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Abstract. In recent years, UML has been applied to the development
of reactive safety-critical systems, in which the quality of the developed
software is a key factor. In this paper we present an approach for the
deductive verification of such systems using the PVS interactive theorem
prover. Using a PVS specification of a UML kernel language semantics,
we generate a formal representation of the UML model. This represen-
tation is then verified using tlpvs, our PVS-based implementation of
linear temporal logic and some of its proof rules. We apply our method
by verifying two examples, demonstrating the feasibility of our approach
on models with unbounded event queues, object creation, and variables
of unbounded domain. We define a notion of fairness for UML systems,
allowing us to verify both safety and liveness properties.

Keywords: Formal Verification, Deductive Verification, PVS, UML, State
Machines, Semantics, Temporal Logic

1 Introduction

The Unified Modeling Language (UML) [26] is a flexible, general purpose mod-
eling language that is widely used in a variety of domains. In recent years UML
has been applied to the development of reactive safety-critical systems, in which
the quality of the developed software is a key factor. In these domains, an exe-
cutable model and the ability to generate production code from the model is an
important advantage [21, 5]. This approach is supported by existing commercial
case tools [8, 19, 23], which facilitate the generation of code from a subset of the
UML diagrams (typically class diagrams and state machine diagrams) combined
with a high level object oriented language or action language.

In this paper we present a methodology and tool-set that allow us to verify
that various properties hold on a UML model. We take a formal verification
? This work has been supported by EU-project IST 33522 OMEGA [17], and by the

John von Neumann Minerva Center for Verification of Reactive Systems.



approach which enables us to derive a mathematical proof of correctness; in
contrast, testing and other validation methods can raise the confidence in the
developed system and help in finding bugs, but cannot guarantee correctness.

The two prevalent methods for formal verification are model checking and
deductive verification. There are obvious advantages to the model-checking tech-
niques, the most important being that it is fully automatic and requires no
strong familiarity with the internal details of the design. A very serious limi-
tation of model-checking techniques is the limited size of designs which can be
fully automatically verified.

The alternative approach based on deductive verification does not suffer from
such limitations and, in principle, can be used to verify very big designs provided
their structure is based on regular patterns. The main drawback of the deductive
approach to reactive system verification (as outlined, for example, in [12]) is that
it is not fully automatic and requires much user ingenuity and supervision.

For this reason, we developed tlpvs [16], a system for the formal verifica-
tion of linear temporal logic (LTL) properties built on the PVS [14] verification
system. The system provides support for a number of proof rules. Special atten-
tion has been paid to the verification of systems with an unbounded number of
processes, and our rules are robust for such systems. This means that tlpvs can
be used in systems with dynamic object creation.

Like other formal verification systems, tlpvs depends on a notion of fair-
ness for the verification of liveness properties. Intuitively, fairness is a means of
restricting to the set of “reasonable” runs. To the best of our knowledge, no for-
mulation of fairness requirements appears in the UML literature. In this paper
we propose a definition, and illustrate its use.

The UML diagrams that we consider in this work are class diagrams and
state machine diagrams. This choice is motivated by the fact that these are the
diagrams that are considered to form the executable kernel in most approaches
and advanced tools. At this stage of our work we avoided adding additional
diagrams that may show a different behavioral view of the same aspects and may
require us to address issues of consistency, even before addressing the challenges
of formal verification which are complex enough in their own right.

The UML standard leaves certain semantic issues open and these are imple-
mented differently in various tools and approaches. In order to perform formal
verification a precise semantic definition must be taken, our semantic decisions
follow [2, 7]. Our deductive verification methodology is, however, more general,
and can also support semantic decisions other than the ones we took.

The executable kernel subset of the UML mentioned above supports complex
features, and our approach treats some of the features that are most difficult
for verification: dynamic object creation, active and passive objects, unbounded
event queues, synchronous and asynchronous communication and unbounded do-
main variables. While working to develop a practical formal verification method-
ology we applied and tested this methodology on two examples, each of which
illustrates different features. Eratosthenes’ sieve (prime-sieve) provided an ex-
ample of dynamic object creation, while a model based on a medium altitude



reconnaissance system (mars) included method calls, and allowed us to check
how the methodology scales up in larger systems.

