
Smart Play-Out Extended: Time and Forbidden Elements

David Harel, Hillel Kugler and Amir Pnueli
The Weizmann Institute of Science, Rehovot, Israel

dharel,kugler,amir @wisdom.weizmann.ac.il

Abstract

Smart play-out is a powerful technique for executing live
sequence charts (LSCs). It uses verification techniques to
help run a program, rather than to prove properties thereof.
In this paper we extend smart play-out to cover a larger set
of the LSC language features and to deal more efficiently
with larger models. The extensions cover two key features
of the rich version of LSCs, namely, time and forbidden el-
ements. The former is crucial for systems with time con-
straints and/or time-driven behavior, and the latter allows
specifying invariants and contracts on behavior. Forbidden
elements can also help reduce the state space considered,
thus enabling smart play-out to handle larger models.

1. Background

Understanding system and software behavior by consid-
ering the various “stories” or scenarios it entails is a promis-
ing approach, which has resulted in intensive research ef-
forts in the last few years. One of the most widely used
languages for capturing scenario-based behavior is that of
message sequence charts (MSCs), proposed long ago by
the ITU [25], or its UML variant, sequence diagrams [24].
More recently, a broad extension of MSCs has been pro-
posed, called live sequence charts (LSCs) [8], which are
multi-modal in nature. They distinguish between behaviors
that may happen in the system (existential) from those that
must happen (universal), both on the chart level and when
referring to the elements within a chart. A universal chart
contains a prechart, which specifies the scenario which, if
successfully executed, forces the system to satisfy the sce-
nario given in the actual chart body.

In [15] a methodology for specifying scenario-based be-
havior, termed the play-in/play-out approach is described.
Scenarios are captured by the user playing them in directly

This research was supported in part by the John von Neumann Minerva
Center for the Verification of Reactive Systems, by the European Com-
mission project OMEGA (IST-2001-33522) and by the Israel Science
Foundation (grant No. 287/02-1).

from a graphical interface of the system to be developed (or
a virtual interface, in the form of an object model diagram).
During play-in, the supporting tool, called the Play-Engine,
constructs a formal version of the behavior in the form of
LSCs.

Play-out is a complementary idea to play-in, which
makes it possible to execute the behavior directly. Dur-
ing play-out, the user also interacts directly with the ap-
plication GUI, and the Play-Engine reflects the system
state at any given moment on the GUI. Play-out is actu-
ally an iterative process, where after each step taken by the
user, the Play-Engine computes a super-step, which is a se-
quence of events carried out by the system as its response
to the event input by the user. The play-out mecha-
nism of [15] is rather naive when faced with nondeter-
minism, and makes essentially an arbitrary choice among
the possible responses. This choice may later cause a vi-
olation of the requirements, whereas by making a dif-
ferent choice the requirements could have been satis-
fied.

One of the problems with play-out in its original form,
is the inherent nondeterminism allowed by the LSC lan-
guage. LSCs is a declarative, inter-object language, and as
such it enables formulating high level behavior in pieces
(e.g., scenario fragments), leaving open details that may de-
pend on the implementation. Technically, the two sources of
this nondeterminism are the partial order semantics among
events in each chart, and the liberal nature of the interleav-
ing between different charts during execution. These fea-
tures are very useful in early requirement stages, but can
cause undesired under-specification when one attempts to
consider them as the system’s executable behavior. More-
over, in the spirit of most tools that execute high-level sys-
tem models, the naive play-out mechanism deals with non-
determinism in a way that is not controllable by the user,
making choices that might be “good”, but which also might
cause violations that lead to aborting the run.

In [13], we introduced a more powerful technique for ex-
ecuting LSCs, called smart play-out. It takes a significant
step towards removing the sources of nondeterminism dur-
ing execution, proceeding in a way that eliminates some of
the dead-end executions that lead to violations. In the cur-



rent paper, we extend this technique to cover two of the
more advanced central features of LSCs, and in so doing
also provide a means for dealing with larger models.

2. Smart Play-Out

The idea of smart play-out is to formulate the play-out
task as a verification problem, and to use a model-checking
algorithm [7] to find a “good” super-step (i.e., a chain reac-
tion of system events that constitute the reaction to an ex-
ternal event), if one exists. Thus, we use verification tech-
niques to help run a program, rather than to prove proper-
ties thereof.

