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ABSTRACT

This paper presents an empirical study of how ranging af-
fects multihop localization in wireless sensor networks. We
compare real-world deployments with simulation and es-
tablish an objective metric with which to evaluate ranging
models: if a model accurately predicts real-world localiza-
tion performance, it accurately captures ranging character-
istics. We evaluate a well-established ranging model called
Noisy Disk and find that it yields optimistic predictions; real
deployment error can be four to five times worse than sim-
ulation error. A systematic analysis reveals that Noisy Disk
fails to capture important connectivity characteristics which
dominate the effects of error on localization.

1. INTRODUCTION

Multihop localization in wireless sensor networks enables
nodes to determine their locations without direct connec-
tivity to nodes in known positions. Simulation is an im-
portant tool for evaluating multihop localization algorithms,
but we have discovered that real-world performance is of-
ten much worse than predicted by simulation. This discrep-
ancy is consistent with the anecdotal experience of many
researchers in the area and the dearth of systematic compar-
isons in the literature. The observed prediction gap is pre-
sumably due to differences between theoretical noise mod-
els and empirical noise characteristics in the ranging mea-
surements used by the localization algorithm. This paper
presents an empirical evaluation of the Noisy Disk model,
which is used almost universally to model ultrasound and
radio signal strength, and identifies where and how it de-
viates from real-world characteristics. We use the predic-
tion gap as a quantitative metric of evaluation: if a model
accurately predicts real-world localization performance, it
effectively captures empirical ranging characteristics.

We perform real-world localization deployments using
both ultrasound and radio signal strength and show that the
observed localization error is much worse than that pre-
dicted by the Noisy Disk model. We propose a new and
more accurate method of simulation that uses statistical sam-
pling techniques and empirical data in simulation. We sys-
tematically replace each component of the Noisy Disk model
with increasingly accurate models to quantify each compo-

nent’s contribution to the prediction gap. Our results indi-
cate that both empirical noise and connectivity characteris-
tics deviate from the Noisy Disk model, and we demonstrate
these deviations have significant impact on multihop local-
ization performance.

2. BACKGROUND

A basic building block of localization is ranging, the pro-
cess of estimating the distance between a pair of nodes.
Two common ranging technologies are radio signal strength
(RSS) and ultrasonic time of flight (TOF), both of which
introduce noise and uncertainty to localization. RSS tech-
niques estimate the distance between two nodes by assum-
ing a known rate of signal attenuation over distance and
measuring the strength of the received RF signal. RSS is
sensitive to channel noise, interference, attenuators and re-
flections, all of which have significant impact on signal am-
plitude. RSS also suffers from transmitter, receiver, and an-
tenna variability. Ultrasonic TOF estimates distance by as-
suming a constant speed of sound and measuring the time it
takes for an acoustic signal to travel between a pair of nodes.
Because TOF relies on the speed of the signal instead of the
magnitude, it is relatively robust to most sources of noise
including attenuators and reflections; the line-of-sight sig-
nal should always arrive at the same time, though it may be
stronger or weaker.

For theoretical analysis and simulation, ultrasound and
radio signal strength are almost universally modeled with a
Noisy Disk model, which has two components: noise and
connectivity. The noise component indicates the distribu-
tion of the error between the measured distance and the ac-
tual distance (e.g., Gaussian, uniform). The connectivity
component indicates the maximum distance d,, ., between
two nodes at which a distance estimate can be obtained. For
example, using Gaussian noise, the Noisy Disk defines the
distance estimate d;; between nodes i and j in terms of the
true distance d;; as

dA _ N(dz];J) dz] S dmaz
undefined otherwise.
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The Noisy Disk model with no noise component (i.e., it only
models the connectivity between nodes) is also known as



the Unit Disk model.

