
Online Optimization in Internet Data Centers
Youssef Hamadi

Microsoft Research Ltd.
7 J J Thomson Avenue
Cambridge CB3 0FB,

United Kingdom.
youssefh@microsoft.com

February 2004

Technical Report
MSR-TR-2004-10

Internet data centers (IDCs) perform multi-customer hosting on a virtual-
ized collection of hardware resources. These systems give a new answer to
website hosting by delegating all the worry of server management on the
IDC provider side. These computing farms have to cope with important
issues. Besides management and security considerations we find the im-
portant problem of resource allocations. This problem despite its combi-
natorial nature is hard to solve since hosted customers increasingly require
support for peak loads that are orders of magnitude larger than what they
experience in their normal state. Thus, a hosting environment needs a fast
turnaround time in adjusting the resources (bandwidth, servers, and stor-
age), assigned to each customer. In this work we present an autonomous
system for online resource allocations in IDCs. Our system takes ad-
vantage of monitoring informations upcoming from the infrastructure to
reconsider its mathematical modelling of the components. Combined to
the versatility of Constraint Programming (CP) it performs a continuous
adaptation of the allocated resources and ensures a smart hosting of the
applications.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1

1 Introduction

A data center infrastructure consists of a ”farm” of massively parallel, densely pack-
aged servers interconnected by high-speed, switched LANs. Current data centers con-
tain tens of thousands of servers; projected infrastructures are even larger [2]. Typi-
cally, those computing farms have to host a large set of e-commerce applications which
raises a set of important issues. Besides management and security considerations we
find the important problem of resource allocations. This problem despite its combina-
torial nature is hard to solve since hosted customers increasingly require support for
peak loads that are orders of magnitude larger than what they experience in their nor-
mal state. Thus, a hosting environment needs a fast turnaround time in adjusting the
resources (bandwidth, servers, and storage), assigned to each customer. Our work has
two main contributions to solve the previous problem. First of all, it presents a Con-
straint Programming [9] solution for resource allocation in large-scale IDCs. Second,
it embeds this solution in an online architecture which can autonomously adapt to its
moving environment. Both goals are challenging according to the size of projected
IDCs. However, the versatility on constraint programming associated to a dynamic
modelling allows us to achieve our these goals.

In the following, we first report previous work in section two. Section three gives
the details of our CP modelling for resource allocation. Section four presents the com-
ponents of the online architecture in charge of the adaptation. Then before giving a
general conclusion in section six, experimental results are presented in section five.

2 Related work

We report here two categories of work. First, some work related to the specific problem
of efficient resource allocation in IDCs. Second, some work specifically connected to
online problem solving.

The Oceano [6] project is designing and developing a pilot prototype of a scalable,
manageable infrastructure for a large scale ”computing utility power plant”. Oceano’s
goal is to introduce high levels of automation to dynamically adjust web sites to actual
traffic demands over a massively parallel array of shared and distributed servers. Via
Oceano a group of servers can be automated to handle the IT needs of many users, in-
cluding on-the-fly changes in the load requirements. The level of adaptation of Oceano
are very close to our proposal. However, Oceano embraces a large scope (redundancy,
reliability, etc.) while our work is focused on efficient resource allocation. The work of
[11] presents the allocation of multi-tier e-commerce applications. Authors use mathe-
matical integer programming (MIP) mixed with dedicated heuristics to solve this hard
problem. Our approach is much more versatile and adaptive since we perform succes-
sive reallocations through monitoring. [4] discusses several approaches to define and
prototype a data model devoted to IDC configuration. They aim at facilitating the man-
agement of large scale Internet data center. The authors are interested in the modelling
of the information model of these centers. This work is important and helpful to define
a realistic mathematical modelling of this problem.

The goal of the Eole project [7] was to build an online optimization framework

1

dedicated to telecom applications. The framework can consider environment events,
reconfiguration possibilities, temporal constraints and resource constraints. This work
was able to enhance the Quality of Services of network providers, by increasing flexi-
bility and capacity of adaptation. This project develops interesting new search proce-
dures. Most of them are hybrid and adaptive. The adaptive feature of these algorithms
is used to efficiently react to the environment.

3 Constraint programming modelling

3.1 Internet data center

A data-center infrastructure consists of a ”farm” of massively parallel, densely pack-
aged servers interconnected by high-speed, switched LANs. We present here the for-
malization of each element of such farm.