The model-checking procedure is handed as input a tran-
sition system that is constructed from to the universal charts
in the LSC specification. (These are the charts that drive the
execution in the naive play-out process too.) The transition
relation is designed to allow progress of the active univer-
sal charts, but to prevent violations. The system is initialized
to reflect the status of the execution just after the last exter-
nal event occurred, including the current values of object
properties, information on the universal charts that were ac-
tivated as a result of the most recent external events, and the
progress in all precharts.

The model-checker is then given a property claiming that
it is always the case that at least one of the universal charts
is active. This is really the negation of what we want, since
in order to falsify the property, the model-checker searches
for a run in which eventually none of the universal charts is
active. That is, all active universal charts complete success-
fully, so that by the definition of the transition relation no vi-
olations occurred in the process. Such a counter-example is
the desired super-step. If the model-checker is able to ver-
ify the property then no correct super-step exists, but if it
is not able to, the counter-example is exactly what we seek.
For more details see [13].

Smart play-out can also be used to satisfy existential
charts, which can be used to specify system tests. It au-
tomatically finds a trace (if there is one) that satisfies the
existential chart without violating any universal charts in
the process. This can be useful in understanding the pos-
sible behavior of a system and also in detecting problems,
by, e.g., asking if there is some way for a certain scenario,
which we believe cannot be realized by the system, to be
satisfied. If smart play-out manages to satisfy the chart it
will execute the trace, thus providing evidence for the cause
of the problem.

Since the appearance of [13], in which we reported on
smart play-out as applied to a basic kernel version of LSCs
(more or less the one appearing in [8]), we have gained ex-
perience in applying the method to several applications and
case studies. These include a computerized system — a ma-
chine for manufacturing smart-cards [18] — as well as a bi-

ological system — parts of the vulval development process
of the C. elegans nematode worm [20].

We have also been working on extending smart play-out
to cover a larger set of the LSC language features and to
deal more efficiently with larger models, and this is the sub-
ject matter of the present paper. Specifically, we show how
smart play-out extends to cover two key features of the rich
version of LSCs described in [15], namely, time and forbid-
den elements. The former is crucial for systems with time
constraints and/or time-driven behavior, and the latter al-
lows specifying invariants and contracts on behavior. For-
bidden elements can also help reduce the state space that
has to be considered by the model-checking, thus enabling
smart play-out to handle larger models.

A short summary of the translation of the basic LSCs lan-
guage that was defined in the original presentation of smart
play-out in [13] appears in the Appendix. It is rather tech-
nical and may be skipped in a first reading of the paper, or
consulted when getting into the details of the extensions for
time and forbidden element.

3. Time-Enriched LSCs

In [14, 15] LSCs have been extended with timing re-
quirements, thus making the language suitable for specify-
ing the behavioral requirements of time intensive systems.
The approach follows Alur and Henzinger [1] in basing
the extension on a single clock object. The extensions have
been implemented in full in the Play-Engine tool. This ex-
tension assumes a discrete time model and adopts the syn-
chrony hypothesis, according to which the system events
themselves consume no actual time, and time may pass only
between events.

When handling time, play-out takes an “eager” ap-
proach, progressing with system events as far as possible,
and only when faced with hot timing requirements that are
not yet satisfied does it wait and allow time to pass. In con-
trast, smart play-out may decide not to eagerly perform all
enabled events, but rather to allow some time progress be-
fore continuing the execution. As will be shown below
this may help smart play-out to satisfy the LSC require-
ments while the “naive” play-out may cause a viola-
tion. Thus, smart play-out in effect refines the seman-
tics of LSCs and makes it more liberal. Our extension of
smart play-out is also effective in the mode where an ex-
istential chart is to be satisfied, allowing queries of the
form “what is the minimal time in which some objec-
tive can be achieved?”.

We now use a few simple examples to illustrate the role
and possible usage of smart play-out as applied to timed be-
havioral requirements. Consider the two charts of Fig. 1.

The first, “Time1”, states that when the phone’s Cover
is opened, after more than time units the display sets its re-



Figure 1. Smart play-out helps with time

ception level to and after more than time units the An-
tenna is opened. The message Open must occur after the
message ShowReception(2) as implied by the partial
order defined by chart “Time1”, taking into account the syn-
chronization enforced by the timed condition labeled
Time > T + 8.