The Noisy Disk model is ubiquitous in localization re-
search, but researchers generally acknowledge that noise is
not perfectly Gaussian or uniform, and connectivity is not
disk-like. Regardless, it is still a useful model of noisy rang-
ing estimates. Theoretical analyses have successfully used
the Noisy Disk model to mathematically derive the maxi-
mum likelihood solution to localization [1], lower bounds
on localization error [2, 3], or specific properties about lo-
calization algorithms [4]. The Noisy Disk Model is more
commonly used to evaluate and compare algorithms in sim-
ulation [5, 6, 7, 8, 9, 10, 11, 12]. Several projects col-
lected empirical ultrasound data [13] or RSS data [14, 15]
to derive realistic values for the parameters d,,,., and o,
which are then used in simulating the behavior of various
localization algorithms. Other studies use these parameters
for sensitivity analysis by, for example, measuring accuracy
while varying d,,,,, from 1.1 to 2.2 times the average node
spacing and o from 0 to 50% of d,,,4, Or similar values
[13, 16, 17, 18]. Although the Noisy Disk model has been
useful for evaluating and developing multihop localization
algorithms, no study has verified that it accurately predicts
the performance of real-world deployments.

There are two fundamentally different classes of local-
ization algorithms: single hop and multihop. Single hop
localization assumes all nodes in the network have direct
ranging connectivity with a set of nodes in known posi-
tions, called anchor nodes. Several commercial and aca-
demic real-world systems using single hop localization have
achieved accurate results [19].

The main drawback of single hop localization is the di-
rect connectivity requirement between nodes and anchors.
To remove this assumption, researchers have developed mul-
tihop localization algorithms. However, multihop localiza-
tion introduces many new challenges. While single hop
localization requires only local computation on each node,

multihop localization requires long-distance information trans-

fer and node collaboration. Furthermore, multi-hop local-
ization requires evaluation at large scale, in contrast to single-
hop localization for which the results of a single-cell de-
ployment can be generalized to larger multi-cell deploy-
ments because each cell is roughly independent. Because
of these challenges, multi-hop localization research is still
mainly focused on theoretical analysis and simulation, with
relatively few successful large scale deployments. In this
paper, we focus exclusively on multi-hop localization be-
cause it relies much more heavily on high fidelity ranging
models to understand error propagation and for use in theo-
retical analysis and simulation. A survey of multihop local-
ization algorithms can be found here [18].

3. DEPLOYMENT SETUP

We performed several medium-scale localization deploy-
ments with our localization system and present three of them
in this paper. The first is a 49 node network over a 13x13m
asphalt area localized using ultrasound. The others are 25

Fig. 1. Ultrasound Deployment. 49 nodes deployed in a
random grid pattern in a parking lot were localized using
ultrasound. The ultrasonic transducer and reflective cone
are visible above the node.

and 49 node networks over a 50x50m grassy area local-
ized using RSS. These three deployments were chosen in
part because they represent the canonical multihop deploy-
ments for which many localization algorithms have been de-
signed and which most localization simulations try to em-
ulate. They also provide particular insight into the nature
of the Noisy Disk model, as we will see later. Here we
present the ranging and localization systems we used for
these deployments, which builds upon and improves some
of the best hardware designs and algorithms from several
other systems to create a unified system that is specially tai-
lored to this localization problem.

Our study utilizes state of the art ranging capabilities for
a large 2D field of sensor nodes. For our RSS deployments,
we chose a low-power radio from several that have been
characterized for use with RSS ranging. An early study
showed the RFIDeas badge system to yield 5m range and
errors near 2m at 2m range [20], and later studies, includ-
ing our own, characterized low-power ASK radios such as
the RFM DR3000 and the RFM TR1000 [20, 21, 22] to
yield about 1.5m error at 3m distances and up to 6m error
at 6m distances, even in near-ideal conditions. In our de-
ployments, we use the newer Chipcon CC1000 FSK radio,
which was shown in a recent single-hop localization study
to provide RSS fidelity similar to that of more sophisticated
802.11 radios [23]. Our own characterizations show that in
near-ideal conditions and with low transmission power, the
radio has a standard deviation in RSS readings that trans-
lates to about 2m ranging error at the maximum range of
about 20m, after calibration.

