A Distributed Abstract Machine for Boxed
Ambient Calculi

Andrew Phillips, Nobuko Yoshida, and Susan Eisenbach

Department of Computing, 180 Queen’s Gate,
Imperial College London, SW7 2AZ, UK
{anp,yoshida,sue}@doc.ic.ac.uk

Abstract. Boxed ambient calculi have been used to model and reason
about a wide variety of problems in mobile computing. Recently, sev-
eral new variants of Boxed Ambients have been proposed, which seek to
improve on the original calculus. In spite of these theoretical advances,
there has been little research on how such calculi can be correctly imple-
mented in a distributed environment. This paper bridges a gap between
theory and implementation by defining a distributed abstract machine
for a variant of Boxed Ambients with channels. The abstract machine
uses a list semantics, which is close to an implementation language, and
a blocking semantics, which leads to an efficient implementation. The
machine is proved sound and complete with respect to the underlying
calculus. A prototype implementation is also described, together with
an application for tracking the location of migrating ambients. The cor-
rectness of the machine ensures that the work done in specifying and
analysing mobile applications is not lost during their implementation.

1 Introduction

Boxed ambient calculi have been used to model and reason about a wide variety
of problems in mobile computing. The original paper on Boxed Ambients [2]
shows how the Ambient calculus can be complemented with finer-grained and
more effective mechanisms for ambient interaction. In [3], Boxed Ambients are
used to reason about resource access control, and in [9] a sound type system for
Boxed Ambients is defined, which provides static guarantees on information flow.
Recently, several new variants of Boxed Ambients have been proposed, which
seek to improve on the foundations of the original calculus. In particular,
introduces Safe Boxed Ambients, which uses co-capabilities to express explicit
permissions to access ambients, and [4] introduces the NBA calculus, which seeks
to limit communication and migration interferences in Boxed Ambients.

In spite of these theoretical advances, there has been little research on how
boxed ambient calculi can be correctly implemented in a distributed environ-
ment. In general, such an implementation can be achieved by defining an Appli-
cation Programming Interface (API), which maps the constructs of the calculus
to a chosen programming language. Examples of this approach include [5], which
describes a Java API for the Ambient calculus, and [I7], which describes a Java
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APT for a variant of Boxed Ambients. The main advantage of the approach is
that the API can be smoothly integrated into an existing programming language.
The main disadvantage, however, is that the constructs of the chosen language
often extend beyond the scope of the calculus model. Therefore, when method
calls to the API are combined with arbitrary program code, e.g. code which gen-
erates exceptions, the resulting program is unpredictable. As a result, most of
the benefits of using a calculus model are lost, since any security or correctness
properties that hold for the model may not hold for its implementation.

An alternative approach for implementing boxed ambient calculi uses an in-
terpreter to execute calculus expressions. Although this approach constrains the
programmer to use a custom language (which may not be compatible with ex-
isting code or libraries), support for language interoperability can be provided
in the implementation, allowing the non-distributed aspects of a mobile appli-
cation to be written in any chosen language, and the mobile and distributed
aspects to be written in the calculus. The interaction between these two aspects
can be achieved using the communication primitives of the calculus, allowing a
clean separation of concerns in the spirit of modern coordination languages such
as [I]. More importantly, this approach ensures that any security or correctness
properties of the calculus model are preserved during execution, provided the in-
terpreter is implemented correctly. This can be achieved by defining an abstract
machine to specify how the interpreter should behave. The correctness of the
machine can then be verified with respect to the underlying calculus.

This paper presents a distributed abstract machine for a variant of Boxed
Ambients with channels, known as the Channel Ambient calculus (CA). fTo
our knowledge, a correct abstract machine for a variant of Boxed Ambients
has not yet been implemented in a distributed environment. The remainder
of the paper is structured as follows: Section 2 introduces the Channel Ambient
calculus, and Section[3 defines the syntax and semantics of the Channel Ambient
Machine (CAM), an abstract machine for CA. Section M outlines the proof of
correctness of CAM with respect to the calculus CA. Due to space limitations
the full proofs have been omitted, but can be found in [I5]. Section [l describes
a distributed runtime system that has been implemented based on CAM, and
Section [0 describes an example application. Finally, Section[q compares CA and
CAM with related calculi and abstract machines.