The second chart in the figure, “Time2”, states that when-
ever the Display sets its reception level to , the An-
tenna should open within less than time units, as speci-
fied by the timed condition labeled Time < T + 2.

Assuming that these are the only two relevant charts of
the system, and that the user opens the cover during naive
play-out, the chart “Time1” becomes active and the play-out
mechanism then immediately stores the time. After time
units pass, the timed condition Time > T + 2 is satis-

fied, and then the message ShowReception(2) occurs,
activating the chart “Time2” and the timed assignment in
this chart. The timed condition Time > T + 8 forces
additional time units to pass before it is satisfied and the
message Open is taken, causing chart “Time1” to be com-
pleted successfully. The timed condition Time < T + 2
is now detected as violated by play-out, causing a violation
of chart “Time2”, as shown in Figure 2 .

Figure 2. Violation by naive play-out

In contrast, if we apply the smart play-out process to this
example, it computes and carries out a different order of
events. After the user opens the cover, smart play-out allows

time units to pass, and only then the message ShowRe-
ception(2) is taken. Now, without any further time de-
lays the message Open occurs, causing the successful com-
pletion of both charts.

Another issue concerns LSC specifications that are in-
consistent due to contradicting time requirements. Consider
the two charts of Fig. 3. The first, “Time3”, states that when
the phone’s Cover is opened, the Antenna should open,
the background of the Display should change to green
and its reception level to ; all according to this ordering and
within time units. The second chart in the figure, “Time4”,
states that whenever the Antenna becomes open, the re-
ception level of the Display should change to level , but
only after at least time units have passed from the open-
ing of the Antenna. Smart play-out would prove that in
such a case no correct super-step exists, which by the se-
mantics of LSCs means that the requirements are inconsis-
tent; see [12].

3.1. The Translation

We now provide some details on how our extension of
smart play-out translates the time features of LSCs to the
transition relation used by the model-checking algorithms.



Figure 3. Inconsistent LSCs

The time features supported are timed assignments,
timed conditions and an explicit TICK message; see
[14, 15]. A timed assignment is of the form ,
Where is a clock variable (local to the chart), and

is the global clock. A timed condition is of the
form , where is any of the standard oper-
ations . The delay has an integer value,
and can be a constant (the usual case), a variable or a func-
tion. An explicit is a self message of the clock ob-
ject, and causes the global clock to progress by one time
unit.

In the smart play-out translation we add a new integer
variable corresponding to each clock variable appearing
in the LSC specification. is defined to range over the do-
main , where is the maximal delay
value appearing in any timed condition for this variable. If
we restrict the delays appearing in the timed conditions to
be constants, then is found simply by taking the max-
imum of the constant values, and for a variable or a function

we take the maximal value the variable or function can re-
turn while calculating .

if
if
if
if
otherwise

A clock variable is initially set to value and is set
again to this value when the chart changes from active to
non-active. If object is at location in chart , and
the next location of corresponds to a timed assignment
to the clock variable , then is set to . Once the clock
variable is in the range , it is incremented by
one if an explicit occurs. In case an explicit
message does not appear in the relevant LSCs or is not en-
abled, a nondeterministic choice can allow to increment
by one or to leave it unchanged. Actually, to achieve a more
efficient implementation we support “acceleration”, by al-
lowing time increments of , which in certain
cases may help find a correct run faster.

Intuitively, the specifier can add explicit time ticks to the
charts, determining time progress, but may choose to spec-
ify only the timed assignments and time conditions with-
out explicit time ticks, and then the nondeterministic choice
will allow time progress. If reaches its maximum value

, it will remain with this value until the chart ends
or a new timed assignment is taken. The fact that remains
at value and that this does not change the evalu-
ation of the timed conditions is part of the proof of the cor-
rectness of our translation and is omitted from this version
of the paper.

Timed conditions are a special form of conditions and are
thus handled within the framework of conditions as defined
in the original version of smart play-out [13]. We define how
to evaluate a timed condition using our timed clock defini-
tions. Given a timed condition of the form
appearing in an LSC, we evaluate it as . Since we re-
set to on a timed assignment, our evaluation of timed
conditions is equivalent, and we are not forced to maintain
the global clock. This is also more efficient, since main-
taining global time values would force us to allocate larger
ranges for the clock variables, which would have a strong
effect on the performance of the model-checking.