The structure of this paper is as follows. In Sect. 2 and 3 we outline the lan-
guage and semantics we used, and detail the mars example. Section 4 overviews
tlpvs, and in Sect. 5 we demonstrate its application to the mars example.
Section 6 introduces the prime-sieve example. In Sect. 7 we give our fairness
requirements, and show how they can be used to verify response properties in
prime-sieve. In Sect. 8 we discuss related work and draw conclusions. The PVS
files are available at [24].

2 Kernel Language

In this section we use a fragment of the so-called Medium Altitude Reconnais-
sance System (mars) to introduce our kernel language. This example is part of
a case study provided by the Dutch Aerospace Laboratory (NLR). The system
controls the movement of a camera in an airplane; ground survey photographs
are taken by the camera during the flight. The position and movement of the
camera have to be adjusted to the altitude and speed of the plane.

Receiver

altCnt: Nat
navCnt: Nat
noAltCnt: Nat
noNavCnt: Nat

alt()
nav()
noAlt()
noNav()
ok()
error()

+rcv

+rcv

+rcv

AltSource

NavSource
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status(): String

+busCtrl

Monitor

prevOK(): Bool
currOK(): Bool

Fig. 1. Example class diagram.

Here we present a part of the bus manager of the system; the class diagram
is given in Fig. 1. For our purposes it suffices to know there is altitude data (alt
messages), and there is navigation data (nav messages). In case a data source
fails to send data, a time-out is issued. Since we did not model time explicitly
for this example, we model these time-outs by failure signals (noAlt , noNav).
The central object in the example is a receiver which processes the incoming
data. The system further consists of a controller monitor and a bus controller
which we do not present in detail here. The monitor can ask the bus controller
for a status report by calling a method of the bus controller. In case of an error
the monitor will send the error signal to the receiver in reaction to which the
receiver enters the controller error location. The monitor sends the receiver the
ok signal if the bus controller indicates that the error situation is resolved. The



task that we concentrate on is the detecting of, and response to, failure of the
data sources.

For each class the behavior of its objects is defined by means of a state
machine and methods (program text) for its so-called primitive operations. Other
operations are defined by means of the state machine. A state machine transition
is labelled with a trigger event, a guard, and a list of actions (and each of these
parts may be empty). A trigger event is either an operation call or a signal.
The guard is a boolean expression which can be evaluated locally by the object
without side-effects. The action part of a transition is a list of basic actions.
We consider the following five basic actions: assign a value or reference to an
attribute, create an object and assign a reference to it to an attribute, send a
signal to a particular object, call an operation of a particular object and assign
a result value to an attribute, return from a call.

�� ��r-
��
?

/rcv!alt
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/rcv!noAlt

�� ��r-
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/rcv!nav


	6
/rcv!noNav

Fig. 2. State machines for the altitude data source (left) and the navigation data source
(right).

Both of the data sources (Fig. 2) have the repetitive nondeterministic choice
between sending a data message or a failure message. For example, the action
rcv!alt is the emission of an alt signal to the receiver.

The receiver (Fig. 3) can accept some failure from the data sources, but if
either source fails to send data for three consecutive times, it enters an error
state. The receiver recovers from the error state if it receives correct data for
at least two consecutive times. Counters (with initial value 0) are used to count
consecutively accepted signals of one kind. If the receiver is operational then
it counts the number of consecutive failure messages it has accepted from each
data source. If either of these failure counters has value 3, the receiver enters
the bus error location (since it must run to completion before accepting a new
signal, see Sect. 3). In the bus error location, positive acceptances of the data
messages are counted.

3 Transition Systems

Intuitively, multiple objects each execute their own state machine concurrently.
By interleaving and synchronizing the state machine transitions of the objects in
the system we obtain a global transition system representing the system behavior
on which we can express properties in temporal logic. Each step of this global
transition system corresponds to either the execution of an action by one of
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Fig. 3. Receiver state machine for the mars example.

the objects in the system, or to the triggering of a state machine transition for
one of the objects. In the latter case we distinguish between transitions without
a trigger (which are enabled if their guard is satisfied), and signal-triggered
transitions. The triggering of a transition with an operation call as trigger is
combined with the execution of the transition with the call action into one
step of the system. (Note that if the action part of the callee also contains an
operation call, this would lead to a cascading sequence of synchronizations. Since
this greatly complicates the semantics, we currently do not support an operation
call in the action part of a transition with a call trigger.)

