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Abstract

The tedium of writing pickling and unpickling functions by hand is relieved using a combi-
nator library similar in spirit to the well-known parser combinators. Picklers for primitive
types are combined to support tupling, alternation, recursion, and structure sharing. Code
is presented in Haskell; an alternative implementation in ML is discussed.

1 Introduction

Programs frequently need to convert data from an internal representation (such as
a Haskell or ML datatype) into a persistent, portable format (typically a stream of
bytes) suitable for storing in a file system or transmitting across a network. This
process is called pickling (or marshalling, or serializing) and the corresponding
process of transforming back into the internal representation is called unpickling.

Writing picklers by hand is a tedious and error-prone business. It’s easy to make
mistakes, such as mapping different values to the same pickled representation, or
covering only part of the domain of values, or unpickling components of a data
structure in the wrong order with respect to the pickled format.

One way of avoiding these problems is to build pickling support into the pro-
gramming language’s run-time system (Sun Microsystems, 2002; Leroy, 2003). The
main drawback of this approach is the lack of programmer control over how values
get pickled. Pickling may be version-brittle, dependent on a particular version of
the compiler or library and on the concrete implementation of abstract data types
such as sets. Opportunities for compact pickling of shared structure will be missed:
run-time pickling of heap values will pick up on “accidental” sharing evident in
the heap, but will ignore sharing implied by a programmer-specified equivalence of
values.

In this paper we use functional programming techniques to build picklers and
unpicklers by composing primitives (for base types such as Int and String) using
combinators (for constructed types such as pairs and lists). The consistency of
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pickling with unpickling is ensured by tying the two together in a pickler/unpickler
pair. The resulting picklers are mostly correct by construction, with additional proof
obligations generated by some combinators.

Custom pickling of abstract data types is easily performed through wrapper com-
binators, and we extend the core library with support for representation of shared
structure. Building particular picklers from a core set of primitives and combinators
also makes it easy to change the implementation, if, for example, better compression
is required at some performance cost.

The pickler library is implemented in Haskell using just its core features of pa-
rameterized datatypes and polymorphic, higher-order functions. Porting the code
to ML raises some issues which are discussed in Section 5.

This pearl was practically motivated: an SML version of the pickler library is used
inside the SML.NET compiler (Benton et al., 2004). A variety of data types are
pickled, including source dependency information, Standard ML type environments,
and types and terms for the typed intermediate language which serves as object
code for the compiler. The combinatory approach has proved to be very effective.

2 Using picklers

Figure 1 presents Haskell type signatures for the pickler interface. The type PU a

encapsulates both pickling and unpickling actions in a single value: we refer to values
of type PU a as “picklers for a”. The functions pickle and unpickle respectively
use a pickler of type PU a to pickle or unpickle a value of type a, using strings (lists
of characters) as the pickled format.

First we specify picklers for built-in types: unit, booleans, characters, strings,
non-negative integers (nat), and integers between 0 and n inclusive (zeroTo n).

Next we have pickler constructors for tuple types (pair, triple and quad), op-
tional values (pMaybe)1, binary alternation (pEither), and lists (list).

Finally there are a couple of general combinators: wrap for pre- and post-composing
functions with a pickler, and alt for using different picklers on disjoint subsets of
a type.

Let’s look at some examples. First, consider a browser application incorporating
bookmarks that pair descriptions with URL’s. A URL consists of a protocol, a host,
an optional port number, and a file name. Here are some suitable type definitions:

type URL = (String, String, Maybe Int, String)
type Bookmark = (String, URL)
type Bookmarks = [Bookmark]