Timed assignments can be specified also in the prechart,
as shown in Fig. 4. Time is assigned to the variable imme-
diately after the message ShowReception(2) occurs,
and this should be equivalent to performing the timed as-
signment in the main chart, as specified in Fig. 1 in chart
“Time2”. To ensure that timed assignments in the prechart
are handled correctly, we modify the model-checking prob-
lem of smart play-out that was originally given as:



to refer also to enabled timed assignments in the
prechart:

Here gets the value , if there is an enabled
timed assignment in the prechart of chart , and other-
wise. This states that at least one of the universal charts is
active or at least one of the timed assignments in a prechart
is enabled. Falsifying this modified property amounts to
finding a run that leads to a point in which all active uni-
versal charts have been completed successfully and there
are no enabled timed assignments that have not been per-
formed, which is exactly the desired run.

Figure 4. Timed assignment in a prechart

4. Forbidden Elements

Using forbidden elements [15] one can specify events
that are not allowed to occur or conditions that are not al-
lowed to hold during specific intervals within a chart’s ex-
ecution. Forbidden elements can be used to express invari-
ants, i.e., expressions that must hold during specified execu-
tion intervals. In this section we explain how forbidden ele-
ments are fully supported by our extension of smart play-out
in a direct and natural way.

The use of forbidden elements is especially important in
smart play-out. Apart from the fact that forbidden elements

are one of the LSC features supported in the standard play-
in/play-out approach and the Play-Engine tool, they have a
significant role for smart play-out since they allow the user
to provide additional knowledge about the system, e.g., in-
variants or preconditions, which can reduce the state-space
dramatically and allow smart play-out to handle much larger
designs.

Figure 5. Forbidden elements

Forbidden elements are either messages or condi-
tions, and are specified in a special area at the bot-
tom of the LSC, separated by the Forbidden El-
ements header. An example of both element types
appears in Fig. 5. The chart describes the Unload sce-
nario for a model of a smart-card manufacturing machine
[18]. When the Controller sends the self message un-
load, as specified in the prechart, a new empty card is
placed on the belt, as specified by the message b3(0) ap-
pearing in the main chart. No belt movements are al-
lowed during this scenario. This is specified by designating
the right and left messages as forbidden while the un-
load chart is active.

The distinction between hot and cold applies also to for-
bidden messages, where a hot forbidden message is not al-
lowed to occur in the designated scope, and if it does it
causes a violation and the system aborts, while the occur-
rence of a cold forbidden message causes the exit of the rel-



evant (sub) chart but it does not mean a violation. In our ex-
ample of Fig. 5 the forbidden messages right and left
are hot, since they are strictly not allowed during the un-
load scenario.

Fig. 5 also shows the use of a forbidden condition. The
Unload scenario should not be performed if there is already
a card on the belt in the relevant slot b3. This is specified by
the forbidden condition Belt.b3 <> -1, where by con-
vention denotes the fact that no card is placed on the belt
slot, denotes an empty card, and a positive value denotes a
personalized card. The forbidden condition is cold and has
the prechart as its scope. Thus, if the controller performs the
unload message while the slot b3 is not empty, the for-
bidden condition Belt.b3 <> -1 becomes true and the
prechart is exited without activating the main chart. As a re-
sult the unload scenario designated in the main chart will
not be taken. In general, the scope for forbidden elements
can be the entire LSC, its prechart, its main chart, or any
subchart thereof.

4.1. The Translation

We first explain how we handle forbidden messages. As
explained in the Appendix, without considering forbidden
messages we define the transition relation for the occur-
rence of a message as follows:

if
otherwise

In order for the event of sending from to to
occur, we require the condition to hold. This condition is
defined in a way that requires that at least one of the main
charts in which this message appears is active, and that all
active charts must “agree” on this message. When consider-
ing also forbidden messages we conjunct with a formula

specifying that is not a hot forbidden mes-
sage in the current scope.

s.t.