2 The Channel Ambient Calculus

The Channel Ambient calculus is a variant of the Boxed Ambient calculus in
which ambients can interact using named channels. The main constructs of CA
are illustrated in the following example:

Network | client| C' | viogin (server-request{client,login) | inlogin.P) ‘

| server| S | Yout logout | request’(c, x).serm'ce’ out logout,incm.Q‘

! The work presented here forms part of the first author’s forthcoming PhD thesis [16]
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Fig. 1. Execution Scenario

The example uses a polyadic variant of CA to model a client machine, which
downloads a service ambient from a server machine over a Network. An ex-
ecution scenario for this system is illustrated in Fig. [l in which the vertical
lines represent parallel processes, the boxes represent ambients, the horizontal
arrows represent interaction, and the flow of time proceeds from top to bottom.
Initially, the client creates a new login channel and sends its name and login
channel to the server on the request channel. In parallel, it allows an ambient
to enter via the login channel. The server receives the request and creates a
new service ambient, which leaves via the logout channel and enters the client
via the login channel. Once inside the client, the service ambient executes pro-
cess @, and the client executes process P. In parallel, the Network evolves to
Network’, and the processes C' and S inside the client and server evolve to C”
and S’ respectively. The system has a high degree of parallelism. In particu-
lar, the network can contain multiple clients and the server can handle multiple
requests simultaneously.

The full syntax of CA is defined in terms of processes P, Q, R and actions «:

PQ,R:= 0 Nul a = a-x(n) Sibling Output
I P | Q Parallel I ' (n) Parent Output

I vn P Restriction i 2(m) Internal Input ,z # m

[ a Ambient

I a.P Action
I la.P Replication

€T
xT

2T (m) External Input ,z # m

ina-x Enter

out x Leave

inxz Accept

out r Release

Processes in CA have the same structure as processes in the Ambient calculus
[7], except that replicated actions !a. P are used instead of general replication ! P.
The definition of the set of free names fn(P) of a process P is standard, where



158 A. Phillips, N. Yoshida, and S. Eisenbach

restriction vm P and inputs z(m).P and z'(m).P act as binders for the name
m. Standard notational conventions are used, including assigning the lowest
precedence to the parallel composition operator, and writing « as syntactic sugar
for .0. In addition, local output x(n) and child output a/z(n) are written as

syntactic sugar for vb¥ z'(n) | and vb bm respectively, where b & {a,z,n}.

The semantics of CA is defined in terms of structural congruence (=) and
reduction (—). The definition of structural congruence is mostly standard:

Plo=P 1 ng¢fn(P)=Plvn@Q =vn(P| Q) (8
PlQ=QIP 2 a#n#azyna 9

P

QIR =({PIQIR
la.P = a.(P | la.P)
vn0=0

I/nn@z 0

vnvm P = vmuvn P

) )
) )
3) né¢fn(P)=vm P = vn Pp,/my  (10)
4) n¢fn(P)=x(m).P = x(n).Pr,/mi(11)
5) néfn(P)=a' (m).P =1 (n).P/m)(12)

) (13)

) (14)

6 PEQ:>aEa

7 P=Q=P|R=Q|R

13
14

~ N N~~~

Rule (@) allows empty ambients to be garbage-collected, and (II]) and (I2)) allow
bound names to be substituted, where Py, /., substitutes the name n for m in
process P. The only non-standard rule is (@), which allows a replicated action
la. P to be expanded to «.(P | la. P). This ensures that only a single copy of . P
can be created at a time, since !a.P is unable to spawn a new copy while inside
the prefix «. This is useful from an implementation perspective, and differs
from the standard rule for replication, la.P = a.P | la.P, which allows an
infinite number of copies of a. P to be created. The definition of reduction is also
standard:

(Q=PAP—P AP =Q)=Q —Q (15)
(P—P)=P|Q—P|Q (16)
(P—PY=vnP —uvnP (17)
(P — P') = o[ P]— d P'] (18)

doain) PP ]2 m)Q1Q | — d PP 1] Qum 1] (19)

A=l 0P P [l o(m)@ — 4 P | P']| Qo (20

dinbasP | P'||YimeQ Q| —4Q|Q |dP|P] (21)
Yo ours.P | P'||outz.Q | Q |—HQ|Q|Id P| P (22)