Picklers for these simply follow the structure of the types:

url :: PU URL
url = quad string string (pMaybe nat) string

bookmark :: PU Bookmark
bookmark = pair string url

1 We use pMaybe and pEither because functions maybe and either already exist in the Standard
Prelude.
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pickle :: PU a -> a -> String
unpickle :: PU a -> String -> a

unit :: PU ()
bool :: PU Bool
char :: PU Char
string :: PU String
nat :: PU Int
zeroTo :: Int -> PU Int

pair :: PU a -> PU b -> PU (a,b)
triple :: PU a -> PU b -> PU c -> PU (a,b,c)
quad :: PU a -> PU b -> PU c -> PU d -> PU (a,b,c,d)
pMaybe :: PU a -> PU (Maybe a)
pEither :: PU a -> PU b -> PU (Either a b)
list :: PU a -> PU [a]
wrap :: (a->b, b->a) -> PU a -> PU b
alt :: (a -> Int) -> [PU a] -> PU a

Fig. 1. The pickler interface

bookmarks :: PU Bookmarks
bookmarks = list bookmark

In a real program we’re more likely to use a record datatype for URLs. Then
we can apply the wrap combinator to map back and forth between values of this
datatype and quadruples:

data URL = URL { protocol::String, host::String, port::Maybe Int, file::String }
url = wrap (\ (pr,h,po,f) -> URL {protocol=pr, host=h, port=po, file=f},

\ URL {protocol=pr,host=h,port=po,file=f} -> (pr,h,po,f))
(quad string string (pMaybe nat) string)

We might prefer a hierarchical folder structure for bookmarks:
data Bookmark = Link (String, URL) | Folder (String, Bookmarks)

Here we must address two aspects of datatypes: alternation and recursion. Recursion
is handled implicitly – we simply use a pickler inside its own definition. (For call-
by-value languages such as ML we instead use an explicit fix operator; see later).
Alternation is handled using alt, as shown below:

bookmark :: PU Bookmark
bookmark = alt tag [wrap (Link, \(Link a) -> a) (pair string url),

wrap (Folder, \(Folder a) -> a) (pair string bookmarks)]
where tag (Link _) = 0; tag (Folder _) = 1

The alt combinator takes two arguments: a tagging function that partitions the
type to be pickled into n disjoint subsets, and a list of n picklers, one for each subset.
For datatypes, as here, the tagging function simply identifies the constructor.

Here is another example: a pickler for terms in the untyped lambda calculus.
data Lambda = Var String | Lam (String, Lambda) | App (Lambda, Lambda)

lambda = alt tag [ wrap (Var, \(Var x) -> x) string,
wrap (Lam, \(Lam x) -> x) (pair string lambda),
wrap (App, \(App x) -> x) (pair lambda lambda) ]

where tag (Var _) = 0; tag (Lam _) = 1; tag (App _) = 2
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module CorePickle ( PU, pickle, unpickle, lift, sequ, base, belowBase ) where

type St = [Char]
data PU a = PU { appP :: (a,St) -> St,

appU :: St -> (a,St) }

pickle :: PU a -> a -> String
pickle p value = appP p (value, [])

unpickle :: PU a -> String -> a
unpickle p stream = fst (appU p stream)

base :: Int
base = 256

belowBase :: PU Int
belowBase = PU (\ (n,s) -> toEnum n : s)

(\ (c:s) -> (fromEnum c, s))

lift :: a -> PU a
lift x = PU snd (\s -> (x,s))

sequ :: (b->a) -> PU a -> (a -> PU b) -> PU b
sequ f pa k = PU (\ (b,s) -> let a = f b

pb = k a
in appP pa (a, appP pb (b,s)))

(\ s -> let (a,s’) = appU pa s
pb = k a

in appU pb s’)

Fig. 2. The core pickler implementation

An alternative to alt is to define maps to and from a “sum-of-products” type built
from tuples and the Either type, and then to define a pickler that follows the
structure of this type using tuple picklers and pEither. The pickler for lambda
terms then becomes

lambda :: PU Lambda
lambda = wrap (sumlam,lamsum)

(pEither string (pEither (pair string lambda) (pair lambda lambda)))
where

lamsum (Var x) = Left x
lamsum (Lam x) = Right (Left x)
lamsum (App x) = Right (Right x)
sumlam (Left x) = Var x
sumlam (Right (Left x)) = Lam x
sumlam (Right (Right x)) = App x

3 Implementing picklers

Figure 2 presents the core of a pickler implementation, defining types and a very
small number of functions from which all other picklers can be derived. The pickler
type PU a is declared to be a pair consisting of a pickling action (labelled appP)
and unpickling action (labelled appU). The pickling action is a function which trans-
forms state and consumes a value of type a; conversely, an unpickling action is a
function which transforms state and produces a value of type a. In both cases the
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accumulated state St is a list of bytes, generated so far (during pickling) or yet to
be processed (during unpickling).