We require that for each universal chart in which
is designated as a hot forbidden message, ei-

ther is not active (that is, ), or all of the ob-
jects participating in the subchart are outside the subchart,

or the message appears in the subchart and is
enabled (that is, ). Assuming are the
objects participating in the subchart, an object is out-
side the subchart if holds. Here is
the minimal location for object in the subchart while
is the maximum location in the subchart. In case the scope
is the entire LSC or the main chart the clause relating to par-
ticipating objects being outside the (sub) chart evaluates to
FALSE and can thus be omitted.

A cold forbidden message affects the transition relation
of the location of an object participating in the (sub) chart.
If this cold forbidden message occurs, the participating ob-
jects exit the subchart.

if
if

Intuitively, if object is at location in chart
, and the next location of corresponds to the send-

ing of message from to , then if in the next state
the message is sent, the location is advanced; otherwise
it remains where it is, unless the cold forbidden message

occurs, in which case object exits the sub-
chart to location .

The treatment of forbidden conditions follows along
similar lines. A condition is a boolean function over the do-
mains of the object properties,

, so that it can relate to the properties of several ob-
jects. Here, the properties appearing in the condition are

. The values of properties can change only as
an effect of a message occurring, so for a hot forbidden con-
ditions we disallow a message if in the next state we are
in the scope of the forbidden condition and the condition
holds. Also, cold forbidden conditions affect the transition
relation of the location of the participating (sub) chart ob-
jects, but we omit the details in this version of the paper.
Notice that forbidden elements do not introduce additional
variables into our transition system, and thus they consti-
tute an effective means for reducing the state space and al-
lowing smart play-out to handle larger models.

5. Related Work

A large amount of work has been carried out on for-
mal requirements, sequence charts, and model execution.
Amyot and Eberlein [4] provide an extensive survey of sce-
nario notations. Their paper also defines several compari-
son criteria and then uses them to compare the different no-
tations. The idea of using sequence charts to discover design
errors at early stages of development has been investigated
in [2, 23] for detecting race conditions, time conflicts and
pattern matching. The language used in these papers is that



of classical message sequence charts, with the semantics be-
ing simply the partial order of events in a chart. In order to
describe system behavior, such MSCs are composed into hi-
erarchal message sequence charts (HMSCs) which are basi-
cally graphs whose nodes are MSCs. As has been observed
in several papers, e.g. [3], allowing processes to progress
along the HMSC with each chart being in a different node
may introduce non-regular behavior and is the cause of un-
decidability of certain properties. Undecidability results and
approaches to restrict HMSCs in order to avoid these prob-
lems appear in [16, 17, 11].

Live sequence charts have been used for the testing
and verification of system models. Lettrai and Klose [22]
present a methodology supported by a tool called TestCon-
ductor, which is integrated into Rhapsody [19]. The tool is
used for monitoring and testing a model using a restricted
subset of LSCs. Damm and Klose [9, 21] describe a ver-
ification environment in which LSCs are used to describe
requirements that are verified against a Statemate model
implementation. An approach for verifying LSCs against
UML models is described in [10]. LSCs have also been ap-
plied to the specification and verification of hardware sys-
tems [5, 6].

References

[1] R. Alur and T. Henzinger. Real-time system = discrete sys-
tem + clock variables. Software Tools for Technology Trans-
fer, 1:86–109, 1997. A preliminary version appeared in the
Theories and Experiences for Real-time System Develop-
ment (T. Rus, C. Rattray, eds.), AMAST Series in Comput-
ing 2, World Scientific, 1994, pp. 1-29.

[2] R. Alur, G. Holzmann, and D. Peled. An analyzer for
message sequence charts. Software Concepts and Tools,
17(2):70–77, 1996.

[3] R. Alur and M. Yannakakis. Model checking of message se-
quence charts. In 10th International Conference on Concur-
rency Theory (CONCUR99), volume 1664 of Lect. Notes in
Comp. Sci., pages 114–129. Springer-Verlag, 1999.

[4] D. Amyot and A. Eberlein. An evaluation of scenario no-
tations for telecommunication systems development. In Int.
Conf. on Telecommunication Systems, 2001.

[5] A. Bunker and G. Gopalakrishnan. Verifying a VCI Bus
Interface Model Using an LSC-based Specification. In
H. Ehrig, B. J. Kramer, and A. Ertas, editors, Proceedings
of the Sixth Biennial World Conference on Integrated Design
and Process Technology, pages 1–12, 2002.