Our ultrasound hardware combines and improves ideas
from several ultrasound implementations. Our ultrasonic
transducer circuitry is derived from that of the Medusa node



[13], except we add a switchable circuit so that a single
transducer could be used to both transmit and receive. Our
nodes measure ultrasonic time of flight by transmitting the
acoustic pulse simultaneously with a radio message so that
receivers can measure the time difference on arrival (TDOA)
as described in Cricket [24]. When the transducers are face
to face, our implementation can achieve up to 12m range
with less than 5cm error. Comparable implementations were
able to achieve proportionally similar results of 3-5m range
with 1-2cm accuracy [13, 21, 25]. The differences in mag-
nitude are due in part to our design decision to reduce the
center frequency of the transducer from the standard 40kHz
to just above audible range at 25kHz, which increases both
maximum range and error.

Ultrasound transducers are highly directional, and small
variations from a direct face to face orientation can have
large effects on error and connectivity. Two solutions have
been proposed to use ultrasound in multi-hop networks: align-
ing multiple transducers outward in a radial fashion [21] or
by using a metal cone to spread and collect the acoustic en-
ergy uniformly in the plane of the other sensor nodes [25].
We implemented the latter solution as shown in Figure 1.
In this configuration, our nodes achieve about 5m range and
90% of the errors are within 6.5cm. A comparable imple-
mentation achieved about 3m range [25].

All deployments used the Ad-hoc Positioning System’s
(APS) DV-distance algorithm [16], which is representative
of a large class of distributed localization algorithms that
use shortest-path [11, 26, 27] or bounding-box [28, 29] ap-
proximations. APS uses a distance vector algorithm to ap-
proximate the shortest path distance through the multihop
network from each node to each of the anchor nodes. Each
shortest path distance approximates the true distance to the
anchor, reducing the multi-hop localization problem to a
single-hop localization problem with a more complex range
estimate. The approximate distance to each anchor is then
used with the anchor node positions to triangulate the posi-
tion of each node using linear least-squares.

APS has been shown to yield comparable results to the
other distributed localization algorithms [18] and, intuitively,
all of these algorithms suffer from the same two sources of
error: they will underestimate distances due to long radio
hops and will overestimate distances in sparse networks.

In our implementation, the APS algorithm runs in three
fully decentralized phases. When the anchor nodes are given
their positions, they trigger a ranging phase in which all
nodes estimate the distance to each of their direct ranging
neighbors. The anchors then initiate a shortest path phase,
in which anchors initiate a tree broadcast, allowing each
node to determine its shortest path to each anchor in a dis-
tance vector manner. When all broadcasts are complete,
each node estimates its position in the localization phase.
After the anchor nodes were given their positions, the entire
process was automated with no human intervention or cen-
tral computer and completed in less than five minutes for
each deployment. All ranging estimates, shortest paths and
estimated locations were stored in RAM on the nodes and
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Fig. 2. Data Collection Topology. This specially gener-
ated topology with 25 nodes measures 300 different dis-
tances with at least 1 distance every .025m between 0.4m
and 5.2m.

were collected by an automated script after each run.

In all deployments the nodes were placed in a random
grid formation, which is like a grid with random noise added
to the X and Y coordinates of each grid location. A random
grid prevents artifacts of the strict regularity of a grid or
of the possible network partitions in a completely random
distribution, neither of which would be representative of a
canonical deployment. We delegated the four nodes near-
est to the corners to be the anchor nodes because keeping
all nodes within the convex hull defined by the anchors has
been shown to be optimal [2].