...

...

...

SE

SR

S ...

SR

SS

...

...

SR

SS ...

SR

SS

SE

SM

S

Figure 1: Internet data center topology

Figure 1 presents an abstraction of an IDC. It is composed by a set of intercon-
nected resources (compute nodes and storage nodes) and by networking components
(switches, routers, etc). They have a tree-like structure organized in three layers of
switches.

The switch mesh (SM) is the root of the IDC; this component is connected to the
outside world and to a collection of edges switches (SE). These switches are connected
to a set of rack switches (SR) that are connected to a set of servers (S). Duplex links
are used for the interconnection of the different switches/servers. Each link has a fixed
bandwidth limit. The presented topology has three layers but the present work can be
generalized to any tree-like architecture1.

3.1.1 Topology

We detail here the constraint formalization of the previous architecture. Each resource
is represented by its related limitations/capacities.

An IDC is delimited by its size:

1The tree structure gives a unique path between resources; this feature is used for efficient solving.

2

����� number of SE switches

����� number of SR switches per SE switch

��� number of Servers per SR switch

With the previous definitions, the size of an IDC is � ��� � �	� � .

3.1.2 Switches

The delay for communication in the different switches is ignored . But each switch has
some bandwidth limits.

��
����� /
����� represent the input/output bandwidth limits of the SM switch

��
�������� /
�������� represent the input/output bandwidth limits of the ����� SE switch

��
�� � ��� /
�� � ��� represent the input/output bandwidth limits of the ����� SR switch

3.1.3 Servers

Each server node ��� has several attributes to express its hosting capacities.

�����! #" � represents the number of CPUs for the server

����$% &���(' � frequency of the server’s Cpu(s)2

����)��� � memory size

����$ ��* �,+,-.� � storage capacities

����/10�2(�.$3 #�(��' � hard drive speed

��
��1��0 � /
��1� * � represent the input/output bandwidth limits of the server

3.2 Multi-tier application

Figure 2 presents the typical structure of a classical e-commerce application. In these
applications, clients send their requests via the Internet. At the top level, some load
balancing mechanism routes this traffic to a set of 465 web servers. Each web server
is able to satisfy requests for static resources. If a web server cannot satisfy a request,
it forwards it to one of the 4�7 application servers. Application servers run scripts and
make use of the 4�8 data base servers to support information retrieval, transactional
order management and personalization [1]. They prepare html responses, which are
addressed to customers via the web servers.

We model an application A with a graph 9;:=<�>@?BADC , where X is the set of pro-
cesses required by the application (E >FEG:H465�IJ4�7KIL4�8) and E the set of duplex
connection between processes. Each process M � of the application has a set of lower
bounds requirements.

2In a multi-processor architecture we assume the same speed for each CPU.

3

Internet

db2

as1 as2

wb1 wb2

...

...

...

db1 db_n3

as_n2

wb_n1

Client

Tier 2

Tier 3

Tier 1

Figure 2: Typical e-commerce application

� M �! #" � represents the number of CPUs required by the process

� M $3 &����' � frequency of the required CPUs

� M) �� � size of the required memory

� M $ ��* �,+,-.� � required storage space

� M /10 2��.$3 &����' � hard drive speed

��
��1��0 � /
��1� * � represent the input/output bandwidth limits of the server

The bandwidth requirements for duplex connections are represented by the follow-
ing values:

� ����� 5 expresses the required bandwidth between a client and a web server.

� ��� 5�7 , required bandwidth between a web server and an application server.

� ��� 7B8 , required bandwidth between an application server and a data base server.

3.3 Resource allocation

In order to define with the previous modelling a constraint programming solution to our
problem we first define a set of constrained variables. Then we connect those variables
with relevant constraint relations in order to compute correct solutions.

4

3.3.1 Variables

Before defining the constrained variables of this problem, we need to define some
notation 3.1).

DEFINITION 3.1�����������
	 � ���� � ��� , represents a constraint variable � composed by the integer � � to
� �

.

Internet data center The SM switch uses two constrained variables to express re-
spectively its input/output bandwidth load.

� �����������
	 � ���
�� � � , � ������������	 � ���
�� � �

The � ��� SE switch uses two constrained variables to express respectively its in-
put/output bandwidth load.

������������������	 � ���
������ � � , �����������������
	 � ���
�������� �

The � ��� SR switch uses two constrained variables to express respectively its in-
put/output bandwidth load.