[6] A. Bunker and K. Slind. Propert Generation for Live Se-
quence Charts. Technical report, University of Utah, 2003.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[8] W. Damm and D. Harel. LSCs: Breathing life into mes-
sage sequence charts. Formal Methods in System Design,
19(1):45–80, 2001. Preliminary version appeared in Proc.
3rd IFIP Int. Conf. on Formal Methods for Open Object-
Based Distributed Systems (FMOODS’99).

[9] W. Damm and J. Klose. Verification of a radio-based sig-
nalling system using the statemate verification environment.
Formal Methods in System Design, 19(2):121–141, 2001.

[10] W. Damm and B. Westphal. Live and Let Die: LSC-Based
Verification of UML-Models. In First International Sym-
posium on Formal Methods for Components and Objects
(FMCO 2002), volume 2852 of Lect. Notes in Comp. Sci.,
pages 99–135. Springer-Verlag, 2003.

[11] E. L. Gunter, A. Muscholl, and D. Peled. Compositional
message sequence charts. In Proc. Intl. Conference on
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’01), volume 2031 of Lect. Notes in Comp.
Sci., Springer-Verlag, pages 496–511, 2001.

[12] D. Harel and H. Kugler. Synthesizing state-based object
systems from LSC specifications. Int. J. of Foundations
of Computer Science (IJFCS)., 13(1):5–51, Febuary 2002.
(Also,Proc. Fifth Int. Conf. on Implementation and Applica-
tion of Automata (CIAA 2000), July 2000, Lecture Notes in
Computer Science, Springer-Verlag, 2000.).

[13] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-
out of behavioral requirements. In Proc. Intl. Confer-
ence on Formal Methods in Computer-Aided Design (FM-
CAD’02), Portland, Oregon, volume 2517 of Lect. Notes in
Comp. Sci., pages 378–398, 2002. Also available as Tech.
Report MCS02-08, The Weizmann Institute of Science.

[14] D. Harel and R. Marelly. Playing with time: On the specifi-
cation and execution of time-enriched LSCs. In Proc. 10th
IEEE/ACM International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS’02), Fort Worth, Texas, 2002.

[15] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer-
Verlag, 2003.

[16] J. Henriksen, M. Mukund, K. Kumar, and P. Thiagarajan.
On message sequence graphs and finitely generated regular
MSC languages. In J. R. U. Montanari and E. Welzl, edi-
tors, Proc. 27th Int. Colloq. Aut. Lang. Prog., volume 1853 of
Lect. Notes in Comp. Sci., pages 675–686. Springer-Verlag,
2000.

[17] J. Henriksen, M. Mukund, K. Kumar, and P. Thiagarajan.
Regular collections of Message Sequence Charts. In Pro-
ceedings of the 25th International Symposium on Mathemat-
ical Foundations of Computer Science(MFCS’2000), volume
1893 of Lect. Notes in Comp. Sci., pages 675–686. Springer-
Verlag, 2000.

[18] H.Kugler and G. Weiss. Planning a Production Line with
LSCs. Technical report, Weizmann Institute, 2004.

[19] Rhapsody. I-Logix, Inc., products web page.
http://www.ilogix.com/products/.

[20] N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E. Hub-
bard, and M. Stern. Formal Modeling of C. elegans Develop-
ment: A Scenario-Based Approach. In Corrado Priami, edi-
tor, Proc. Int. Workshop on Computational Methods in Sys-
tems Biology (CMSB 2003), pages 4–20. Springer-Verlag,
2003. Extended version To appear in Modeling in Molec-
ular Biology, G.Ciobanu (Ed.), Natural Computing Series,
Springer, 2004 .



[21] J. Klose and H. Wittke. An automata based interpretation of
live sequence chart. In Proc. Intl. Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’01), volume 2031 of Lect. Notes in Comp. Sci.,
Springer-Verlag, 2001.

[22] M. Lettrari and J. Klose. Scenario-based monitoring and test-
ing of real-time UML models. In 4th Int. Conf. on the Uni-
fied Modeling Language, Toronto, October 2001.