The pickle function simply applies a pickler to a value, with the empty list as
the initial state. The unpickle function does the converse, feeding a list of bytes
to the unpickler, and returning the resulting data. Any dangling bytes are ignored;
a more robust implementation could signal error.

Now to the picklers themselves. The basic pickler belowBase pickles an integer
i in the range 0 6 i < base. We have chosen bytes as our unit of pickling, so we
define base to be 256. It is easy to change the implementation to use bit-streams
instead of byte-streams and thereby achieve better compression.

The lift combinator produces a no-op pickler for a particular value. It has
a trivial definition, leaving the state unchanged, producing the fixed value when
unpickling, and ignoring its input when pickling. (A more robust implementation
would compare the input against the expected value and assert on failure).

Finally we define the sequ combinator, used for sequential composition of pick-
lers. It is more general than pair in that it supports sequential dependencies in
the pickled format: the encoding of a value of type a pickled using pa precedes the
encoding of a value of type b whose encoding depends on the first value, as given
by the parameterized pickler k. When pickling, the value of type a is obtained by
applying the projection function f. Notice how pb is applied before pa: this ensures
that bytes end up in the list in the correct order for unpickling. If instead pa was
applied first when pickling then the pickle function would need to reverse the list
after applying appP.

Readers familiar with monadic programming in Haskell will have noticed that
lift and sequ bear a striking resemblance to the return and >>= combinators in
the Monad class (also known as unit and bind). This is no coincidence: considering
just their unpickling behaviour, PU, lift and sequ do make a monad.

Figure 3 completes the implementation, building all remaining combinators from
Figure 1 using the primitives just described.

The combinators pair, triple and quad use sequ and lift to encode the com-
ponents of a tuple in sequence. The wrap combinator pre- and post-composes a
pickler for a with functions of type a->b and b->a in order to obtain a pickler for
b. It is defined very concisely using sequ and lift.

The zeroTo n pickler encodes a value between 0 and n in as few bytes as possible,
as determined by n. For example, zeroTo 65535 encodes using two bytes, most-
significant first. Picklers for bool and char are built from zeroTo using wrap.

In contrast with the zeroTo combinator, the nat pickler assumes that small
integers are the common case, encoding n < 128 = base/2 as a single byte n, and
encoding n > 128 as the byte 128 + n mod 128 followed by bn/128c − 1 encoded
through a recursive use of nat. Signed integers can be encoded in a similar fashion.

Lists of known length are pickled by fixedList as a simple sequence of values.
The general list pickler first pickles the length using nat and then pickles the
values themselves using fixedList. As the Haskell String type is just a synonym
for [Char], its pickler is just list char.

The alternation combinator alt takes a tagging function and a list of picklers,
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module Pickle (PU, pickle, unpickle, unit, char, bool, string, nat, zeroTo,
wrap, alt, pair, triple, quad, pMaybe, pEither, list) where

import CorePickle; import Maybe

pair :: PU a -> PU b -> PU (a,b)
pair pa pb = sequ fst pa (\ a ->

sequ snd pb (\ b ->
lift (a,b)))

triple :: PU a -> PU b -> PU c -> PU (a,b,c)
triple pa pb pc = sequ (\ (x,y,z) -> x) pa (\a ->

sequ (\ (x,y,z) -> y) pb (\b ->
sequ (\ (x,y,z) -> z) pc (\c ->
lift (a,b,c))))