�����������������
	 � ���
�������� � , ���(�������������
	 � ���
����(��� �

Each server � uses the following set of constrained variables

� M ��� � ��!! �"�#�$�����%	 � ��� 4 5 I 4�7�I 4�8 � which represents the identification of the
hosted process. Remark that among those 465 I 4�7 I 4�8 I'& values, the last one
represents a special value expressing that the server is not hosting anything.

�)(+* � � 5 � ���������
	 � ��� & � boolean variable set to 1 if the hosted process is part of the
first tier of the multi-tiered application, i.e., M ��� � ��!! � between 0 and 4 5-,.& .

�)(+* � � 7 � ���������
	 � ��� & � boolean variable set to 1 if the hosted process is part of the
second tier of the multi-tiered application.

�)(+* � � 8 � ���������
	 � ��� & � boolean variable set to 1 if the hosted process is part of the
third tier of the multi-tiered application.

The application Each process � of the multi-tiered application has one constrained
variable.

��� � �/ � � �"�#�������%	 � ��� ����0 ���10�� ,2& � represents the hosting server for the � ���
process.

5

3.3.2 Constraints

In order to limit M ��� � ��!! � and � � �/ � � � to possible allocation sets we start with a static
pruning of their possible values:

� ��� ? � M ��� ? ������M ��� � ��! ! � iff ���! #" ��� M �� ." � � ? ��$% &���(' ��� M $3 &����' � � ? ��) �� ���
M)��� � � ? � $ ��* � +,-.� � � M $ ��* � +,-.� � � ? � /10 2��.$3 &����' � � M /10�2(�.$3 #�(��' � �

� M � ? � � ��� ?�� � � � � �/ � � � iff M �� #" �	� � �� #" � � ? M $% &���(' �	� � $% &���(' � � ? M) �� �
�
�) �� � � ? M $ ��* �,+,-.� ��� � $ ��* �,+,-.� � � ? M /10 2��.$3 &����' ��� � /10 2��.$3 &����' � �

In order to correctly compute the required bandwidth at each server, we define three
boolean vectors.

DEFINITION 3.2 * � � & 	 � � : & if M � is in the first tier of the application, 0 otherwise.
 * � ��� 	 � � : & if M �

is in the second tier of the application, 0 otherwise.
 * � ����	 � � : & if M � is in the third

tier of the application, 0 otherwise.

Those vectors are used to define the values of the (* � �%0 � variables in relation with
the hosted process M ��� � ��! ! � :

� � � ���"� 4 < * � � & ?BM ��� � ��!! � ? (* � � 5 � C
� � � ���"� 4 < * � ��� ?BM ��� � ��!! � ? (* � � 7 � C
� � � ���"� 4 < * � ��� ?BM ��� � ��!! � ? (* � � 8 � C
The operational semantic of an

� � ���"� 4 constraint can be seen as an indirection
between constrained variables.

� � ��� � 4 < (?(>@?��KC enforces T[X] = Y. In our case, the(* � �&0 � variables will receive a correct value 0 or 1 corresponding to the hosted pro-
cess’s tier.

In order to verify that M ��� � ��!! � :L� ��� � � � / � � � � : � we need another
� � ���"� 4

constraint. This time, the vector (+� � is made by the set of M ��� � ��! ! � variables:

� � � �/ � � � ? � � ���"� 4 < (+� � ? � � �/ � � � ? ��C
Now, since two servers cannot host the same process, we put an ��� ����*���� constraint

between them. Such a constraint ensures that a set of variables are using different val-
ues. However since some server can be unallocated which for us is interpreted by the
hosting of the extra process ranked 4656I 4�71I 4�8 , this peculiar value is not considered
by our alldiff.

alldiff <�M ��� � ��!! � C
To respect the bandwidth limitations of each SR switch, we define the ingoing

traffic � � � � as the traffic addressed by the external processes towards processes hosted
by � � � :

6

� � � � ? � � ��� : <��� $ � ��� $�� � (* � � 5 � � C � ��� � 5 I�< 4 5 , �� $ � ��� $���� (* � � 5 � � C � <��� $ � ��� $���� (* � � 7 � � C �
��� 5(7 I <�4�7 , �� $ � � � $ � � (* � � 7 � � C � < �� $ � � � $ ��� (* � � 5 � � I �� $ � � � $ ��� (* � � 8 � � C � ��� 7B8�I@< 4�8 ,
�� $ � ��� $	� � (* � � 8 � � C � < �� $ � ��� $�� � (* � � 7 � � C � ��� 7B8

