poor performance
of the full branch and bound exploration used to assess our
procedure.

General landscape Figure 3 gives the general landscape
of the search effort (time) for both the global branch and
bound and our cycle-cut method. The x-axis reportsthe per-
centage of 'before’ constraints (from 0 to 80% of the pos-
sible constraints between 40 actions). The percentage of
"mustHave' constraintsis set on the y-axis (from 0 to 5%).
Finally, the time (CPU+kernel) is reported on the z-axis.

IceCube+Disolver n=40, Time (seconds) (median)

Figure 3: Random problems: time landscape in seconds

This landscape shows the phase transition region occur-
ring at 20% of 'before’ (about 300 constraints) and 0% of
"'mustHave’. Clearly, the impact of dependency constraints
is positive on the search complexity. Those constraints act
as equivalence classes between actions. This is equivalent
to the reduction of the number of variables (Fages 2001).

To understand this general landscape it is helpful to
consider the quality achieved when the problems are free
of "'mustHave' constraints (i.e., hardest configuration). This
is presented in figure 7. We can observe that before the

phase transition (left part of the z-axis), the quality is high.
The branch and bound process is able to cut large parts
of the space. Indeed, each time a solution is found, the
quality is bounded to be higher that the current one. In such
under-constrained space, the probability of having a higher
quality than the current one is small since the quality is
bounded by the number of actions. After the transition, the
quality is poor but the number of constraintsis large. Then,
the probability of having higher quality than the current one
is poor since the problem is over-constrained. At the phase
transition, the average quality is about n/2 (see below)
and the search effort of the agorithms is high since the
probability of improving the current solution is high.

In order to clearly compare the two methods we decided
to focus our presentation to the set of problems without de-
pendency constraints (i.e., hardest problems). The results
are presented in the following sections.

Time Figures4 and 5 respectively show time results and
time speed-up with 'mustHave' tightness set to 0.

IceCube+Disolver n=40, Time (seconds) (median)
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Figure 4: Random problems: time

In figure 4 we clearly see the phase transition behaviour
for both methods. For the complete branch and bound search
it occurs just before 20% where the median CPU+kernel
time exceeds 100 seconds. For the same constraint tight-
ness, the cycle-cut search gives a speed-up of about 6.

The speed-up curve is not defined everywhere. Indeed,
the time value of cycle-cut was measured to zero for very
small tightness. Those val ues made speed-up cal culationim-
possible. The largest speed-up exceeds 160 and is achieved
for tightness 0.09. Interestingly, the speed-up is never
smaller that 1. The conclusion is that on those problems,
cycle-cut is dways’as good’ as the global search regarding
time complexity. With large tightness, the size of the cycle-
set increases and at the end, becomes equal to the whole
problem. The search is then equivalent to the one done by
the global branch and bound since the second tree becomes
empty.



IceCube+Disolver n=40, Cycle cut speed up (time) (median)
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Figure 5: Random problems: time speed-up

Backtracks When we consider backtracking, the results
presented in figure 6 are consistent with the previous analy-
sis. However, they confirm our previous observation on the
infeasibility of backtrack-free search in an optimisation con-
text. Hence the reported backtracks come from the optimi-
sation process and from the sub-optimality of the orderings
used to explore the second tree (see above).

IceCube+Disolver n=40, Backtracks (median)
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Figure 6: Random problems: backtracking

Quality From the previous results, we know that running
acycle-cut algorithm to perform log-based reconciliation is
quite advantageous. A part of this large improvement (up to
160 speed-up) comes from the reduction in backtrack oper-
ations. Another part comes from the sub-optimality of the
new procedure. Therefore, we can only appreciate observed
speed-up in relation to quality loss. Figure 7 presents the
quality deprivation.

The gap between the two curves represents the loss. In-
terestingly thislossislimited to 3 actions (about 7.5%). Not
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Figure 7: Random problems: quality

surprisingly the biggest loss occurs with the largest speed-
up, i.e., around 0.09. For very low and high tightness there
is no loss. The previous reasoning occurs since for such
tightness the behaviour of cycle-cut is equivalent to the one
of global search. For very low (resp. high) tightness, the
first (resp. second) treeis empty.