Rule ([IH) allows structurally congruent processes to perform the same reduc-
tions. Rules (IG) - (I8) allow a reduction to take place inside a parallel com-
position, inside a restriction or inside an ambient. Rules (I9) and 20) allow an
ambient to send a message to a sibling or to its parent on a given channel. Rules
(21) and [22)) allow an ambient to enter a sibling or to leave its parent on a given
channel.
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A brief comparison of CA with related calculi is given in Section [. One
distinguishing feature of CA is that it allows sibling ambients to communicate
synchronously. This is often desirable within a single machine, or between ma-
chines in a local area network. Even over a wide area network, certain protocols
such as TCP/IP provide a useful abstraction for synchronous communication. In
cases where asynchronous communication is required, such as the UDP protocol,
sibling ambients can communicate via an intermediate router ambient.

3 The Channel Ambient Machine

The Channel Ambient Machine is inspired by the Pict abstract machine [19],
which is used as a basis for implementing the asynchronous w-calculus. Like the
Pict machine, CAM uses a list syntax to represent the parallel composition of
processes. It also uses a notion of blocked processes, which are a generalisation
of the channel queues in Pict.

The machine executes a given process P by extending the scope of each un-
guarded restriction in P to the top level and converting each unguarded parallel
composition in P to a list form. The resulting term is of the form vn...vn' A,
where A is a tree of the form o1.P; i ...an.Py :: a1 Lo aM. The
leaves of the tree are actions «;.P; and the nodes are ambients ai. Once a
process has been converted to this form, the machine attempts to execute an
action somewhere in the tree. If the chosen action a.P is able to interact with
a corresponding blocked co-action then a reduction is performed. If not, the ac-
tion «a.P is blocked to a.P. The machine then non-deterministically schedules
a different action to be executed. If all the actions in a given ambient a are

blocked then the ambient itself is blocked to a. Execution terminates when
all the actions and ambients in the tree are blocked.

Blocking significantly improves the efficiency of the machine by labelling
those ambients and actions that are not able to initiate a reduction. This par-
titions the search space, allowing the machine to ignore the entire contents of a
blocked ambient when looking for an unblocked action to schedule. Blocking also
simplifies the condition for termination, since the machine only needs to check
for the presence of an unblocked action to know whether a reduction is possible.

The machine can be used to execute the example from Section First,

it converts the calculus process to the following term, where login ¢
fn(S, C, Network):

vlogin (server|lout logout :: 'request’ (c, x),service’ out logout.inc-x.Q) ‘::S

::client’ server-request(client,login) ::inlogin.P::C ‘::Network:)

Then, the machine tries to execute one of the actions in the tree. For example,
it can try to execute the replicated release !out logout. If this action is unable
to interact with a corresponding blocked co-action it will block to lout logout.
Similarly, the replicated input on the request channel will block if there is no
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corresponding blocked output. The machine can then execute the sibling out-
put server-request(client,login), which will interact with the blocked input on
the server. The model scales smoothly to the case where the server and client
processes are executing on two different machines. In this case, the interaction
between machines is implemented by socket libraries, which provide an interface
to the physical network layer. When a given machine can no longer perform any
reductions it goes into a blocked state, waiting for an interrupt from the network
announcing the arrival of new messages or ambients.

The full syntax of CAM is defined below, in terms of machine terms V, U,
lists A, B, C' and blocked lists A, B, C:

V,U:= A List A B,C = I Empty List
I vnV Restriction | a::C Ambient
| ::C Blocked Ambient
A, B,C = (] Empty List -
I P::C Process

Blocked Ambients
Blocked Actions

I:: I a.P::C Blocked Action
I a.P::

c
c

A machine term V is a list with a number of restricted names. Each list A can
contain processes, blocked actions, ambients or blocked ambients. By definition,
blocked ambients can only contain blocked actions or blocked sub-ambients. In
addition, la.P is written as syntactic sugar for «.(P | !a.P) and g is used to
denote either a blocked ambient ¢ or an unblocked ambient a.