Since we assumed a symmetric bandwidth between related tiers, � ��� � : ���(��� .
Bandwidth limitations at the edge level (SE) are expressed similarly, � ��� � : ������� :

� ��� � ? ������� : <��� $ � � � $	
 � (+* � � 5 � � C � ����� 5#I�<�4 5, �� $ � � � $�
 � (* � � 5 � � C � <��� $ � � � $�
 � (* � � 7 � � C �
��� 5(7 I <�4 7 , �� $ � ��� $
 � (* � � 7 � � C � < �� $ � ��� $
 � (* � � 5 � � I �� $ � ��� $
 � (* � � 8 � � C � ��� 7B8 I@< 4 8 ,
�� $ � ��� $
 � (* � � 8 � � C � <��� $ � �� $
 � (+* � � 7 � � C � ��� 7B8

The SM switch is routing the traffic from the first tier to the external clients. Limi-
tations at the SM switch are verified by the following constraints:

���� : ���� : ����� 5 0 4 5
3.3.3 Optimization

The previous set of equations gives correct solutions for the allocation of a multi-tiered
application in an IDC. However, the hierarchical structure of the hosting infrastructure
allows us to distinguish between these solutions. The optimal solution to this resource
allocation problem minimizes communication latency. We express this optimization
function with the following constraint:� * 41< �� $ �����.��� ��� $ �����.��� � � ��*

! < �!? � � C � � � 4 � < �!? ��C(C
In the previous equation, � * ! < ��? � � C represents the distance in number of link

within the IDC (2, 4, or 6) between the two servers hosting processes � and � � . This
value is weighted by the required bandwidth. The solver will have to minimize the
previous cost function to found out the optimal allocation.

3.3.4 Breaking symmetrical solutions

The high level of symmetries occurring in the network infrastructure and within the
applications raises a large set of equivalent solutions. If we consider that the size of the
search space is � <B< 4 5�I 4�7�I 4�8#C $
�� $�� � $ C , it becomes crucial to remove symmetries.
Do do so, we can apply some specific constraints.

At the infrastructure level We can break symmetries within each � � � switch iff the
following proposition (checked after the initial filtering) holds:

7

PROPERTY 3.1� � 0 ? ��� � � � � ? M �� � �!! 0�� M �� � �!! �

That means that the two servers are equivalent, i.e., they can host the same subset of
processes. Moreover, since they are connected to the same SR switch any combination
of hosting between them has the same impact on the cost function (see 3.3.3). E.g.,
<�M ��� � ��!! 0 : � ? M ��� � ��! ! � : � C � <�M ��� � ��!! 0 : � ?BM ��� � ��!! � : � C . In order to break
those symmetries, we add the following new constraint when the property holds:

� 4 � A�� � � � < M ��� � ��! ! 0 ?BM ��� � ��!! � C
We cannot use a tighter condition (Inf) since IDC’s servers express their availability

by hosting a fake process (see above).

Between SE switches (and within the SM switch) the calculation of an equivalence
condition between servers becomes harder since their routing costs are different.

At the application level Within each tier of the application, the processes are equiv-
alent. We can directly remove some symmetries with the following constraint:

� 4 � < � � �/ � �&0 ? � � �/ � � � C

4 Online Optimization in Internet Data Centers

In the previous section, we have presented a solution to the problem of resource allo-
cation in IDCs. Thanks to this modelling, any CP solver can be used to compute the
optimal allocation of a set of multi-tiered e-commerce applications into a given IDC.
However, the world is not static and the environment is constantly changing. The traffic
of a given application can greatly vary over time and similarly, the IDC topology can
vary according to failures/maintenance/extensions.

In this section we first show how to integrate those variations in our CP modelling.
We then detail our online optimization architecture which constantly monitor the envi-
ronment and efficiently update the solution.

4.1 Changing traffic

E-commerce applications usually experience very large traffic variations [1]. In figure
3, the advertising campaign can be predicted3. The typical variation upcoming from
classical Christmas and bank holiday can also be predicted. However, the sudden fail-
ure of a competitor could report some of its customers to your application. This sudden
raise of traffic cannot be predicted.