quad :: PU a -> PU b -> PU c -> PU d -> PU (a,b,c,d)
quad pa pb pc pd = sequ (\ (w,x,y,z) -> w) pa (\a ->

sequ (\ (w,x,y,z) -> x) pb (\b ->
sequ (\ (w,x,y,z) -> y) pc (\c ->
sequ (\ (w,x,y,z) -> z) pd (\d ->
lift (a,b,c,d)))))

wrap :: (a->b, b->a) -> PU a -> PU b
wrap (i,j) pa = sequ j pa (lift . i)

zeroTo :: Int -> PU Int
zeroTo 0 = lift 0
zeroTo n = wrap (\ (hi,lo) -> hi * base + lo, (‘divMod‘ base))

(pair (zeroTo (n ‘div‘ base)) belowBase)

unit :: PU ()
unit = lift ()

char :: PU Char
char = wrap (toEnum, fromEnum) (zeroTo 255)

bool :: PU Bool
bool = wrap (toEnum, fromEnum) (zeroTo 1)

nat :: PU Int
nat = sequ (\x -> if x < half then x else half + x ‘mod‘ half)

belowBase
(\lo -> if lo < half then lift lo

else wrap (\hi->hi*half+lo, \n->n ‘div‘ half - 1) nat)
where half = base ‘div‘ 2

fixedList :: PU a -> Int -> PU [a]
fixedList pa 0 = lift []
fixedList pa n = wrap (\(a,b) -> a:b, \(a:b) -> (a,b)) (pair pa (fixedList pa (n-1)))

list :: PU a -> PU [a]
list = sequ length nat . fixedList

string :: PU String
string = list char

alt :: (a -> Int) -> [PU a] -> PU a
alt tag ps = sequ tag (zeroTo (length ps-1)) (ps !!)

pMaybe :: PU a -> PU (Maybe a)
pMaybe pa = alt tag [lift Nothing, wrap (Just, fromJust) pa]

where tag Nothing = 0; tag (Just x) = 1

pEither :: PU a -> PU b -> PU (Either a b)
pEither pa pb = alt tag [wrap (Left, fromLeft) pa, wrap (Right, fromRight) pb]

where tag (Left _) = 0; tag (Right _) = 1
fromLeft (Left a) = a; fromRight (Right b) = b

Fig. 3. Completed pickler implementation
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01 [
00 Link(
06 41 6e 64 72 65 77 "Andrew",
04 68 74 74 70 URL { protocol = "http",
16 72 65 73 65 61 72 63 68 2e
6d 69 63 72 6f 73 6f 66 74 2e 63 6f 6d host = "research.microsoft.com",
00 port = Nothing,
0b 75 73 65 72 73 2f 61 6b 65 6e 6e file = "users/akenn" })]

Fig. 4. Example of pickling for bookmark lists

an element of which is determined by the result of applying the tagging function
(when pickling) or by the encoded tag (when unpickling). Picklers for Maybe and
Either type constructors follow easily.

Figure 4 presents a value of type Bookmarks, pickled using the above implemen-
tation.

4 Structure sharing

The picklers constructed so far use space proportional to the size of the input
when expressed as a tree. They take no account of sharing of structure in the data,
either implicit but non-observable (because the runtime heap representation is a
graph), or, implicit but observable (because there is a programmer-defined equality
between values), or, in the case of an impure language like ML, explicit and directly
observable (using ref). At the very least, pickled formats usually have some kind
of symbol table mechanism to ensure that strings occur once only.

We would like to share arbitrary structures, for example encoding the definition
of k just once when pickling the value kki of type Lambda shown below:

x = Var "x"
i = Lam("x", x)
k = Lam("x", Lam("y", x))
kki = App(k, App(k, i))

We can encode sharing in the following way. Suppose that some data D pickles to
a byte sequence P . The first occurrence of D is pickled as def (P ) and subsequent
occurrences are pickled as ref (i) if D was the i’th definition of that type to be
pickled in some specified order. For def (P ) we use a zero value followed by P , and
for ref (i) we use our existing zeroTo n pickler on 1 6 i 6 n, where n is the number
of def occurrences encoded so far. The technique is reminiscent of Lempel-Ziv
text compression (Bell et al., 1990), which utilises the same ‘on-the-fly’ dictionary
construction.