The deployment process was non-trivial, especially for
RSS localization, and addressed issues of noise character-
ization, triggering global phase transitions in the network,
avoiding collisions during the ranging phase, and reducing
the number of retransmissions in the shortest path phase.
We also developed several techniques to obtain better re-
sults than those presented here. However, neither the im-
plementation issues we faced nor the techniques we devel-
oped to increase accuracy is the contribution of this paper.
Rather, we focus on identifying the key factors that must be
addressed to obtain simulations results that closely model
real world deployments.

4. SIMULATION METHODOLOGY

We simulated both the ultrasound and the RSS deployments
described in Section 3 and compared the simulation results
with the observed deployment results. We use two different
techniques for simulation: the traditional technique based
on parametric models and a new, more accurate technique
that we designed based on statistical sampling. By simulta-
neously using different simulation techniques, one for rang-



No Noise | Gaussian Noise | Sampled Noise
Unit Disk Connectivity D/N D/G D/S
Sampled Connectivity SIN SIG SIS

(a) The six kinds of simulation combine three models of noise with two models of
connectivity. Each combination is used to simulate the three actual deployments.
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(b) Ultrasound localization error (49
nodes).
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Fig. 3. Experimental Results. Each graph in (b), (c) and (d) compares the results of a real-world deployment with each
of the six kinds of simulation in Table (a). The box indicates median error; the errors bars indicate upper and lower error

quartiles.

ing noise and one for ranging connectivity, we have six dif-
ferent combinations of simulation techniques labeled in Ta-
ble 3(a). Traditional simulation is used to generate Gaussian
noise and Unit Disk connectivity while statistical sampling
is used to generate what we call Sampled Noise and Sam-
pled Connectivity. The notation C/N stands for the particu-
lar connectivity and noise combination of a simulation. For
example, D/G refers to the simulation with Unit Disk con-
nectivity and Gaussian noise. Experiments D/N and S/N
in the first column use simulated connectivity but not sim-
ulated ranging noise. In this section, we describe the two
different simulation techniques used; the results of the sim-
ulation experiments will be discussed in the next sections.

In traditional simulation, data is generated from a para-
metric function. Thus, Gaussian noise is generated for ex-
periments D/G and S/G with the function N (d;;,0) and
Unit Disk connectivity is generated for experiments D/N,
D/G, and D/S using the inequality d;; < dyq.. For tradi-
tional simulation to be meaningful, the model parameters
dmaz and o should be estimated from empirical ranging
data. The typical data collection technique for ranging is to
place a transmitter and receiver at several known distances
and measure the response [14, 15, 21], although this tech-
nique doesn’t account for several sources of noise such as
node variability. Following the commonly used methodol-
ogy, in our simulations we used parameters d,; 4, = 20m,
o = 2m for RSS and d,,4: = 5m, o = 6.5¢m for ultra-
sound.

We developed an alternative simulation technique based
on statistical sampling where we generate data for simula-

tion by randomly drawing measurements from an empirical
data set. Define the distribution M (9, €) to be the empirical
distribution of all observed ranging estimates for distances
in the interval [§ — €, § + €]. We generate a ranging estimate
cfij for simulation by using the error of a random sample
from M (d;;, €). For example, if d is the empirical estimate
selected from M (d;;, €), then

dij = dij + (d — d) 2)

where d, is the actual distance at which d was measured.
Because d ~ M (d;j,€), the simulation is using empiri-
cal distributions for signal noise and connectivity as long
as M (d;;, €) accurately represents ranging characteristics at
dij.

The set M (6, €) can include ranging failures, which are
instances of when a pair of nodes failed to obtain a ranging
estimate. Ranging failures are necessary to correctly model
ranging connectivity. To generate Sampled Noise alone in
experiments D/S and S/S, however, ranging failures are not
included in the set. To generate Sampled Connectivity alone
in experiments S/N, S/G, and S/S, ranging failures are in-
cluded, and we define ¢;; = true if and only if the sampled
ranging estimate Jij is not a ranging failure.