During those sudden peaks, the current resource allocation which is based on some
agreed service level agreement (SLA) will not be able to cope with this new traffic.

3Of course you must bet on a bit of communication between marketing and IT.

8

holiday

#requests

Competitor
failure

annual load
Christmas

SLA
agreed

Advertising
campaign

Bank

Figure 3: Web site annual load

The obvious solution is to raise the agreed SLA but this oversizing is wasteful.

Another possible variation for an application is the change in traffic classes. Imag-
ine that your application uses some personalization technology. Your system must learn
the specific interests of users to provide dedicated content. However, at the beginning
of its registration, the knowledge on a given user is empty. You will then provide
basic (static) content to this user. With time, you can learn user’s profile and then pro-
vide dedicated (dynamic) content. The previous changes traffic classes (from static to
dynamic) without changing the amount of external traffic. With successful personal-
ization technologies the second and third tiers of your application will become more
solicited. As said previously the current allocation based on some agreed SLA could
not be well suited for those variations.

4.2 Changing infrastructure

Large computing infrastructures like Internet data centers are prone to component fail-
ures. Moreover such large systems involve important maintenance and update opera-
tions. Those breakdown and update can greatly jeopardize the hosted applications. An
IDC provider needs an efficient mechanism in order to maintain an acceptable service
level while performing essential maintenance operations.

4.3 Dynamic Constraint Programming modelling

In this section we show how to extend our initial problem modelling in order to cope
with the previous variations. The idea is to take advantage of the versatility of Con-

9

straint Programming. Indeed, in this formalism, any problem M can be transformed in
a new problem M � by some addition/removal of constraints [5].

4.3.1 Application

To successfully face traffic variations (amount and classes), we start with an over-
sized modelling which can manage the worst loads. We then select within this large
set of components a subset which can satisfy some initial SLA. Remaining units will
be selected and added to the application with respect to traffic variations. Figures 4
presents those two sets.

wb2

as1 as2

db4

as3 as4

wb3 wb4

db1 db3db2

Initial requirement Possible enlargements

wb1

Figure 4: Dynamic modelling of an e-commerce application

In order to disconnect the remaining components from the initial set we use the
following constraints:

��� � �/ � � � : � �1� � � � � , this constraints allocate a fake server4 to the remaining
process � .

��
��1��0 � : � ,
��1� * � : � , in the previous modelling and for the sake of sim-
plicity those variables were set as constant. In the dynamic modelling we have
to use constrained variables to apply constraints on them. The transformation is
seamless. Thanks to those two constraints process � has no impact of the cost
function.

The practical result of those constraints is a ’logical’ disconnection of the remaining
part from the modelling. To add more processes we just have to change the allocated
values on the previous constraints. For example to integrate process � :

��� � �/ � � � ���������
	 � ��� � � 0�� � 0�� ,.& �
4Remember that allocated servers range from 0 to �����������	��
��

10

��
��1��0 � ���������
	
��1��0 � ���
��1��0 � � ,
��1� * � ���������
	
��1� * �
���
�� � * �

�

Thanks to the previous transformations, the CP solver can allocate the correct
number of processes. When facing traffic variations our architecture will just have
to add/remove components by changing those few constraints.

4.3.2 Infrastructure

Similarly, changes in the IDC topology can be integrated in the CP modelling by addi-
tion/removal of constraints. Figure 5 features a small data center where the right part
represents a possible extension (second SE switch). Our CP modelling can integrate
those resources from the beginning and avoid their allocation thanks to some extra
constraints. In case of component failure, constraints can similarly disconnect faulty
components.

S

SM

SE

SR

S

SR

SS

SR

SS

SR

SS

SE

Figure 5: Dynamic modelling of an Internet data center

For instance, in order to disconnect the second SE switch:

�������� : � ?
�������� : �

Those two constraints allocate null bandwidth capacities to the switch. The out-
come of that is that related components will not be part of any feasible solution. In the
same way, when a failure is detected, the same kind of constraints can be used to dis-
connect faulty parts. On the figure, the second SR switch becomes deficient. In order
to disconnect it we apply the following constraints:

�� � � � : � ?
�� � � � : �

When the damaged component is replaced, the resource allocation can use it again
thanks to those two constraints:

����(�������������
	
�������� ���
�������� � ?
����(�������������
	
����(��� ���
����(��� �

The same mechanism can be applied for any server addition or removal.