The interleaving is restricted by the run-to-completion assumption (standard
in UML 2.0 [26], see also [21]): when an object has been triggered by a call or a
signal, it must become stable before it can accept a new event. An object is stable
if, in its current location, it has no outgoing triggerless transitions for which the
guard is satisfied; a stable object can only proceed by accepting an event. Thus
transitions without a trigger have precedence over triggered transitions.

Concurrency can also be restricted by the sharing of control: only an object
that has control is allowed to execute. To achieve this, the set of objects is
partitioned into activity groups which are centered around active objects: a class
can be active or passive, and this leads to active or passive objects. Control is
shared within activity groups. During execution the control within a group may
shift from one object to another. Control changes when performing a call inside
the same group, otherwise an object may only lose control if it is stable. 4

4 This notion of activity groups is comparable to that of threads of control ; an active
object corresponds to a thread of control and at most one thread is active in each
object. To avoid confusion with, e.g., Java-like threads, we decided to avoid the term
“thread” and use “activity group” instead.



Operations are synchronous: a caller is suspended (blocked) until the callee
executes the return. Signals are sent asynchronously: the sender may continue
immediately and the signal is put in a signal queue at the receiver side. Signals
are selected from the queue in order of arrival.

The definition of the semantics in PVS is parametrized by the particular
types that are to be instantiated by the model that we wish to verify: given that
a model provides the names used for classes, attributes, locations, etc., and the
set of state machine transitions, this theory defines a labelled transition system
which is used as input to the verification in tlpvs as explained below in Sect. 4.

For more details of our semantics see [7], which also explains how we model
features like inheritance, real-time, and primitive operations, that do not play a
role in the examples presented in this paper.

4 A Brief Overview of TLPVS

To reduce the enormous manual effort required to complete deductive proofs, we
developed tlpvs, a system which embeds temporal logic and its deductive frame-
work within an existing powerful general-purpose high-order theorem prover,
PVS [14]. This system includes a formal PVS specification of the LTL temporal
logic based on [12] and a framework for defining systems.

A number of rules for proving safety and response properties are included in
the system, each one accompanied by a strategy supporting its use. These rules
and strategies greatly reduce the routine theorem proving interaction. All proof
rules used are defined and proved correct within tlpvs. Using them we eliminate
the pen-and-paper application of “known” rules typical in many proofs, and the
validity of our final proof rests solely on the correctness of PVS.

4.1 Parameterized Fair Systems

The computational model of parameterized fair systems [16] is used for defining
systems in tlpvs. This is a variation of the fair discrete systems of [9] which,
in turn, are derived from the model of fair transition systems [12].

A parameterized fair system (pfs) is a tuple S = 〈V,Θ, ρ,F ,J , C〉, where

– V is a finite set of typed system variables. We define a state to be a type-
consistent interpretation of V . A (state) predicate is a function which maps
states to truth values. A bi-predicate defines a binary relation over states.

– Θ is a predicate characterizing the initial states called the initial condition.
– ρ(V, V ′) is a bi-predicate relating a state to its successors called the transition

relation.
– F is a non-empty fairness domain which is used to parameterize the fairness

requirements of justice and compassion.
– J is a justice (weak fairness) requirement. This is a mapping from F to

predicates.
– C is a compassion (strong fairness) requirement.5

5 We do not use compassion requirements in this paper, and omit them from the
explanation. The interested reader is referred to [12, 16].



We define a computation of S to be an infinite sequence of states σ : s0, s1, s2, . . .
satisfying the following requirements:

– Initiality : s0 is initial, i.e., s0 |= Θ.
– Consecution: For each j, the state sj+1 is a successor of the state sj .
– Justice: For every t ∈ F there are infinitely many J [t]-states in σ.