The challenge in using this sampling technique is to col-
lect ranging error and connectivity data with a high enough
resolution so that small values of e can be used. For exam-
ple, if we want to use e = 2.5¢m and ultrasound ranging
has a maximum range of 10m, we must take empirical ul-
trasound measurements at 400 different distances. Instead



of measuring each distance with a single pair of nodes, all
measurements can be taken at once with /400 = 20 nodes
in a topology where each pair of nodes measures a differ-
ent distance. By adding a few additional nodes, we can get
multiple pairs at each distance. We generated such topolo-
gies using rejection sampling, i.e., we generated thousands
of topologies until one of them exhibited the desired proper-
ties. For example, we used the topology in Figure 2, which
required 25 nodes to obtain 2.5cm resolution over 5m, to
characterize ultrasound. The topology we used for RSS re-
quired 30 nodes to obtain 30cm resolution over 30m.

All nodes are placed at random orientations in this topol-
ogy and each node transmits 10 times in turn while all other
nodes receive. To remove the bias of each distance be-
ing measured by only two pairs of nodes (the reciprocal
pairs A/B and B/A), we repeated this procedure five times
with different mappings of nodes to the topology locations.
These mappings were generated using rejection sampling to
ensure that the same distances were not always measured by
the same pairs. The procedure generated 100 total measure-
ments at each distance with 10 different transmitter/receiver
pairs. Therefore, with ¢ = 0.05m (two inches) the set
M (4, €) is likely to include 400 empirical measurements

Unlike the conventional pairwise technique described
above, the empirical measurements in M (4, €) are taken with
dozens of transmitter/receiver pairs, capturing a broad spec-
trum of node, antenna, and orientation variability. Further-
more, the measurements are taken over several different paths
through the environment, capturing variability due to dips,
bumps, rocks or other environmental factors. Finally, this
technique captures connectivity characteristics by fixing the
number of transmissions and measuring the number of read-
ings at each distance. In contrast, the conventional pairwise
technique described above requires the experimenter to take
readings at every possible distance, burying the degradation
of ranging connectivity with distance.

The rejection sampling algorithms required on average
twelve hours to compute the topology and node mappings.
Each data collection process required approximately 6 hours
to complete, with the bulk of the time needed for data col-
lection and to precisely measure out the special topology.

5. EXPERIMENTAL AND SIMULATION RESULTS

The ultrasound deployment was repeated 7 times and yielded
a median error of 0.78m. The RSS deployments were re-
peated 10 times each and yielded median errors of 4.3m and
13.4m error for the 49 and 25 node deployments, respec-
tively. Each of the three deployments was simulated with
the six simulation combinations shown in Table 3(a), and
each simulated experiment was repeated 100 times. Fig-
ure 3 compares the median error of the real-world deploy-
ments to the median errors of the corresponding simula-
tions. Recall the notation C/N stands for the particular con-
nectivity and noise combination of a simulation. Also, D/*
refers to all simulations with Unit Disk connectivity and */G
refers to all simulations with Gaussian noise.

We can identify the source of error in each deployment
by examining which subset of simulations accurately pre-
dicts the observed error in each deployment. The 49 node
RSS deployment is well predicted by both the */G and */S
simulations but not the */N simulations. This trend indi-
cates that noise is the dominant cause of the localization er-
ror in this deployment. In contrast, the 49 node ultrasound
deployment is well predicted by the S/* simulations but not
the D/* simulations. This indicates that the ultrasound con-
nectivity is different than the Unit Disk model, and these
deviations dominate noise as the source of error in this de-
ployment. The 25 node RSS deployment shows a similar
trend; the S/* simulations predict observed error better than
the D/* simulations, but no connectivity/noise combination
correctly predicts all the error in this deployment. This in-
dicates that ranging characteristics besides noise and con-
nectivity are causing localization error. The following four
sections provide a deeper analysis of these trends.