The semantics of CAM is defined in Fig.[2 in terms of structural congruence
(=) and reduction (—=). The structural congruence rules are used to find an
element in a list that matches a specific pattern. Rule (23) allows an element X
at the head of a list to be placed at the back of the list, where (@) denotes the
list append function, and ([24)) allows the list A inside an ambient to be replaced
with a list B that is structurally congruent to A.

The reduction rules of the machine are derived from the reduction rules of
the calculus, and use standard definitions for free names fn(A) and substitution
Afn/my- BEach rule is defined over the entire length of a list and there is no rule
to allow reduction across the () operator. Rule (28) ensures that all restricted
names are moved to the top-level, by substituting each restricted name with a
globally unique name generated by the machine. In practice, such a name can be
created using a secret key, together with a time stamp or a suitable counter. Rule
(29) is used to label an ambient as blocked, indicating that it does not contain
any unblocked actions. Rules (3]) - (34) allow CA processes to be converted to
list form, and rules (35) - (#2) allow an action to interact with a blocked co-
action. The latter rules are derived from rules (I9) - (22)) in CA, where each rule
in CA is mapped to two corresponding rules in CAM. Rules (39) - (2) make
use of an unblocking function | A|, which unblocks all of the top-level actions in
a given list A. The main rule for unblocking is given by |a.P::C| £ a.P::|C],
and the full definition is given in Section @ The unblocking function is used to
unblock the contents of an ambient when it moves to a new location, allowing
the ambient to re-bind to its new environment by giving any blocked actions it
contains the chance to interact with their new context. Additionally, for each
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XA = AQX (23)

AEBZ}Q:ZC = q::C (24)
U=VAV —=V)=>U—V (25)
(V—=VY=vnV —vnV’ (26)
(A—>A/)$a::C—>a::C (27)
n&fn(a::C)/\A—>1/mA/:>a::C—>Vn(a::C) (28)
a::C — a::C (29)

la.P::C — a.(P | !la.P)::C (30)

0:C —C (31)

(P|1Q):C — P:Q:C (32)

n¢ fm(P:C)= (vmP):C — vn (P my :C) (33)
a::C — a::C’ (34)

C=blz"(m).Q:B|:C'=dbx(n).P:A|:C — o P:: A ::b‘ Qn/my B |:C'(35)

C=alb-z(n).P:Al:C'=>H2"(m).Q:B|:C — q Qnymy B |d P A|::C'(36)

z(m).Q:C" = alz™(n).P:A:C — a::Q{n/m} =

alz™(n).P:A|:C" = 2(m).Q::C — Q{n/m}::a::C'
Q::a::B =C
Q::a::B 2O’

Q QqQ
M1l

[wal

C=blinz.Q:B|:C" = d inb-z.P:A|:C —

CEQ_::C' =Hinz.Q:B|:C —

B=outz.Q:B =1 a::B e —>b{Q::B' ::a’P::LAJ ‘::C
B= “ B :>b::C —>b{Q::B/‘::a’P::LAJ ‘::C

Fig. 2. Machine Semantics

(37)

(38)

(41)

(42)

of the rules (38) - ([@2) there is a corresponding rule to block an action that is
unable to interact with a corresponding co-action. The blocking rule for ([BE) is

as follows:

C#blz"(m).Q:B ::C':>a::C—>a::C (43)

The blocking rules for the remaining actions are defined in a similar fashion.
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The abstract machine can be used in both local and distributed settings.

Local execution of a term A on a device a is modeled as a. Distributed
execution of terms Aj, ..., Ay on devices aq, ..., an, respectively, is modeled as

network a1::...::aN , where each identifier a; corresponds to the ad-

dress of a device in the network. Nested ambients inside a given term A; can be
executed independently, since only top-level processes in A; can interact with
other devices in the network. These interactions between devices are imple-
mented using socket libraries, according to the reduction rules of CAM. For
example, in a local area network a device a performs a sibling output to a device
b by checking if b contains a corresponding blocked input, according to (B39).
Similarly, a performs an external input by checking if any of the devices in the
network contain a corresponding blocked output, according to (B6). In a wide
area network, devices send all sibling outputs to an intermediate router device,
and therefore only need to check the router for blocked outputs in order to per-
form an external input. Note also that CA, and ambient calculi in general, allow
migrating ambients to interact while in transit between devices. Such interac-
tions can either be prevented using type systems for single-threaded migration
18], or they can be implemented by defining a default network device where
migrating ambients can execute while waiting to be admitted to a new host.

