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ABSTRACT

An office presence detection system is presented in this pa-
per. Context information from multi-sensory inputs is in-
tegrated to infer a user’s activities in an office. We design
a layered architecture to model human activities with dif-
ferent granularities. An IHDR (Incremental Hierarchical
Discriminant Regression) tree is used to automatically gen-
erate models for acoustic signals from unsegmented audi-
tory streams, with a high adaptive capability to new settings.
Hidden Markov Models (HMM) are implemented to detect
human motion patterns. The outputs of the above two com-
ponents are fed into high-level HMMs to analyze human
activities. Experimental results of the real-time prototype
system are reported.

1. INTRODUCTION

Context-aware system [1] has drawn increasing attention
from researchers and engineers. Context is defined as “the
situational information relevant to the interaction between a
user and an application.” Context consists of not only im-
mediate multi-sensory inputs from streams of video, audio
and computer interactions (mouse and keyboard informa-
tion) but also other aspects of a user’s information such as
past states and intentions. Context-awareness is the key
component of the next generation human-computer inter-
action technique, which tends to measure the information
about “where,” “what,” “when,” and “who.”

A significant portion of previous work focused on rec-
ognizing human activities based on a single modality input
in a specific environment. There are two popular proba-
bilistic approaches in visual activity recognition: Hidden
Markov Model (HMM) and Bayesian Belief Network (BBN).
One of the earlier attempts to apply HMMs to activity recog-
nition is found in [2]. Since then, a lot of extensions of
HMMs have been tried to model different human activi-
ties. Variable-length HMM [3] is applied to exercise behav-
ior recognition. Brand & Oliver used Coupled-HMM [4]
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to detect interactions between multiple people. Buxton &
Gong [5] adopted BBN for visual surveillance. However,
there have been few studies on human activity recognition
based on multiple sensory inputs. In [6] a Layered HMM ar-
chitecture integrates information from multimodal inputs to
recognize six activities in an office. One limitation of HMM
is that it is only a computational model in the sense that
HMM is not designed to be generated automatically from
observations. Engineers have to manually design the sys-
tem for given settings in advance, which affects its adaptive
capability in unknown environments.

In this paper, we propose a real-time office presence de-
tection system to monitor the behaviors of a single human
in an office. A layered architecture is implemented. Cur-
rently, the overall system is hand-designed (computational
model only) but a major part (IHDR) is automatically gener-
ated (computational model and model generator), which is
the major difference between this work and [6]. This novel
component is crucial for unknown environments where nei-
ther the vocabulary of conversation nor speaker population
or phone type is known in advance (e.g. as a consumer
product). The IHDR (Incremental Hierarchical Discrimi-
nant Regression) [7] tree automatically generates the repre-
sentation for acoustic signals and incrementally learns new
patterns without training from users, which is one of the
essential requirements of adaptive applications. Based on
visual-sensory input, low-level HMMs classify the human’s
motion pattern. High-level HMMs are implemented to inte-
grate the outputs from the above two low-level components
and to infer human’s activities. In what follows, we first re-
view the setting of the system. The system architecture is
presented in Section 3. Then we discuss the experimental
results and conclude with a summary and discussion about
future works.

2. SETTING OF A CONTEXT-AWARE SYSTEM

A typical setting of a context-aware system is shown in
Fig. 1. A table and a chair are in an office. On the table,
there are a telephone, a personal computer, a video camera
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and a microphone. Here are the sensors we use to collect
context information: 1) Microphone: one mini-microphone
with an audio-pickup range of up to 30 �-40� is used for
sound classification. 2) USB camera: a USB 2.0 camera
sampled at 15 f.p.s. is used to detect human motions. For
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Fig. 1. Typical setting of a context-aware system.

a computer, to recognize visual patterns and sound patterns
is not an easy task. Inferring human activities from mul-
tiple sensors is more difficult since high-level reasoning is
required. The following section shows how to build such a
system through a layered architecture.