A typical justice requirement is that continuously enabled transitions are even-
tually taken. For example, in the mars system we may require that the data
sources of Fig. 2 send messages infinitely often.

The henceforth operator 2 and the eventually operator 3 are defined as:

(σ, j) |= 2p ⇐⇒ for all k ≥ j, (σ, k) |= p,
(σ, j) |= 3p ⇐⇒ exists k ≥ j, (σ, k) |= p,

where (σ, j) |= p denotes that property p holds at position j in σ.

4.2 Parametrized Fair Systems for UML Models

A pfs is an unlabeled transition system. For this reason, our state data-structure
includes, in addition to the state information defined in the kernel language,
the label of the last transition that has been taken. We may also want to use
auxiliary (history) variables in our proofs. The desired auxiliary information
varies according to the system and properties to be verified.

The transition relation ρ is derived from the kernel semantics transition re-
lation, and the transition relations for auxiliary variables. Similarly, the initial
condition Θ requires that both the kernel semantics state and the auxiliary com-
ponents satisfy their initial conditions.

4.3 Verifying Safety Properties

Intuitively, safety properties assert that “something bad does not happen.” They
are of the form 2a, asserting that predicate a holds in every state that the system
may reach.

The most frequently used rule for proving safety properties is the basic in-
variance rule, binv [12]. This rule (Fig. 4) states that if a holds at the initial
system state, and is preserved by all transitions, then a is a system invariant. It
is the rule we use most often in verifying safety properties.

Rule binv is implemented within tlpvs, and is applied using strategy binv.
Strategy binv applies the rule, and typically manages to discharge premise B1
automatically. User interaction is then required to prove premise B2. However,
the strategy does expand the kernel semantics definitions, labeling the different
formulas, and distinguishes subsequent cases according to the kind of transition
involved (discarding a signal, locally triggered transition, etc).



Rule binv

For predicate a,

B1. Θ −→ a

B2. a(V ) ∧ ρ(V, V ′) −→ a(V ′)

2a

Fig. 4. Rule binv (basic invariance)

5 Verification of the MARS Example

In this section we describe how tlpvs was used to verify safety properties in the
example of Sect. 2. We would like to verify the following property.

Property NoError: If the data sources never send noAlt and noNav messages,
the receiver never reaches the bus-error location.

This property is not inductive (its holding in the current state does not ensure
that it will hold in the next state). As is typically the case in theorem proving, to
prove it, it is necessary to prove other, more basic, properties, and to strengthen
the invariant. We derive a strengthened invariant:

Property NoError′: If the data sources never send noAlt and noNav mes-
sages, then:
– The receiver never has noAlt or noNav messages in its signal queue;
– The receiver’s noAltCnt and noNavCnt counters remain at zero;
– The receiver does not reach the bus-error location.

This second property is inductive and can be proved using rule binv. Thereafter
it is easy to show that NoError is implied by the strengthened property.

Proving premise B1 was done by the binv strategy without user intervention.
However, proving premise B2 (the property is invariant over the transition re-
lation) did require user interaction. This invariance must be proved for each of
the 26 state machine transitions, as well as for the auxiliary actions such as the
discarding of signals.

The strategy breaks these transitions into groups according to type (e.g.,
triggered and untriggered transitions in different groups). Each such branch in
the proof is dealt with uniformly, that is, we apply the same set of commands
to prove the invariance over all triggered transitions (using the then sequencing
strategy of PVS). Some transitions differ from others in their group, and must
be dealt with separately. However, the majority are dealt with by a common
procedure with no user interaction. The resulting proof was far less interactive
than had been anticipated.



6 The Sieve of Eratosthenes

Eratosthenes’ prime sieve algorithm is an ancient algorithm for identifying the
prime numbers. The algorithm is inherently unbounded as it can be used to
verify the primality of arbitrarily large numbers. We built a UML model of this
algorithm, and then verified both the safety property that only primes are identi-
fied as prime, and the liveness property that every prime is eventually identified.
Despite its simplicity, this example allows us to demonstrate our ability to model
and verify object creation and unbounded systems.

�� ��g0r- -/itsSieve:= new Sieve �� ��g1
�� ��g2

� �
?