6. SUFFICIENCY OF NOISY DISK AT HIGH
DENSITY

The three empirical deployments fall into two distinct groups:
high ranging density and low ranging density, where rang-
ing density is defined by the average degree in the graph de-
fined by successful ranging estimates. A recent study shows
that localization is quantitatively different in high ranging
density networks than low ranging density networks, and
the transition occurs at an average degree of about 7.5 [18].
As density drops below 7.5, localization accuracy increases
quickly, but it stabilizes at densities higher than 7.5. Ac-
cording to this criteria, the 49 node RSS deployment has
a high ranging density with average degree of 9 while the
49 node ultrasound and the 25 node RSS deployments have
low ranging density with average degrees of 6 and 3 respec-
tively.

The 49 node RSS deploymentand its corresponding sim-
ulations in Figure 3(d) show that the Noisy Disk model is a
sufficient model of ranging for deployments with high rang-
ing density. The */N simulations do not accurately predict
observed error, indicating that noise is the dominant cause
of localization in this deployment, and the */G and */S sim-
ulations behave similarly, indicating that RSS noise is suffi-
ciently close to a normal distribution. Furthermore, the D/*
and S/* simulations perform similarly, indicating that any
differences between Unit Disk and Sampled Connectivity
do not influence the localization error. This makes sense
at high densities where, even with slightly different types
of connectivity, the network should maintain an average de-
gree greater than 7.5, which means the error will be stable.

7. ATRANSITION REGION IN CONNECTIVITY

Our 49 node ultrasound deployment had an average node
spacing of 2.2m. With a nominal maximum range of 5m,
the Unit Disk model of ultrasound would predict this de-
ployment to have an average degree of 14, which is well
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Fig. 4. Ultrasound Transition Region. The gray scale in-
dicates the loss rate (or the level of connectivity); the size of
the box indicates the fraction of nodes at that distance with
that level of connectivity. The entire range of ultrasound is
a transition region; it exhibits neither bimodal nor disk-like
connectivity.

above the threshold for a high density deployment. How-
ever, an average degree of only 6 was actually observed dur-
ing deployment, and accordingly, the localization error was
5.7 times worse than predicted by the Noisy Disk model. A
comparison between the D/* and S/* simulations indicates
that a difference between the Unit Disk and Sampled Con-
nectivity accounts for most of the error in this deployment.
Unlike the 49 node RSS deployment where noise was the
dominant source of localization error, noise has very little
effect in this deployment.

Figure 4 illustrates empirical ultrasound connectivity char-
acteristics, showing the fraction of pairs at each distance
that exhibit each of ten levels of connectivity. This fig-
ure illustrates what is commonly known as a transition re-
gion: distances at which some nodes have 100% connec-
tivity while others have 0% connectivity. The unit disk
model assumes that nearby nodes have 100% connectivity,
far nodes have 0% connectivity, and that the transition re-
gion in between is very small. Recent studies have shown
that, with low-power radios, the transition region can extend
over as much as 50% of the useful radio range, violating the
Unit Disk model and introducing problems for networking
algorithms that assume disk-like connectivity [30]. Figure 4
shows that ultrasound connectivity is even worse: the transi-
tion region extends over the entire range, and there is no dis-
tance that clearly defines the difference between connected
nodes and unconnected nodes.

The transition region seen in ultrasonic connectivity vi-
olates several assumptions made by various localization al-
gorithms about disk-like connectivity. For example, some
algorithms assume that all non-connected pairs are farther
than some distance d,,.., [31]. However, it is clear from
Figure 4 that no such distance exists. Other algorithms as-
sume that all connected pairs will be closer than some dis-

tance dnqee [32, 33]. While this is true for some value of
dmaz, any such value must be very large relative to the av-
erage ranging distance. In our deployments, the ultrasound
hardware measured distances more than 50% greater than
the nominal maximum range, and other empirical studies
have indicated similar findings for radio connectivity [27].