4 Correctness of the Channel Ambient Machine

The correctness of the Channel Ambient Machine is expressed in terms of three
main properties: soundness, completeness and termination. Due to space limita-
tions the full proofs have been omitted, but can be found in [T5].

The soundness of the machine relies on a decoding function [V], which maps
a given machine term V' to a calculus process, and the unblocking function | V|
described in Section [3 Decoding and unblocking are defined as follows:

[vnV] 2 vn[V] lvnV] & wn|V|
M=o 0] 21
la[A]::c1 2 d[4]] €] la[A]:C) 2 o A]:(C]
[P::C] 2 P|[C] |[P=C| & P:|C]
[a.P:C) 2 a.P | [C] |.P::C| 2 a.P::|C]

Proposition [states that reduction in CAM is sound with respect to reduction in
CA. The proof relies on Lemmal[ll which states that machine terms are reduction-
closed.

Proposition 1. VV.V € CAMAV —* V' = [V] —* [V/]

Proof. By Lemma[land by induction on reduction in CAM. The decoding func-
tion is applied to the left and right hand side of each reduction rule and the
result is shown to be a valid reduction in CA. O
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Lemma 1. VV.V € CAMAV — V' = V' € CAM

Proof. By definition of structural congruence, by definition of unblocking, and
by induction on reduction in CAM. O

The completeness of the Channel Ambient Machine relies on a notion of well-
formedness to describe invariants on machine terms. The set of well-formed terms
CAMY is defined with respect to the set of ill-formed terms CAM™, such that
V€ CAMY = V € CAMAV ¢ CAM*. Ill-formed terms V* are defined as
follows:

VX o= A~ Bad List
1 vnV>* Bad Restriction

A* = q::C’ Bad Ambient

[ c Bad Enter, C = g::C' ANC' =blinz.Q::B|:C"

C Bad Leave,C = bl a|outz.P:: A |:: B [:C' A B=outz.Q: B’

€ Bad Sibling, C _a 2O AC = b2l (m).Q:B 0"

C Bad Parent,C = g 2C'ANC = x(m).Q:C"

A term is ill-formed if it contains both a blocked action a.P and a corresponding
blocked co-action. Therefore, a well-formed term cannot contain a blocked action
a.P that could participate in a reduction if it were unblocked to «a.P.

Proposition @ states that reduction in CAMY is complete with respect to
reduction in CA. The proof relies on Lemma [, which states that well-formed
machine terms are reduction-closed. The proof of reduction closure relies on
Lemma [3, which states that a term V' inside an arbitrary context K cannot
become ill-formed as a result of a reduction.

Proposition 2. VV.(V € CAMY A [V] —* P) = V.V —* V' A [V =P’
Proof. By Lemma [2 and by induction on reduction in CA. For each reduction

rule in CA, any machine term that corresponds to the left hand side of the rule
can reduce to a term that corresponds to the right hand side. a

Lemma 2. VV.V € CAMVAV — V' = V' € CAMY

Proof. By Lemma 3 and by definition of CAMY. ad

Lemma 3. VV.VK.V — V' AK (V') € CAM* = K(V) € CAM*

Proof. By definition of unblocking and by induction on reduction in CAM. 0O
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Proposition [3] states that reduction in CAMY terminates if reduction in CA ter-
minates. For a given well-formed machine term V', if the corresponding calculus
process [V] is unable to reduce then V will be unable to reduce after a finite
number of steps.

Proposition 3. VV.V € CAMY A [V] A==V /=%

Proof. Reductions in CAM can be classified into housekeeping, interaction and
blocking reductions. By definition of well-formedness, an action is blocked if
it cannot interact with a suitable co-action. Therefore, if no interactions are
possible then all the actions in a given machine term will eventually block and
execution will terminate after a finite number of housekeeping reductions. a

5 Implementation

The Channel Ambient Machine has been used to implement a runtime system,
which executes programs written in the Channel Ambient language. The runtime
is implemented in OCaml, and the language is based on polyadic CA with built-
in base types from OCaml. The language also uses a type system for channel
communication based on the polymorphic type system of Pict [19]. The runtime
is invoked by the command cam.exe sourcefile portnumber. This starts a
new runtime, which executes the contents of sourcefile.ca and accepts connec-
tions on portnumber of the host machine. Before a given source file is executed, it
is statically checked by the CA type-checker, which reports any type errors to the
user. The current state of the runtime is regularly streamed to sourcefile.html,
which can be viewed in a web browser and periodically refreshed to display the
latest state information. A beta version of the runtime can be downloaded from
[15], together with a user guide.