The following function implements this encoding for a fixed dictionary dict,
transforming a dictionary-unaware pickler into a dictionary-aware pickler:

tokenize :: Eq a => [a] -> PU a -> PU a
tokenize dict p = sequ (\x -> case List.elemIndex x dict of

Just i -> n-i ; Nothing -> 0)
(zeroTo n)
(\i -> if i==0 then p else lift (dict !! (n-i)))

where n = length dict
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module SCorePickle (PU, pickle, unpickle, lift, sequ, base, belowBase, useState) where

type St s = ([Char], s)
data PU a p = PU { appP :: (a,St p) -> St p,

appU :: St p -> (a,St p) }

pickle :: PU a s -> s -> a -> String
pickle p s value = fst (appP p (value, ([],s)))

unpickle :: PU a s -> s -> String -> a
unpickle p s cs = fst (appU p (cs, s))

base :: Int
base = 256

belowBase :: PU Int p
belowBase = PU (\ (n,(cs,s)) -> (toEnum n : cs,s))

(\ (c:cs,s) -> (fromEnum c, (cs,s)))

lift :: a -> PU a s
lift x = PU snd (\s -> (x,s))

sequ :: (b->a) -> PU a s -> (a -> PU b s) -> PU b s
sequ f pa k = PU (\ (b,(cs,s)) -> let a = f b

pb = k a
(cs’’,s’’) = appP pb (b, (cs,s’))
(cs’,s’) = appP pa (a, (cs’’,s))

in (cs’,s’’))
(\ s -> let (a,s’) = appU pa s

in appU (k a) s’)

useState :: (a -> s -> s) -> (s -> PU a s) -> PU a s
useState update spa =

PU (\ (x,(cs,s)) -> let (cs’,s’) = appP (spa s) (x,(cs,s)) in (cs’,update x s’))
(\ (cs,s) -> let (x,(cs’,s’)) = appU (spa s) (cs,s) in (x,(cs’,update x s’)))

Fig. 5. Core pickler implementation with structure sharing

For homogeneous lists of values, the dictionary can be constructed on-the-fly simply
by threading it through a recursive call:

add :: Eq a => a -> [a] -> [a]
add x d = if elem x d then d else x:d

memoFixedList :: Eq a => [a] -> PU a -> Int -> PU [a]
memoFixedList dict pa 0 = lift []
memoFixedList dict pa n = sequ head (tokenize dict pa) (\x ->

sequ tail (memoFixedList (add x dict) pa (n-1)) (\xs ->
lift (x:xs)))

memoList :: [a] -> PU a -> PU [a]
memoList dict = sequ length nat . memoFixedList dict

Here the function memoList takes an initial value for the dictionary state (typically
[]) and a pickler for a, and returns a pickler for [a] that extends the dictionary as
it pickles or unpickles.

With heterogeneous structures such as the Lambda type defined above, it becomes
much harder to thread the state explicitly. Instead, we can adapt the core pickler
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module SPickle (PU, pickle, unpickle, unit, char, bool, string, nat, zeroTo,
wrap, sequ, pair, triple, quad, pMaybe, pEither, list, share) where

import SCorePickle; import Maybe; import List
...

add :: Eq a => a -> [a] -> [a]
add x d = if elem x d then d else x:d

tokenize :: Eq a => [a] -> PU a s -> PU a s
tokenize dict p = sequ (\x -> case List.elemIndex x dict of

Just i -> n-i; Nothing -> 0)
(zeroTo n)
(\i -> if i==0 then p else lift (dict !! (n-i)))

where n = length dict

share :: Eq a => PU a [a] -> PU a [a]
share p = useState add (\dict -> tokenize dict p)