Although APS does not make strict assumptions about
disk-like connectivity, it is still greatly affected by the tran-
sition region because given a certain maximum range for
a ranging technique, a large transition region yields fewer
total ranging estimates than the Unit Disk model would pre-
dict. This is important to capture in simulation because it
affects all localization algorithms by fundamentally reduc-
ing the number of constraints on node locations. Modeling
this effect would be similar to reducing the maximum range
dmaz, Which has been shown to have profound impact on
localization [18]. One difference is in the resulting spatial
distribution of neighbors: a transition region would result
in some far neighbors and some close neighbors, while a
small value of d,,, ., would result in all neighbors being very
close.

8. THE IMPACT OF NON-GAUSSIAN NOISE

While the S/G simulation gets to within 80% of the ob-
served ultrasound error, it is no closer than the simulation
S/N, which uses no noise at all. This indicates that the mag-
nitude of ultrasound noise is so small that a Gaussian model
of it does not significantly effect localization error. How-
ever, S/S arrives to within 94% of empirical error, indicat-
ing that a difference between Gaussian noise and Sampled
Noise is significantly affecting ultrasonic localization error.
While the impact of non-Gaussian noise on localization er-
ror is small compared to the effect of non-disk like connec-
tivity, simulations S/G and S/S indicate that it can increase
localization error by at least 16%.

The normality plot in Figure 5, in which deviations of
data points from the line indicate deviations from the Nor-
mal distribution, indicate that ultrasonic ranging generates a
heavy-tailed distribution of noise. In other words, it under-
estimates and overestimates distances more than the Gaus-
sian distribution would predict. This can be detrimental to
localization algorithms: the APS algorithm, for example,
as the tail with underestimated distances becomes heavier,
the shortest-path distances become shorter even if the tail
with overestimated distances also becomes heavier. This is
because the shortest-path algorithm will selectively ignore
paths with many overestimates and will choose the paths
with the most underestimates. A similar argument holds for
all algorithms that use shortest-path, hop-count [11, 26, 27],
or bounding-box [28, 29] techniques.

Similar to the importance of noise itself, the impact of
non-Gaussian noise on APS is highly dependent on node
degree. A heavy-tailed noise distribution will always serve
to shorten shortest-path distance estimates. However, in
sparse networks where the shortest-path distances are over-
estimates due to the zig-zag effect, heavy tailed noise may
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actually decrease shortest path error. In dense networks
where the shortest paths are relatively straight, heavy-tailed
noise is more likely to increase shortest path error. Further-
more, in dense networks, the shortest path algorithm can
choose between many alternative paths, so a smaller num-
ber of noisy outliers is necessary to have an impact.

9. BEYOND NOISE AND CONNECTIVITY

Halving the density of the 49 node RSS deployment to 25
nodes creates a low-density RSS deployment that reveals
several important insights about RSS localization at low den-
sities. Unlike the ultrasound deployment in which sam-
pled ultrasound connectivity increased localization error by
a factor of 4.5, sampled RSS connectivity only increases er-
ror by a factor of 2.5. This is likely due to the difference
in the respective sizes of the transition region: the transition
region for low-power radios is known to be at most 50% of
the range, whereas Figure 4 shows that the transition region
for ultrasound extends over the entire range. The remain-
ing prediction gap indicates that ranging characteristics be-
yond noise and connectivity are affecting localization. One
such factor may be the non-uniformity of radios or antenna,
which would be expected to influence RSS more than ul-
trasound. Non-uniformity of nodes would be expected to
have an effect on connectivity at low densities because some
nodes would have very high degree while others would have
very low degree, effectively creating partitions in the net-
work. This theory is discussed in Section 10.