The main functionality of the runtime is illustrated by the following example,
which lists the contents of two source files, server.ca and client.ca, respectively:

let request = request:<site,<void>> let server = 192.168.0.2(3145) in
in let client = 192.168.0.3(3145) in
let service = service:ambient in let request = request:<site,<void>>
let logout = logout:<void> in in
( lrequest(c:site,x:<void>); new login:<void>
applet[out logout; in c.x; Q<>] ( server.request<client,login>
|l !'-out logout ) Il -in login; P<> )

These files contain source code corresponding to the server and client ambients
of the example described in Section[d. The syntax of the code is similar to the
syntax of CA, with minor variations such as using a semi-colon instead of a dot
for action prefixes. The code also contains type annotations of the form n : T,
where n is a variable name and 7' is a type expression, and value declarations of
the form let n =V in P, where V is a value expression. Site values are of the
form IP(i), where IP is an IP address and ¢ is a port number. Channel values
are of the form n : (T'), where n is a name and T is the type of values carried by
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the channel, and ambient values are of the form n : ambient where n is a name.
The additional type information helps to preserve type safety when remote ma-
chines interact over global channels, since two channels are only equal if both
their names and types coincide. The code also contains process macros P() and
Q(), whose definitions are omitted. The example is executed by invoking the
commands cam.exe server 3145 and cam.exe client 3145 on two differ-
ent machines with IP addresses 192.168.0.2 and 192.168.0.3 respectively. The
behaviour of the program is as described in Section 2} after a certain number of
executions steps, the client receives a service ambient from the server.

The runtime also provides support for system calls, which are modeled using
a sibling output of the form system-call{parameters). For example, the call
system-print(n) prints the value n on the runtime console. For security reasons,
system calls can only be executed by the top-level ambient. This ambient can
then provide an interface to a given system call by means of forwarder channels.
A separate forwarder channel can be defined for each user or group of users,
enabling fine-grained security policies to be implemented for each system call.
The runtime also allows files to be stored in an ambient in binary form and
sent over channels like ordinary values. This feature is used in the call system-
java{file), which invokes the Java runtime with the specified file. This can be
used to program a wide range of applications. For example, it can be used to
program an ambient that moves to a remote site, retrieves a Java class file and
then moves to a new site to execute the retrieved file. A similar approach can
be used to coordinate the execution of multiple Prolog queries on different sites,
or coordinate the distribution and retrieval of multiple HTML forms. Section
describes an ambient tracker application, which illustrates the kind of application
that can be executed by the runtime system.

6 Ambient Tracker Application

The Channel Ambient calculus can be used to model an ambient tracker appli-
cation, which keeps track of the location of registered client ambients as they
move between trusted sites s, ..., s in a network. The application is inspired by
previous work on location-independence, studied in the context of the Nomadic
m-calculus [21] and the Nomadic Pict programming language [22]. This section
describes a decentralised version of the algorithm given in [20]. The algorithm
uses multiple home servers to track the location of mobile clients, and relies on
a locking mechanism to prevent race conditions. The locking mechanism ensures
that messages are not forwarded to a client while it is migrating between sites,
and that the client does not migrate while messages are in transit.