/itsSieve!e(counter)
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/counter:= counter + 1

�� ��s0r- -e(prime)/itsSieve:= new Sieve �� ��s1

��
?

e(x)[prime.divides(x)]


	6
e(x)[not prime.divides(x)]/itsSieve!e(x)

Fig. 5. State machines for the prime-sieve generator (above) and sieves (below).

The objects in the prime-sieve algorithm (Fig. 6) are a single generator
and an unbounded number of sieves. Each object has a unique identifier: the
generator has identifier 1, sieves are numbered from 2 upwards. The counter of
the generator is initialized to two. After creating the first sieve, the sieve sends
it all the natural numbers from two upwards (by repeatedly sending and then
incrementing the value of its counter).

On receiving its first signal, a sieve stores this number as its prime, and
creates the next sieve, while taking a transition from location s0 to s1. A sieve
which has received and stored a prime and is in location s1 is called looping,
while if it is at location s0 it is called non-looping. Subsequent numbers received
by a looping sieve are compared to its prime number, prime. Numbers which are
not multiples of prime are passed on to the next sieve.

Intuitively, a number z which is not a prime will be eliminated when it reaches
a looping sieve whose prime is a factor of z. If z is a prime, then no sieve will
eliminate it and it will bubble through the system until it reaches a non-looping
sieve, which will store z as its prime.

6.1 Primes are Correctly Identified

In this section we outline the proof of the safety property that every number
identified as prime by a sieve is truly prime:



Property SievesPrime: The number stored in the prime field of a sieve at
location s1 is prime.

This property is not inductive and can only be proved once we have proved some
additional properties. We need to show that composite (non-prime) numbers are
eliminated by the sieves before they reach a non-looping sieve. We note that
a composite number n must have some prime factor f < n. This factor must
precede n in the sequence of signal queues, until f is itself identified as prime by
some sieve i. The number n should then be eliminated when it reaches sieve i (if
it wasn’t eliminated before). Our argument that n is removed from the system
depends on f not being removed, a property which must also be proved.

So, to prove the invariance of SievesPrime we prove that every composite
number is preceded by a prime factor (FactorsPrecede), a proof which itself de-
pends on showing that primes are not eliminated (PrimesRemain). In addition,
we found it useful to prove some technical system properties such as that all
numbers in the queues and sieves are greater than one. These properties sim-
plified our proofs, using binv, of FactorsPrecede and PrimesRemain. Property
SievesPrime follows quite simply from FactorsPrecede and is also proved using
binv. (The main idea is that when a number reaches a non-looping sieve there
are no numbers preceding it in the system, and so it is prime.)

7 Fairness and Liveness

Intuitively, liveness properties assert that under certain conditions a given event
will occur. They are generally more difficult to verify than safety properties, and
entail the use of the system fairness requirements. They typically require that
the user devise well-founded ranking functions, whose values decrease until the
desired event occurs.

In this section we discuss first our proposed definition of fairness requirements
for the UML diagrams under discussion (Sect. 7.1). We then discuss our response
rule, dist-rank (Sect. 7.2), and finally demonstrate its use in prime-sieve

(Sect. 7.3).

7.1 Fairness Requirements for UML Models

To the best of our knowledge, no formal definition of fairness requirements for
UML models appears in the literature. We propose the following definition:

For every activity group A, if there is always some transition of an object
in A enabled, then A takes transitions infinitely often. More formally:

2(2(∃t : enabled(t, A)) −→ 23(∃u : taken(u,A))),

where t and u range over transitions.



Rule dist-rank

For pfs S = 〈V,Θ, ρ,F ,J , C〉,
Given initial and goal predicates p, q, helpful predicates {ht : t ∈ F},
ranking functions δt : Σ 7→ IN with finite support

D1. p → q ∨
∨
t∈F

ht

D2. ht ∧ ρ → q′ ∨ h′t ∨

δt > δ′t ∧
∨
u∈F

h′u


D3. ht ∧ ρ → q′ ∨

∨
d∈F

∧
u∈F

(δu ≥ δ′u ∨ δd > δ′d ∧ δd > δ′u)

D4. ht → ¬J [t]


For t ∈ F

2(p −→ 3q)

Fig. 6. Rule dist-rank

Observe that fairness is not defined on the level of objects, but on activity
groups (although this coincides if all objects are active). Moreover, it is not
required that every transition that is continuously enabled be taken, or that
the same transition remain continuously enabled – it is sufficient to take any
transition currently enabled for the activity group. This is motivated by the
observation that switching control between objects in an activity group may
cause transitions to become disabled.