3. SYSTEM ARCHITECTURE

The goal of this project is to detect human activities in an of-
fice. The system architecture is shown in Fig. 2. Two kinds
of sensory inputs are used: auditory and visual. Cepstral
analysis is applied to raw auditory signals to extract cepstral
features, which are fed into an IHDR tree to discriminate
four kinds of auditory patterns: “Phone ring,” “Conversa-
tion,” “Uncertain noise,” and “Silence.” A motion detector
captures motion information by computing the difference
between two consecutive images. A sequence of motion ac-
tivities is classified by low-level HMMs into four motion
patterns: “Rest,” “Moving near door,” “Moving in the of-
fice,” and “Out.” The outputs from the above two compo-
nents are combined together and sent to high-level HMMs,
which infer the human activities in the office. There are
totally four kinds of activities: “Conversation,” “Other ac-
tivity,” “Rest,” and “Nobody around.” The detailed design
of each component is shown in Fig. 3 and explained in the
following sections.
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Fig. 2. Architecture of the context-aware system.
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Fig. 3. A detailed architecture of the context aware system.

3.1. Auditory pattern classification using IHDR

The auditory data are digitized at 11025Hz by a normal
sound blaster card. Cepstral analysis [8] is performed on
the speech stream. 20 consecutive cepstral feature vectors
together form a single auditory sensation vector, which cov-
ers about 0.4s. Continuous feature vectors are fed into an
IHDR tree. No manually segmentation is needed. The func-
tion of the IHDR tree is to approximate a mapping � �
� �� � from a set of training samples ����� ��� � �� �
� � �� � � � � � �� �� � � � � ��. The mapping is done through
a coarse-to-fine tree structure. Each node of the tree is mod-
eled by � Guassians. In this sense, the original �-dimensional
(�=360) input space is mapped to a q-1 dimensional dis-
criminant subspace. We only conduct Linear Discriminant
Analysis (LDA) in the very-lowdimensional subspace, which
saves tremendous computational cost. Each Gaussian is rep-
resented by its first two-order statistics: mean and covari-
ance matrix. Mean is updated incrementally as follows:

������� �
�� 	

�� �
����� �

� � 	

�� �
���� (1)

where ���� is the �����th sample, ������� is the mean after
this sample is trained, 	 is a parameter. If 	 
 �, the new
input gets more weight than old inputs. We called this im-
plementation the amnesic average. The covariance matrix
can be updated incrementally by using the amnesic average
too. Each leaf node generates quite a few primitive pro-
totypes (block in Fig. 3), which represent different patterns
(model generator). In testing phase, if a prototype is reached
(shadowed block), the label associated with it would be the
output (computational model). Furthermore, IHDR intrin-
sically has incremental online learning capability to adapt
to new signals. This is why we use IHDR instead of tradi-
tional HMM to classify auditory patterns. For practical ap-
plications, the system has to work in different offices. Each
office has different people and different telephones. In or-
der to make HMMs adapt to new settings, a bank of new
HMMs has to be created manually. In contrast, one IHDR
is enough to handle all types of auditory signals.
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3.2. HMMs for motion pattern classification

Discrete HMMs are implemented for behavior recognition
based on motion. An HMM is denoted by � � ����� ��,
where � is state transition probability matrix, � is the ob-
servation symbol probability matrix, � is the initial state
distribution. Specification of an HMM involves the choice
of the number of states � , the number of observations � .
With training data, we can calculate � by using Baum-Welch
algorithm [9]. Given a model � and a sequence of observa-
tion O=���� ��� ���� �� �, the likelihood of the sequence is

	 ����� � ��
����� � � � � �� (2)
where 
���� is defined as


���� � �
�

�


��������� ������� (3)

where ��� is the element of � and ����� is the probabil-
ity for state � in the model � of observing ��. Usually a
bank of � HMMs (�� (� � � � �)) would be generated.
The likelihood of the observation sequence in each model is
�� � 	 ������. Suppose the maximal likelihood is �max
and the minimal likelihood is �min, the normalized likeli-
hood is

�
�

� �
�� � �min

�max � �min
� (4)

HMMs choose the pattern �� with the largest normalized
likelihood as output.

�� � �	
���
�

��
�

�� (5)

3.3. Integration component

Integration of the above two low-level information to infer
human activities is difficult since different modalities have
different updating frequency and they can be either related
or unrelated. High-level HMMs are necessary for reasoning
human activities based on information of low-level com-
ponents. Usually the reasoning is conducted with a larger
time granularity (for example, 3 seconds), while in motion
pattern classification and auditory pattern classification, the
granularity is 1 second. The outputs from low-level com-
ponent are symbols, which can be fed into the integration
HMMs. Since the vision component outputs 4 types of dif-
ferent patterns (so does the audition component), the com-
bination of these two components gives 16 types of obser-
vations.