The application is modeled using the Site, Tracker and Client processes
defined in Fig.[Bl The Site process describes the services provided by each trusted
site in the network. An ambient at a trusted site can receive a message m on
channel z from a remote ambient via the child channel. Likewise, it can forward a
message m on channel x to a remote ambient a at a site s via the fwd channel.
Visiting ambients can enter and leave a trusted site via the login and logout
channels respectively. An ambient at a trusted site can check whether a given
site s is trusted by sending an output on channel s. A client ambient can register
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Site(s;) £
(Ichild" (a, z,m).a/z(m)

| | fwd(s,a,z,m).s child{a,z,m)
| 'inlogin | lout logout

[1s0() | - [ s ()

| lregister(client, ack).vtracker vsend vmove vdeliver viock

(tracker‘ Tracker(client, send, move, deliver, lock) ‘

| client/ack(tracker, send, move, deliver, lock)
| tracker /lock(s;)))

Tracker(client, send, move, deliver, lock) £
(1send" (x,m).lock™ (s). fwd" (s, client, deliver, (s, z,m))

| !moveT(s/).s'TO.lockT(s).fwdT(s, client,lock, s'))
Client(home, tracker, deliver, lock) &
(Mock (s).out logout.in s-login. fwd' (home, tracker, lock, s).moved(s)

| \deliver' (s, z, m). fwd' (home, tracker, lock, s).x:(m))

Fig. 3. Tracker Definitions

with a trusted site via the register channel, which creates a new tracker ambient
to keep track of the location of the client. The Tracker and Client processes
describe the services provided by the tracker and client ambients respectively.

Figureldescribes a scenario in which a client registers with its home site. The
client ¢ sends a message to its home site sg on the register channel, consisting of
its name and an acknowledgement channel ack. The site creates a new ambient
name t. and new send, move, deliver and lock channels s., m., d., l. respectively.
It then sends these names to the client on channel ack, and in parallel creates
a new tracker ambient t. for keeping track of the location of the client. The
tracker is initialised with the Tracker process and the current location of the
client is stored as an output to the tracker on the lock channel /.. When the
client receives the acknowledgement it spawns a new Client process in parallel
with process P.

A message can be sent to the client by sending a request to its corresponding
tracker ambient on the home site sg. The request is sent to the tracker ambient
t. on the send channel s., asking the tracker to send a message n to its client
on channel x. The tracker then inputs the current location s; of its client via
the lock channel (., thereby acquiring the lock and preventing the client from
moving. The tracker then forwards the request to the deliver channel d. of the
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Fig. 4. Tracker Registration

client. When the client receives the request, it forwards its current location to
the tracker on the lock channel, thereby releasing the lock, and then locally sends
the message n on channel x.

When the client wishes to move to a site s;, it forwards the name s; to
the tracker ambient on the move channel m.. The tracker ambient first checks
whether this site is trusted by trying to send an output on channel s;. If the
output succeeds, the tracker then inputs the current location of its client on the
lock channel, thereby acquiring the lock and preventing subsequent messages
from being forwarded to the client. It then forwards the name s; to the client
on the lock channel, giving it permission to move to site s;. When the client
receives permission to move, it leaves on the logout channel and enters site s;
on the login channel. It then forwards its new location to the tracker ambient
on the lock channel, thereby releasing the lock.

The above application has been implemented in the channel ambient pro-
gramming language, and preliminary trials have been performed. Multiple clients
were initialised on a number of different machines and registered with a tracker
service. These clients were programmed to migrate between the various sites and
perform local tasks, including retrieving files and launching Java applications,
whilst communicating with each other on the move.

7 Comparison with Related Work

The Channel Ambient calculus is a variant of Boxed Ambients inspired by recent
developments in the design of process calculi for mobility. The calculus uses
guarded replication, which is present in modern variants of Boxed Ambients
such as []. Actions in CA are similar to actions in Boxed Ambients [9], except
that ambients in CA can interact using named channels and sibling ambients
can communicate directly. This form of sibling communication is inspired by the
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Nomadic m-calculus, although agents in Nomadic 7 are not nested. A similar form
of channel communication is also used in the Seal calculus [§], although sibling
seals cannot communicate directly. The use of channels for mobility is inspired by
the mechanism of passwords, first introduced in [I3] and subsequently adopted
in []. The main advantage of CA over existing variants of Boxed Ambients is
its ability to express high-level constructs such as channel-based interaction and
sibling communication directly. These constructs seem to be at the right level
of abstraction for writing mobile applications such as the tracker application
outlined in Section Bl The main advantage of CA over the Nomadic m-calculus is
its ability to regulate access to an ambient by means of named channels, and its
ability to model computation within nested locations, both of which are lacking
in Nomadic 7.