11

4.3.3 Online Optimization

In section 3.3.3 we wanted to minimize communication latency. In this online exten-
sion, it is worthwhile to minimize both latency and turnaround time between successive
allocations. We can integrate this second goal in a new cost function:� * 41< � � �� $ �����.��� ��� $ �����.��� � � � *

! < ��? � � C � � � 4 � < �!?,� C I � � � �� $ �����.��� � ��* ! < �!?�� < ��C(C(C
In the previous equation, � and � � are the weights associated to latency and to

turnaround objectives. Thanks to those weights one can favor one of the criterion. The
history is represented by the function � < � C which gives the location of process � in the
previous allocation. When � was not part of the previous solution, which occurs when
this process is added to cope with increased traffic, the function returns 0.

4.4 Global architecture

We have defined so far a complete CP solution to solve the problem of resource alloca-
tion in IDCs. We also have presented simple extensions of the initial static modelling
towards a dynamic one able to compensate environment’s variations. This compensa-
tion uses a new objective function which is able to minimize both latency i.e., quality
of the allocation, and turnaround, i.e., cost of a reallocation. In this section we are
integrating the previous work in a larger architecture. This online problem solving
architecture presented in figure 6 takes advantage of successive allocations to incre-
mentally raise its performances. Basically we propose to take advantage of previous
resolutions in order to improve the practical complexity of subsequent searches. We
detail the different components of our architecture in the following.

CP modelling

Monitoring

Management
SLAs
negotiation

Search
Control

Search
Algorithms

Infrastructure

results

traffic/topology
variations

admin

search
parameters

statistics
constraints
add/remove

phase
transition

allocation
cost
feasibility

Heuristics

Learning

Figure 6: Online optimization architecture

12

The management module This module is used to setup applications into the IDC
according to search results. Beside that, this module can use the search capabilities
during pre-stage customer negotiation. During SLAs negotiation, the architecture is
useful to know about the feasibility/cost of the hosting.

The monitoring module This part of the architecture continuously monitor the in-
frastructure and the running applications. Significant changes in topology or in traffic
are reported to the search control. The search control takes appropriate decisions by
changing (add/remove constraints) related points in the modelling and by solving the
new resource allocation problem. As presented in section 4.3.3, the new search mini-
mizes the turnaround.

The search modules The search control module is principally connected to moni-
toring and to management. From this later component, it receives allocation demands
and returns informations on feasibility (is there a solution?), cost, physical allocation
results. As explained above, the monitoring component addresses this module to re-
port fluctuating traffic and infrastructure modifications. This component is able to ex-
tend/reduce the amount of allocated resources in response to environmental variations
(see section 4.3). Changes are directly reported in the CP modelling by simple con-
straint additions/removals. Beside those fundamental services, the online situation of
our architecture authorizes it to constantly improve its problem solving performances.
Indeed, it is connected to a learning component which stores statistics on previous
searches. Reported informations include complexity (backtracking, choices, moves),
quality value, etc. This knowledge can be used to increase the practical performances
of future searches. Typically, a deep phase transition analysis [3] can be maintained and
reinforced through time. This deep understanding of the problem is particularly use-
ful to select within a portfolio of search algorithms/parameters the best combination to
tackle new instances [10].

5 Experiments

Projected infrastructures will use thousands of servers. However, matching processes
will not address such a large set of resources. Infrastructures will be logically parti-
tioned in smaller farms with accessible sizes [11]. To achieve those results we used
the sequential branch&bound algorithm of [8]. We defined an IDC with 1024, (�6� :� ? ��� : � ? � : &��) servers. This IDC was derived in two topology. The first one called
’Regular’ uses the following bandwidth limitations,
����� :
����� : & � ?
������ � :
�������� : &�� ?
������ � :
����(��� : � � . The second one called ’Irregular’ uses for each
previous parameter a random value between 1 and the previous limitation. This last
case is interesting to simulate allocation in partially loaded IDCs. Servers were parti-
tioned in three classes able to host respectively, the web servers, the web servers and
the application servers, anything. Their bandwidth limitations were set to
�� � 0 � :
�� � * � :�� � . We used several applications figured as <(< 4 5 ?(4 7 ?(4 8 C ?&< ��� � 5 ? ��� 5(7 ? ��� 5�8 C(C .