A solution to the large prediction gap and the high er-
ror observed in this deployment might be to simply increase
the transmission power in the network until the average de-
gree of the network is above 7.5. Once the network has
high ranging density, a unit disk model should accurately
prediction localization error. Doing this, however, actually
increased error because increasing the transmission power

also increases RSS noise. Increasing the density may close
the prediction gap, but it does not necessarily reduce error.
The 25 node deployment will always have higher error than
the 49 node RSS deployment because RSS ranging is nois-
ier at long distances.

10. STATISTICAL SAMPLING REVISITED

Figure 3 indicates that statistical sampling yields a smaller
gap than Noisy Disk at low densities and a similar gap at
higher densities. One way to improve simulation predic-
tions is to develop improved ranging models, perhaps bor-
rowing a better model of connectivity from the wireless net-
working community [34] and extending the Gaussian noise
component to include heavy tails for ultrasound. An alter-
native way is to replace models altogether with statistical
sampling. Each approach has its advantages and disadvan-
tages.

Parametric models like Noisy Disk identify a small set
of ranging characteristics that affect localization. This pro-
vides useful insight into ranging characteristics and the para-
metric form of the model can be useful in theoretical analy-
sis. One problem with parametric models is that they need
to be reevaluated and redeveloped for every new noise char-
acteristic. This is a tedious process requiring data collec-
tion and careful analysis followed by a model verification
process that may require real localization deployments. An-
other problem is that empirical ranging characteristics like
those shown in Figures 5 and 4 can be too complex to cap-
ture in parametric form without some simplification.

Statistical sampling solves both of these problems: new
models do not need to be created for new empirical distribu-
tions and complex ranging characteristics can be easily cap-
tured. However, statistical sampling does not reveal insights
about the data nor does it provide a mathematical form that
can be used for theoretical analysis.

In practice, parametric modeling and statistical sampling
carry similar costs. Both require vast data collection al-
though statistical sampling requires a slightly more careful
process. Instead of estimating model parameters from the
data, statistical sampling requires the user to generate data
subsets M (4, €). During simulation, both methods require a
random number to be generated.

The process of creating data subsets M (9, €) is a form of
data modeling in the sense that it requires the user to iden-
tify which subsets are important, and this method can be
extended to model noise characteristics besides noise and
connectivity. For example, variations between radios and
antennas can be modelled by characterizing the transmit-
ter and receiver type of each radio during data collection.
During simulation, each radio could be randomly assigned
transmitter and receiver parameters 7" and R and data could
be pooled and drawn from subsets M (§,¢,T, R). As long
as the parameters 7" and R are assigned according to the true
distribution of radios, this should more accurately model
non-uniformity of nodes than using M (4, €).



11. DISCUSSION

This study suggests a top-down approach to evaluating mod-
els by comparing each model’s predictions with empirical
observations of localization deployments. This is in contrast
with the commonly used bottom-up approach for deriving
models by analyzing raw empirical data [35]. A bottom-up
approach is useful for identifying and characterizing the few
most important features of empirical data and building them
into a model. A top-down approach can evaluate whether
the model is a sufficient representation of those features, and
whether that set of features is sufficient to represent the em-
pirical data.

Our study finds that the Noisy Disk model predicts de-
ployment error fairly well in situations when density is high
enough that noise is a dominant factor. However, as den-
sity decreases the difference between Unit Disk and em-
pirical connectivity begins to dominate the effects of noise.
For RSS ranging, noise and connectivity alone do not suffi-
ciently represent all empirical ranging characteristics; other
effects like variations among radios may also effect RSS
noise and/or connectivity. These findings provide insight
into the empirical nature of ranging characteristics and how
they impact localization, suggesting directions for the future
design of both ranging models and localization algorithms.

Many multi-hop localization algorithms have yielded ex-
tremely accurate results in simulation but there has been a
general feeling in the community that obtaining these re-
sults is much harder in real-world deployments. To some
extent, this study explains why this is true and presents sta-
tistical sampling techniques that bring the challenges of the
real world into simulation.
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