Fig. 6. Completed pickler implementation with structure sharing

combinators to thread the state implicitly (Figure 5). Picklers are now parame-
terized on the type a of values being pickled and the type s of state used for the
dictionary. The pickle and unpickle functions take an additional parameter for
the initial state, discarding the final state on completion. The belowBase and lift

combinators simply plumb the state through unchanged. The plumbing in sequ is
more subtle: during pickling the dictionary state must be threaded according to the
sequencing required by sequ, passing it through pickler pa and then through pickler
pb, but the list of bytes must be threaded in the opposite direction, because bytes
produced by pa are prepended to a list which already contains bytes produced by
pb. Fortunately laziness supports this style of circular programming (Bird, 1984).

The useState combinator provides access to the state. It takes two parameters:
update, which provides a means of updating the state, and spa, which is a state-
parameterized pickler for a. The combinator returns a new pickler in which spa is
first applied to the internal state value, the pickling or unpickling action is then
applied, and finally the state is updated with the pickled or unpickled value.

Figure 6 presents the remainder of the implementation. We omit the definitions
for most of the combinators as they are identical to those of Figure 3 except that
every use of PU in type signatures takes an additional state type parameter. The new
combinator share makes use of useState to provide an implementation of sharing
using a list for the dictionary and the tokenize function that we saw earlier. A
more efficient implementation would, for instance, use some kind of balanced tree
data structure.

We can then apply the share combinator to pickling of lambda terms:
slambda = share (alt tag [ wrap (Var, \(Var x) -> x) string,

wrap (Lam, \(Lam x) -> x) (pair string slambda),
wrap (App, \(App x) -> x) (pair slambda slambda) ] )

Figure 7 presents an application of it to kki. The superscripted figures represent
the indices that the pickler generates for subterms, allocated in depth-first order.
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x = Var "x"
i = Lam("x", x)
k = Lam("x", Lam("y", x))
kki = App(k, App(k, i))

02 6App(

01 01 78 3Lam("x",

01 01 79 2Lam("y",

00 01 78 1Var "x")),

00 02 5App(
03 k,

00 01 01 78 4Lam("x",
01 x)))

Fig. 7. Sharing example (superscripts represent dictionary indices)

Notice how the two occurrences of terms k and x have been shared; also note that
terms pickled under an empty dictionary have no preceding zero byte because the
pickler zeroTo 0 used to encode the zero is a no-op.

It is interesting to note that pickling followed by unpickling – for example,
unpickle slambda [] . pickle slambda [] – acts as a compressor on values,
maximizing sharing in the heap representation. Of course, this sharing is not ob-
servable to the programmer.

Sometimes it is useful to maintain separate symbol tables for separately-shared
structure. This can be done using tuples of lists for p in PU a p. For example, we
can write variants of share that use the first or second component of a pair of
states:

shareFst :: Eq a => PU a ([a],s) -> PU a ([a],s)
shareFst p = useState (\x -> \(s1,s2) -> (add x s1, s2))

(\(s1,s2) -> tokenize s1 p)
shareSnd :: Eq a => PU a (s,[a]) -> PU a (s,[a])
shareSnd p = useState (\x -> \(s1,s2) -> (s1, add x s2))

(\(s1,s2) -> tokenize s2 p)

These combinators can then be used to share both variable names and lambda
terms in the type Lambda:

lambda = shareFst (
alt tag [ wrap (Var, \(Var x) -> x) var,

wrap (Lam, \(Lam x) -> x) (pair var lambda),
wrap (App, \(App x) -> x) (pair lambda lambda) ])

where tag (Var _) = 0; tag (Lam _) = 1; tag (App _) = 2
var = shareSnd string

5 Discussion

Pickler combinators were inspired very much by parser combinators (Wadler, 1985;
Hutton & Meijer, 1998), which encapsulate parsers as functions from streams to
values and provide combinators similar in spirit to those discussed here. The essen-
tial new ingredient of pickler combinators is the tying together of the pickling and
unpickling actions in a single value.