7.2 Verifying Response Properties in Unbounded Systems

Object creation complicates verification in that it is not known, a priori, how
many objects will participate in a run. Devising appropriate ranking functions
is complicated in such systems. We have developed a new rule, dist-rank,
which is particularly suited to unbounded systems [16]. A derivation of the well

rule [20], dist-rank allows us to distribute a ranking function over a potentially
unbounded number of objects in the system.

Rule dist-rank (Fig. 6) traces the progress of a computation from an ar-
bitrary p-state to an unavoidable q-state. Intuitively, a well-founded ranking
function δ is distributed over the fairness domain. We show that until a q-state
is found, δ decreases monotonically. The well-foundedness of δ then assures us
that a q-state is eventually encountered.

With each helpful predicate ht of the rule we associate the justice require-
ment J [t]. Intuitively, the helpful predicate defines a set of states in which a
just transition is enabled. When this just transition is taken, and ceases to be
helpful, the rank decreases. Thus, the helpful set indicates a transition it would
be “helpful” to take in order to decrease the rank.

Premise D2 ensures that the application of a transition to a state satisfying
predicate ht will cause the rank for fairness domain element t to decrease. When



an element decreases, other elements are allowed to increase providing that their
new values are strictly smaller than the old value of a decreasing element (D3).
The net result is a reduction in the total system rank [16].

As long as the rank does not decrease ht will continue to hold and J [t] will
not (D4). Since the system is just J [t] must hold eventually (Sect. 4.1) and so
the rank must eventually decrease. Due to the well-foundedness of the ranking
functions, the rank cannot decrease infinitely often. Thus, we cannot have an
infinite fair computation which avoids reaching a q-state.

The well-foundedness of the ranking function depends on it always having
finite support. That is, it must be shown that only a finite number of fairness
domain elements can have a positive rank at any point.

7.3 Verifying Response in the Sieve Example

In this section we demonstrate how the dist-rank rule can be used to verify
that every prime number is eventually found (meaning, it is stored in the prime
field of a looping sieve.)

Property PrimesFound: ∀z : 2(prime(z) −→ 3(found(z)))

We first define the system fairness requirements. In prime-sieve, every ob-
ject is in its own activity group. The generator always has some transition en-
abled, and thus the requirement is that eventually it takes a step. A sieve has a
transition enabled if its message queue is non-empty. In this case, the require-
ment is that a transition eventually be taken.

Whereas the generator changes location when it takes a step, a looping sieve
remains at s1. A change in location can therefore not be used as an indication
that a transition was taken. Instead we use an auxiliary boolean flag variable
which changes value every time a sieve at location s1 takes a transition.

We define the fairness domain as the tuple [loc, pid, flag], where loc is the
object location, pid is the object identifier, and flag is an auxiliary variable.
The justice conditions then state, intuitively, that the generator changes location
infinitely often, and that a sieve with non-empty signal queue will either change
location or change its flag variable.

We now define a ranking function. We first define a “rank” for objects, and
then use this to define ranks for fairness domain elements.

We ensure that the rank of the generator decreases with time by making
it inversely dependent on the value of the generator counter. It is defined as
2z − counter + 1.

For sieve i ≤ z with a non-empty signal queue with value h ≤ z at its head,
the rank is calculated as 2z−h−i+1. Since the numbers in the signal queues are
monotonically increasing, the rank of the sieve decreases as it processes queue
elements. A sieve with an empty signal queue is assigned rank 0. Therefore,
when an element is pushed onto sieve i’s empty signal queue, the rank of sieve
i increases. The rank of sieve i − 1 will, however, decrease (its signal queue is
either empty or has a larger value at its head). To ensure that the new rank of



sieve i is smaller than the old rank of sieve i− 1 (as required by premise D3 of
dist-rank), we subtract the object (sieve) identifier from the rank.