Pseudo-reals problems

Previous results and analysis are useful to grasp the whole
behavior of cycle-cut over alarge set of parameters defining
log-based reconciliation problems. However, real logs up-
coming from distributed collaboration have some structure.
In this section we define what we call ’ pseudo-real prob-
lems which are random problems respecting some regular-
ities usually observed in log-based reconciliation problems
(Kermarrec et al. 2001). Then we oppose both algorithms
over a set of pseudo-real instances.

Userl: o = P #OT— ¢
User 2: o - — 540
User3: o et / < e
B
4 > “*u
Userk: o - \04’0

Figure 8: Pseudo-real problems

Figure 8 presents the general structure observed in real
reconciliation problems. In those problems, you have a set
of k users performing successive actions. Those actions
share 'before’ constraints stating temporal relationship be-
tween them. Sometime, some action is required by another
one. We then have some dependency constraints (dashed
lines). In addition to that some parcel task can occur. A par-
cel is made by a set of successive actions al interconnected
through pairwise dependency links ( mustHave'). Parcels
figure out some complex task involving the succession of



severa actions to succeed. Between any couple of users,
both precedence and dependency can appear. The figure
gives ageneral characterization of such problems.

From the previous observations we have defined a prob-
lem generator which uses the following parameters:

e k the number of users
e n the number of successive actions performed by a user

® DmustHave the probability of having one dependency con-
straint between two successive actions

¢ Dparcer the probability of having dependency constraints
involving any successive pm-set of actions

e For any pair of user, n ;¢ representsthe number of inter-
users congtraints. Those constraints can be with equal
probability temporal or dependency constraints.

k #Hactions quality time #backtracks
3 150 147(147) 0.03(0.01) 6(6)

4 200 193(193)  0.34(0.21) 190(128)

5 250 216(216) 4.70(4.18) 2952(1267)
6 300 104(104)  6.95(2.01) 2647(733)
7 350 123(123) 38.03(6.04) 260937(2452)
8 400 ?2(111) 72(10.87) ?2(30574)

Table 1: Pseudo-real problems with 50 actions per user,
PmustHave = 0-4|pparcel =0.2, pm = 9, Ninter = 10

Table 1 presents results with pseudo real problems. For
each k value, we generated 10 instances with 50 actions per
user. The probability of having a dependency between two
successive actionswas set to 40%. The probability of having
aparcel of size5was 20%. Finally the number of constraints
between any two logswas set to 10. Theresultsfor cycle-cut
are given in parenthesis.

Interestingly, in those realistic cases, cycle-cut is able to
match the optimal quality of global search. This can be ex-
plained if we consider that the previous problemsare dightly
under-constrained. When the size of the problem is rising
the speed-up becomes moreimportant. For 8 users, (i.e., 400
actions), the global branch and bound was unable to solve
those instances within 1 hour time. Those experiments are
quite appealing for both time performance and quality of our
cycle-cut set algorithm.

Conclusion

In this work we have presented a new and efficient engine
to perform log-based reconciliation. Our choice was to
keep the constraint programming framework initially used
by (Fages 2001) to solve those problems. The main draw-
back with this approach was its time complexity. Our so-
[ution performs a problem decomposition based on the con-
straints network topology. Its theoretical drawback is the
loss of optimality. Its main advantage is time efficiency. Ex-
perimentations used two sets of problems. Random prob-
lems showed that according to time, cycle-cut out-performed

global search all over the landscape. The largest speed-up
is higher than 160. Regarding quality results, the loss is
bounded to 7.5%. For the second set of experimentswe used
designers knowledge upcoming from real reconciliation ap-
plicationsto define usage patterns. Theresults confirmed the
good behaviour of cycle-cut. Moreover they showed that on
those highly structured instances, cycle-cut achieved opti-
mality combined to good execution times.

Our main conclusion is that real problems which are
highly structured can greatly benefit from our work. Our
next step is to extend this work toward distributed reconcil-
iation where each user owns a reconciliation engine collab-
orating with remaining users to compute a new consistent
State.
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