The Channel Ambient Machine extends the list semantics of the Pict ma-
chine, to provide support for nested ambients and ambient migration. Pict uses
channel queues in order to store blocked inputs and outputs that are waiting to
synchronise. In CAM these channel queues are generalised to a notion of blocked
processes, in order to allow both communication and migration primitives to
synchronise. A notion of unblocking is also defined, to allow mobile ambients
in CAM to re-bind to new environments. The Pict machine does not require
a notion of restriction, since all names in Pict are local to a single machine.
In contrast, CAM requires an explicit notion of restriction in order to manage
the scope of names across ambient boundaries, as given by rules ([28]), ([28) and
(B3). By definition, the Pict abstract machine is deterministic and, although it
is sound with respect to the m-calculus, it is not complete. In contrast, CAM is
non-deterministic and is both sound and complete with respect to CA.

A number of abstract machines have also been defined for variants of the
Ambient calculus. In [5] an abstract machine for Ambients is presented, which
has not been proved sound or complete. In [I1] a distributed implementation of
Ambients is described, which uses JoCaml as an implementation language. The
implementation relies on a formal translation of Ambients into the Distributed
Join calculus. However, it is not clear how such a translation can be adapted to
boxed ambient calculi, which use more sophisticated communication primitives.
Furthermore, the implementation is tied to a particular programming language
(JoCaml), which limits the scope in which it can be used. In [I8] a distributed
abstract machine for Safe Ambients is presented, which uses logical forwarders to
represent mobility. Physical mobility can only occur when an ambient is opened.
However, such an approach is not applicable to boxed ambient calculi, where the
open primitive is non-existent.

The ambient tracker application described in Section[@lis inspired by work on
mobile applications presented in [2I]. This work identifies a key role for process
calculi in modelling communication infrastructures for mobile agent systems.
Such infrastructures can be used as a foundation for building robust applications
in the areas of data mining and resource monitoring, among others. In [21] the
Nomadic m-calculus is used to model an infrastructure for reliably forwarding
messages to mobile agents, and a centralised version of this algorithm is proved
correct in [20]. In Section[B, a decentralised version of this algorithm is modeled
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in CA. The main advantage of Channel Ambients over Nomadic Pict lies in the
correctness of the Channel Ambient Machine, which ensures that any properties
satisfied by the calculus model will also hold in its implementation.

8 Conclusions and Future Work

In this paper we presented a distributed abstract machine for a variant of the
Boxed Ambient calculus with channels, and proved the soundness and complete-
ness of the machine with respect to the calculus. We then described a prototype
implementation, together with an application for tracking the location of mobile
ambients. The prototype is a useful tool for experimenting with the development
of mobile applications based on a formal model, which we hope will provide in-
sight into the design of future programming languages for mobile computing.
To our knowledge, this is the first time that a correct abstract machine for a
variant of Boxed Ambients has been implemented in a distributed environment.
The correctness of the machine ensures that the work done in specifying and
analysing mobile applications is not lost during their implementation.

We are currently using the techniques outlined in this paper to define abstract
machines for other variants of boxed ambients, such as those described in [9] and
H]. We also believe that similar techniques can be used to define an abstract
machine for Safe Ambients [12]. It would be interesting to see how the resulting
machine compares with those defined in [I1] and [18].

Another area for future research is the choice between a deterministic and
a non-deterministic implementation. Non-determinism guarantees completeness,
but requires a random scheduling algorithm to be implemented. Determinism is
more efficient, but leads to weaker correctness properties. The machine defined in
this paper allows both alternatives to be implemented. It would be interesting to
investigate whether the more efficient deterministic machine provides sufficient
guarantees for correctness.

The main motivation for defining an abstract machine for CA, as opposed to
another variant of boxed ambients, was the desire to express high-level constructs
such as channel-based interaction and sibling communication directly. In future,
we plan to investigate whether these constructs can be encoded in other variants
of Boxed Ambients. We also intend to ascertain whether existing type theories
for boxed ambient calculi can be smoothly to applied to CA.

More generally, we plan to investigate whether existing program analysis
techniques can be used to prove properties of applications written in CA. Exam-
ples of such techniques include equivalence-based analysis of mobile applications
[20], model-checking techniques based on ambient logic [6] and security types for
mobile ambients [T0)].
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