4. EXPERIMENTAL RESULTS

We conducted experiments for each of these three compo-
nents.

4.1. Experimental results of the auditory component

We trained the IHDR with 3 kinds of male conversation
signals, 2 kinds of female conversation signals, 12 kinds

of phone ring signals and uncertain noise. The number of
cepstral feature is about 12000. A half is used for train-
ing, another half is used for testing. Results are shown in
Tab. 1. Conversation and uncertain noise signals are con-

Table 1. Recognition rate of each auditory set.
(C=Conversation; UN=Uncertain Noise; P=Phone;
S=Silence)

Data C UN P S Total Rate
C 2253 206 7 4 2470 91.21%

UN 230 2090 0 0 2320 90.07%
P 9 19 1762 5 1795 98.16%
S 0 0 0 1141 1141 100%

fusing sometimes (206 conversation vectors are recognized
as uncertain noise). The overall recognition rate is �����.
We need to notice that the test is source-dependent. In other
words, the testing set and the training set come from the
same source. If we test the system with signals of a tele-
phone we never trained, the performance would definitely
drop. That’s why IHDR is important for this application
since it can incrementally learn new auditory patterns, while
it may not be so easy for HMMs.

4.2. Experimental results of the motion component

In this experiment, the parameters of the low-level HMMs
are: N=6, M=4 and K=4. Different observations are: “Mo-
tion in door area,” “Motion in room but not door,” “Static
& last motion in door area,” and “Static & last motion in
room but not door.” The normalized likelihood of each mo-
tion pattern is shown in the first four plots of Fig. 4. The
x-axis is time line about 400 seconds. The granularity of
HMMs is 1 second. If �

�

� � �, then pattern � is reported.
The ground truth of activity sequences is shown in the fifth
plot, which goes as follows: the user firstly moved in the
room (pattern 1), rested for a while (2), moved around the
door (3) and then went out (4). The motion behaviors are
clearly recognized. A mistake occurs around step 320, the
system classified pattern (3) as pattern (1) when the user
moved near the boundary of the door and the remain parts
of the room.

4.3. Experimental results of the high-level reasoning

The specifications of the high level HMMs are: N=4, M=16
and K=4. Normalized likelihood of each human activity is
shown in the first four plots of Fig. 5. The ground truth of
activity sequences is in the fifth plot, which goes like this:
the user moved around in the rest (activity 1), rested (2),
moved around again (1), talked for a while (3), moved to the
door (1) and went out (4). The x-axis is time line about 800
time frames. “Nobody” and “Rest” are perfectly classified,
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Fig. 4. Likelihood of motion patterns over time.

while “Conversation” and “Other activity” are messed a lit-
tle because sometimes you can move and talk at the same
time. 40 minutes of office activity are recorded (about 10
minutes for each activity). A half of the data is used for
training; another half is used for testing. The recognition
rate of human activities is shown in Tab. 2. About �� of
“Conversation” is incorrectly recognized as “Other activ-
ity”, which is consistent with the results in Fig. 5.
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Fig. 5. Likelihood of human activities over time.

5. SUMMARY AND DISCUSSION

In this paper, a layered architecture is proposed for the de-
tection of office presence. IHDR, as a model generator, gen-
erates representation for different auditory patterns and can
easily adapt to new settings. Two levels of HMMs with dif-
ferent granularities handle motion pattern classification and
integration of low-level outputs, respectively. The initial re-
sults of the prototype system are promising. However, to
build a highly adaptive system for consumers needs further
study. Here are some future works: 1) Maximize the adap-
tive capability. We plan to make all major components of

Table 2. Recognition rate of human activities (N=Nobody;
OA=Other activity; R=Rest; C=Conversation).

Data N O R C
N 100% 0 0 0
O 0 94.31% 0 5.69%
R 0 0 100% 0
C 0 4.52% 0 95.48%

the system generative using IHDR. 2) Minimize the user
on-site training so that most adaptation is performed silently
and automatically in the background. 3) Dynamic CPU us-
age adaptation so that the system does not tie up CPU cycles
noticeably.
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