[23] A. Muscholl, D. Peled, and Z. Su. Deciding properties for
message sequence charts. In Proceedings of the 1st Interna-
tional Conference on Foundations of Software Science and
Computation Structures (FOSSACS ’98), number 1378 in
Lect. Notes in Comp. Sci., pages 226–242. Springer-Verlag,
1998.

[24] UML. Documentation of the unified modeling language
(UML). Available from the Object Management Group
(OMG), http://www.omg.org.

[25] Z.120 ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC). ITU-TS, Geneva, 1996.

Appendix A: The Basics of Smart Play-Out
We provide here a short summary of the notations and

translation used in the basic smart play-out process. For
more details see [13, 15].

An LSC specification consists of a set of
charts, where each chart is existential or universal.
We denote by the prechart of chart . Assume that
the set of universal charts in is ,
and that the objects participating in the specification are

.
We define a transition system with the following vari-

ables:

, determining if universal chart is active. Its value
is when is active and otherwise.

, denoting the sending of message from
object to object . Its value is set to at the oc-
currence of the send and is changed to at the next
state.

, denoting the receipt by object of message
sent by object . Its value is set to at the oc-

currence of the receive and is changed to at the next
state.

, denoting the location of object in chart . It
ranges over , where is the last location
of in .

, denoting the location of object in the
prechart of . It ranges over , where
is the last location of in .

We denote by the event associated with
location , and use the convention that primed variables de-
note the value of a variable in the next state, while unprimed
variables relate to the current state. organized by the various
features of the LSC language.

Messages

We first define the transition relation for the location
variable, when the location corresponds to the sending of
a message:

if
if

Intuitively, if object is at location in chart ,
and the next location of corresponds to the sending of
message from to , then if in the next state the
message is sent, the location is advanced; otherwise it re-
mains where it is. It is important to notice that the event

may not be allowed to occur at the next state
due to the happenings in some other chart. This is one of
the places were the interaction between the different charts
becomes important.

We now define the transition relation for the variable that
determines the occurrence of a send event (the receive case
is similar):

if
otherwise

s.t.

Let us explain. In order for the event of sending
from to to occur, we require two conditions to hold,
which are expressed by the formulas and , respec-
tively. The first, , states that at least one of the main
charts in which this message appears is active. The as-
sumption is that message communication is caused by uni-
versal charts that are active and does not occur sponta-
neously. The second requirement, , states that all active
charts must “agree” on the message. For an active chart

that contains , we require that object
progress to a location corresponding to this message, as
expressed by the formula . Formula states that for
all charts containing (that is,

), either the chart is not active or the mes-
sage can occur (that is, holds). According to the se-
mantics of LSCs, if a message does not appear in a chart
explicitly it (i.e., its sending and receipt) is allowed to oc-
cur between the messages that do appear, without violating



the chart. This is reflected in by the fact that the conjunc-
tion is only over the charts containing .

Precharts

The prechart of a universal chart describes the scenario
which, if completed successfully, forces the scenario de-
scribed in the main chart to occur. The main chart becomes
active if all locations of the prechart have reached maxi-
mal positions, which is what successful completion of the
prechart means. A central feature of play-out a sequence of
events in a super-step causing the activation of some addi-
tional universal chart, which now must also be completed
successfully as part of the same super-step. For this pur-
pose precharts are monitored, and locations along instance
lines are advanced when messages are sent and received.

Activation of Charts

For a universal chart , we define the transition relation
for as follows:

if
if
otherwise

The main chart becomes active when all locations of
the prechart reach maximal positions, and it stops being ac-
tive when all locations of the main chart reach maximal po-
sitions.

The Model-Checking Formula

To compute a super-step in the execution of an LSC sys-
tem using a model checker, the system is initialized accord-
ing to the current locations of instances in precharts, while
all locations in the main charts are set to . The main chart’s
activation state is also initialized to reflect the current state.
After each external event, the Play-Engine decides which
precharts have completed and sets their corresponding main
charts to be active. We also set the properties of the objects
to reflect their current value.

The model checker is then given the following property
to prove, stating that it is always the case that at least one of
the universal charts is active:

Falsifying this property amounts to finding a run that
leads to a point in which all active universal charts have

completed successfully, with no violations — which is ex-
actly the desired super-step.


