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We present a study on conditional maximum likelihood (CML) estimation of probability models
by means of a well known technique that generalizes the Baum-Eagon inequality [1] from polyno-
mials to rational functions. The main advantage of the rational function growth transform (RFGT)
method [5] is that it keeps the model parameter values — probabilities — properly normalized at each
iteration. As a case study we apply the technique to discriminatively train a Na¨ıve Bayes (NB) classi-
fier; the same procedure is at the basis of discriminative training of HMMs in speech recognition [6].

The NB model trained under the maximum likelihood (ML) and CML criteria, respectively, is
used on a text classification problem. Smoothing is found to be a key component in increasing the
classification accuracy. A simple modification of the algorithm increases the convergence speed sig-
nificantly — as measured by likelihood and classification accuracy increase per iteration — over a
straightforward implementation of RFGT. The model trained under the CML criterion achieves a
relative improvement of 40% in classification accuracy over its ML counterpart [3].

The NB model can also be re-parameterized as a standard conditional exponential model en-
coutered in maximum entropy (MaxEnt) estimation [2]. Although the two parameterizations are in
principle equivalent and should lead to the same model when trained under CML, the conditional
exponential model estimated using improved iterative scaling (IIS) and smoothing with a Gaussian
prior [4] outperforms the smoothed NB model estimated using RFGT when evaluated in terms of
classification accuracy.

Conditional Näıve Bayes ModelsIn many practical applications one seeks to model a conditional
probabilityP (y|x), y ∈ Y, x ∈ X . We will restrict our attention to using features that are binary
valued indicator functionsf(x) : X → {0, 1}, fk(x) = 1− f(x). LetF = {fk, k = 1 . . . F} be the
set of features chosen for building a particular modelP (y|x). Assuming a NB model for the feature
vector and the predicted variable(f(x), y) the conditional probabilityP (y|x) can be calculated as:

P (y|x; θ) = Z(x; θ)−1 · θy

F∏
k=1

θky
fk(x)θ

fk(x)

ky (1)

where:θy ≥ 0, ∀y ∈ Y,
∑

y∈Y θy = 1; θky ≥ 0, θky ≥ 0, θky + θky = 1, ∀k = 1 . . . F, y ∈ Y and

Z(x; θ)−1 =
∑

y P (f(x), y) is a normalization term.

Rational Function Growth Transform for CML Estimation of Naı̈ve Bayes ModelsIt is desirable to

estimate the model parametersθ = {θy, θky, θky , ∀y and k} such that the conditional likelihood
H(T ; θ) =

∏T
j=1 P (yj|xj) assigned by the model to a set of training samplesT = {(x1, y1) . . . (xT , yT )}

is maximized:θ∗ = argmaxθ H(T ; θ). It is easy to note thatH(T ; θ) is a ratio of two polynomials
with real coefficients, each defined over a set× of probability distributions:

× = {θ : θy ≥ 0, ∀y ∈ Y and
∑

y

θy = 1; θky ≥ 0, θky ≥ 0 and θky+θky = 1, ∀y ∈ Y, ∀k = 1 . . . F}

∗Attending Author
Category: Estimation, Prediction, and Sequence Modeling
Preference: 1. Oral 2. Poster

1



D
R

A
FT

Following the development in [5] one can iteratively estimate the model parameters using a growth
transform for rational functions on the domain×. The re-estimation equations take the form:

θ̂y = N−1θy

(
∂ log H(T ; θ)

∂θy
+ Cθ

)
(2)

N = Cθ +
∑

y

θy
∂ log H(T ; θ)

∂θy

θ̂ky = N−1
y θky

(
∂ log H(T ; θ)

∂θky
+ Cθ

)
(3)

θ̂ky = N−1
y θky

(
∂ log H(T ; θ)

∂θky

+ Cθ

)
Ny = Cθ + θky

∂ log H(T ; θ)
∂θky

+ θky
∂ log H(T ; θ)

∂θky

whereCθ > 0 is chosen such that, withε > 0 suitably chosen (see [5] and [3] for details) we
have:

∂ log H(T ; θ)
∂θy

+ Cθ > ε, ∀y (4)

∂ log H(T ; θ)
∂θky

+ Cθ > ε, ∀k and y

∂ log H(T ; θ)
∂θky

+ Cθ > ε, ∀k and y

Equivalence with Exponential ModelsSetting:fk(x, y) = fk(x) · δ(y); λky = log( θky

θky
);

λ0y = log(θy ·
∏F

k=1 θky) andf0(x, y) = f0(y) in Eqn. (1) we obtain the familiar log-linear model
arrived at in maximum entropy probability estimation [2]:

P (y|x; λ) = Z(x; λ)−1 · exp

(
F∑

k=0

λkyfk(x, y)

)
(5)

whereλky are free real-valued parameters andZ(x; λ) a normalization term.
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