Results are presented in table 1. Optimal cost results are labeled with a ’star’. In-
deed, when the experiments were too time consuming, we decided to stop them roughly

13

Regular IDC
Appli. cost time(sec.) #btrks #choices

((3,1,1),(1,2,2)) 24* 50.64 35 16264
((3,1,1),(2,4,4)) 48* 51.14 34 16138
((3,2,2),(1,2,2)) 84 625.05 273 180728

Irregular IDC
Appli. cost time(sec.) #btrks #choices

((3,1,1),(1,2,2)) 24* 34.04 33 11917
((3,1,1),(2,4,4)) 48* 4.09 14 1352
((3,2,2),(1,2,2)) 84 190.40 224 79433

Table 1: Experimental results

after 10 min. We can see that the allocation in the ’Regular’ IDC is much more harder
than in the ’Irregular’ one. Indeed, similar bandwidth capacities raise a high level of
symmetry which generates a larger solution space. With the irregular IDC, the switches
are distinguished and some of them cannot route the required traffic. The results of
these constraints is then to limit the space of feasible solutions. As we can see, the
number of node of irregular search is less important than in regular ones. This results
implies that the solver was able to prune the space earlier according to bandwidth lim-
itations. In regular IDCs the solver had to rely on the cost function to bound the search
close to the leaf level.

6 Conclusion

In this work we have presented a Constraint Programming solution to allocate e-commerce
applications in Internet data centers. We then have extended it to cope with fluctuating
traffic and topology. In order to achieve this last goal we showed how to generalize
our modelling to efficiently raise/lower allocated resources in relation with variations.
We also showed that the latter modelling was able to minimize turnaround by an in-
clusion of some history in the cost function. Finally, we tried to provide a deep and
complete view of this problem by defining an online architecture. We showed that
this architecture could take advantage of repeated combinatorial searches to finely tune
the available search procedures. The experiments demonstrated the feasibility of our
approach to allocate in large infrastructures. Our results are competitive with the one
from [11]. We learned from those experiments that allocating applications in partially
loaded infrastructure was far easier since the impact of previous allocation is to break
the high level of symmetry. As a future work we are planning to use different search
procedure like local search and parallel branch&bound. We are also planning to built a
simulator of traffic/topology variations to give a nice illustration of our concepts.

14

References

[1] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the scalability of a large web-
based shopping system. ACM Transactions on Internet Technology (TOIT), 1(1):44–69,
August 2001.

[2] S. Banerjee and X. Zhu. Internet data centers: A survey of key players and market growth.
Technical Report 2001-39, Hewlett-Packard lab., 2001.

[3] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. In
J. Mylopoulos and R. Reiter, editors, Proceedings of IJCAI-91, pages 331–337. Morgan
Kaufmann, 1991.

[4] J. L. de Verga, J. Guijarro, P. Goldsack, and C. Todman. Modeling and developing the
information to manage an Internet data center. Technical Report 2001-44, Hewlett-Packard
lab., 2001.

[5] R. Dechter. Enhancements schemes for constraint processing: backjumping, learning and
cutset decomposition. AI, 41(3):273–312, 1990.

[6] T. Eilam. Neptune: A dynamic resource allocation and planning system for a cluster
computing utility. In 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID’02), pages 57–64, May 2002.

[7] S. Givry, Y. Hamadi, J. Mattioli, P. Gérard, M. Lemaı̂tre, G. Verfaillie, A. Aggoun,
I. Gouachi, T. Benoist, E. Bourreau, F. Laburthe, P. David, S. Loudni, and S. Bourgault.
Towards an on-line optimisation framework. In CP-2001 Workshop on On-Line combi-
natorial problem solving and ConstraintProgramming (OLCP’01), pages 45–61, Paphos,
Cyprus, December 1 2001.

[8] Y. Hamadi. Disolver: A Distributed Constraint Solver. Technical Report 2003-91, Mi-
crosoft Research, dec 2003.

[9] P. V. Hentenryck. Constraint satisfaction in logic programming. In T. M. Press, editor,
Logic Programming Series. 1989.

[10] S. Minton. Automatically configuring constraint satisfaction programs: A case study.
Constraints, 1(1), 1996.

[11] X. Zhu and S. Singhai. Optimal resource assignment in internet data centers. In Ninth
International Symposium in Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems MASCOTS’01, pages 61–69, August 2001.

15