We have now defined ranks for objects. The fairness domain element d is
given the rank of object d.pid, provided the object d.loc is no larger than the
current location of d.pid (where g0 < g1 < g2, s0 < s1). As the sieve progresses
to location s1 the rank of its various domain elements are set to zero. The number
of domain elements with positive rank can thus be viewed as a counter of sorts,
decreasing as the sieve approaches location s1. (On moving from location s1
back to s0, a new, lower, rank is allocated to relevant fairness domain elements.)

Finite support is guaranteed by defining the rank of a sieve i to be zero if
h > z or i > z. It is easy to see that in both cases the activity of the sieve is no
longer of interest for verifying the primality of z: if h > z then z must already
have passed through the sieve, or have been eliminated. The prime number of a
looping sieve is never smaller than the sieve’s identifier, and so for i > z, sieve
i’s prime cannot be a factor of z.

A transition of the generator is helpful if it is enabled, and the generator
counter is less than z. Once z has been generated, the sieve transitions become
helpful. A transition of sieve i is helpful if it is enabled and z is in queue i.

Having defined the necessary components, and some auxiliary properties
(such as that the values in the signal queues are monotonically increasing) we
are able to use tlpvs to verify PrimesFound. This property is non-trivial to
prove, and its verification took over one person week. However, we regard the
fact that it was tractable at all as an indicator of the appropriateness of tlpvs,
and the dist-rank rule in particular, to the verification of UML models. The
rule dist-rank is implemented in tlpvs together with a strategy for applying it.
In addition, many generic theories and strategies of tlpvs proved very useful.
For example, a theory of list properties was used when reasoning about mes-
sages in the signal queues, and much use was made of pre-existing simplification
strategies.

8 Related Work and Conclusions

In this paper we have presented a methodology for the deductive verification
of UML models, and demonstrated it on two examples. We present a new def-
inition of fairness for such models. Future work includes the extension of the
methodology to features not yet covered (such as orthogonal states) and timed
systems.

Much work has been done on formal semantics of UML models (e.g., [18,
6]). A two-dimensional propositional linear temporal logic is used to define the
semantics of real-time UML behavior [22]. A proof system using PVS is pre-
sented, but verification results were not reported. In contrast, we use transition
systems to define the UML semantics, and standard LTL for verification. In [25]
an axiom-based definition of UML semantics is given, along with a PVS-based
verification environment (PrUDE). The authors demonstrate how simple safety
properties can be specified and proved. However, it appears that the system does



not include a formal specification of a verification logic (such as LTL) and its
proof rules, which we believe are necessary for the specification and verification
of more complex properties. For more details on various semantics efforts and a
comparison to our work see [2, 7].

Model-checking has been applied to the verification of UML models in [15,
10, 4]. Apart from the state explosion problem which limits the size of the models
that can be verified, these techniques can be applied directly only to finite mod-
els. Thus features like object creation, unbounded event queues and unbounded
domain variables cannot be treated in a straightforward way. To overcome these
limitations, [1] presents a symbolic analysis technique which can be tuned to
give a finite, possibly inexact representation of the unbounded event queues. A
natural class of protocols for which this representation is both finite and exact
is studied. In [3] the symmetry-based technique of query reduction and the ab-
straction technique data-type reduction are applied in the verification of UML
models. In [13] the IF tool-box is used for verifying UML models which have
been mapped to communicating extended timed automata.

In contrast, our deductive approach allows us to verify models directly with
unbounded queues and variables and object creation. There is a trade-off here
between the added user-interaction in deductive proofs and the need to devise,
and work with, specialized methods for model-checking unbounded systems.

Our work was done as part of the EU project Omega [17]. According to the
Omega approach, users construct UML models using existing industrial case
tools. An XMI representation of the model is then used as input to verification
tools constructed by the academic partners of the consortium. Some automated
preprocessing may be applied at this level, e.g., the flattening of state machines,
and subsequently the representation of the model is translated to a representa-
tion of the model in PVS by the uml2pvs tool [11]. Future work in the Omega
project considers the extension of the uml2pvs tool to translate OCL constraints
to PVS.
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