Parser combinators also work well in call-by-value functional languages such as
ML (Paulson, 1996). However, they suffer from a couple of wrinkles which re-occur
in the ML implementation of picklers.

First, it is not possible to define values recursively in ML, e.g. the following is
illegal:
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val rec bookmark =
alt tag
[ wrap (Link, fn Link x => x) (pair string url),

wrap (Folder, fn Folder x => x) (pair string (list bookmark))]

The problem is that recursive definition is only valid for syntactic functions. Here
we have a value with abstract type ’a PU. This problem is overcome in ML imple-
mentations of parser combinators (Paulson, 1996) by exposing the concrete function
type of parsers, and then abstracting on arguments. So instead of writing a parser
for integers sequences as

val rec intseq = int || int -- $"," -- intseq

one writes

fun intseq s = (int || int -- $"," -- intseq) s

We can’t apply this trick because the concrete type for ’a PU is a pair of func-
tions. Instead, it is necessary to be explicit about recursion, using a fixpoint oper-
ator whose type is (’a PU -> ’a PU) -> ’a PU. This is somewhat cumbersome,
especially with mutual recursion, for a family of fixpoint combinators fix_n are
required, where n is the number of functions defined by mutual recursion.

The second problem is ML’s “polymorphic value restriction”, which restricts
polymorphic typing to syntactic values. This is particularly troublesome in the im-
plementation of state-parameterized picklers (Figure 5), in which every combinator
or primitive pickler is polymorphic in the state. For example, the ML version of
char might be written

val char = wrap (Char.chr, Char.ord) (zeroTo 255)

but char cannot be assigned a polymorphic type because its right-hand-side is not
a syntactic value.

In the implementation of structure sharing we made essential use of laziness in
order to thread the dictionary state in the opposite direction to the accumulated list
of bytes (function sequ). An ML version cannot do this: instead, both dictionary
and bytes are threaded in the same direction, with bytes produced by pickler pa

prepended first, then bytes produced by pickler pb prepended. The pickle function
must then reverse the list in order to produce a format ready for unpickling.

The representation we use for picklers of type PU a can be characterized as an
embedding-projection pair (p, u) where p is an embedding from a into a ‘universal’
type String, and u is a projection out of the universal type into a. To be a true
projection-embedding it would satisfy the following ‘round-trip’ properties:

u ◦ p = id (1)

p ◦ u v id (2)

where id is the identity function on the appropriate domain, and v denotes the
usual definedness ordering on partial functions. (Strictly speaking, given a pickler
pa, it is p = pickle pa and u = unpickle pa which have this property). More
concretely, (1) says “pickling followed by unpickling generates the original value”,
and (2) says “successful (i.e. exhaustive and terminating) unpickling followed by
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pickling produces the same list of bytes”. Note that (1) is valid only if values
pickled by combinators such as lift, zeroTo and nat are in the intended domain;
also observe that (2) is broken by structure sharing, as the pickler could produce a
string that has different sharing from the one that was unpickled.

Combinators over embedding-projection pairs have been studied in the context
of embedding interpreters for little languages into statically-typed functional lan-
guages (Benton, 2004; Ramsey, 2003); indeed some of the combinators are the same
as those defined here.

Pickling has been studied as an application of generic programming (Morrisett &
Harper, 1995; Jansson & Jeuring, 2002; Hinze, 2002), in which pickling and unpick-
ling functions are defined by induction on the structure of types. Using a language
such as as Generic Haskell (Clarke et al., 2001), we can extend our combinator
library to provide default picklers for all types, but leaving the programmer the
option of custom pickling where more control is required.

Following submission of the final version of this article, Martin Elsman brought
to the author’s attention a combinator library (Elsman, 2004) somewhat similar to
the one described here. Elsman’s library is for Standard ML, and takes a slightly
different approach to structure sharing, maintaining a single dictionary for all shared
values. Values of different types are stored in the dictionary using an encoding of
dynamic types. The library also supports the pickling of values containing ML
references, possibly containing cycles.
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