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ABSTRACT The paper is organized as follows: We describe the classi-
) ) fier/detector architecture in Section 2. We describe the proposed
We introduce an elegant and novel design for a speech detectokeature in Section 3. Finally, in Section 4, we present results on

which estimates the probability of the presence of speech in eachthe AURORA database that demonstrate the effectiveness of the
time-frequency bin, as well as in each frame. The proposed systemproposed technique.

uses discriminative estimators based on logistic regression, and in-

corporates spectral and temporal correlations in the same frame-

work. The detector is flexible enough to be configured in a single 2. LOGISTIC REGRESSORS FOR SPEECH DETECTION

level or a “stacked” bi-level architecture depending on the needs

of the application. An important part of the proposed design is 2.1. Previous Work

the use of a new set of features: the normalized logarithm of the

estimated posterior signal-to-noise ratio. These can be easily andl@ny approaches have been proposed to detect speech presence
automatically generated by tracking the noise spectrum online. We©F €stimate its probability at the frame level. One very popular

present results on the AURORA database to demonstrate that thénéthod is to use likelihood ratio (LR) tests based on Gaussian
overall design is simple, flexible and effective. models. A voice activity detector using such a test was proposed

in [5]. In essence, it uses a smoothed signal to noise (SNR) ra-
tio estimate of each frame to implement this test, and seems to
1. INTRODUCTION be effective for speech detection. Unfortunately, it (like other LR
based tests) suffers from the problem of threshold selection, and
Detecting the presence of speech is crucial in many applications.the LR scores do not translate easily into true class probabilities.
In some, like noise adaptation and speech enhancement, a simpl&o convert from the former to the latter, additional information in
presence (or absence) decision alone does not suffice - it is criticalthe form of prior probabilities of the hypotheses need to be known.
to estimate th@robability of the presence of speeicheach time- Further, this method assumes that both noise and speech have nor-
frequency bin as well as each frame [2]. In other applications, a mal distributions with zero mean, which seem to be overly restric-
simple frame level decision is sufficient, but the requirements may tive assumptions. In the rest of this paper we refer to this method
vary e.g. in source localization the probability of false detection as the “Gaussian” approach, and compare our technique with it.
(classification of noise-only frames as speech frames) should belR tests can be improved with larger mixture models, but these
low, whereas in speech coding a high speech detection rate is deare computationally expensive.
sirable. Thus an ideal system is one that prodweedibratedprob- Other techniques make speech / non-speech decisions at the
abilities i.e. measures that accurately reflect the actual frequencyframe level (i.e. they estimate a 0/1 indicator function), and smooth
of occurance of the event (presence of speech). Such a system cahis over time to estimate the probabilities [2]. Some others use
(1) make decisions optimally based on utility theory, and (2) com- hard or soft voting mechanisms on top of such indicator functions
bine decisions from independent sources using very simple rules.estimated at the time-frequency atom level [3]. One technique that
Further, an ideal system should also be simple and be light on thejs frequently used to estimate probabilities is a linear estimation
use of resources. model: p = A 4+ BX, wherep is the probability, X" is the input
In this paper, we introduce an elegant and effective design for (this could be LR scores or observed features like energies)dand
a detector which can accurately estimate calibrated probabilitiesand B are the parameters to be estimated. One of the probability
of the presence of speech based on logistic regression based clagstimators in [2], even though not explicitly formulated this way,
sifiers. The design of our system is flexible enough to allow the effectively adopts the linear model and uses the log of smoothed
arrangement of detectors in a cascaded or a uni-level architecturenergy as the input. The two most important problems with the lin-
depending on the need of the application, without sacrificing per- ear model are that the predicted probabilities can be greater than 1
formance. The cascaded version first detects the probability of or less than 0 (high and low thresholds must be set right to avoid
presence of speech in each time-frequency atom, and uses thesgis problem), and the variance of the error in estimation depends
values to make a frame level probability estimate. The uncascadedon the input variable.
version estimates these probabilities directly from the feature data.
One important aspect of the design is the use of features based on
posterior signal-to-noise ratio. These features are designed to fit2.2. Logistic Regression
well with the detector, and can be easily generated on-line. The
features and the classifier put together, make a simple yet effectiveAs an alternative to models discussed above, we propose the use
speech detector. of a “logit” or a logistic regression model [6] for speech detection.



The class probability is estimated as: } P(speectirame)

Frame level logit detector ‘

1
= , 1
PX = exp(—A — BX) @ P(speecfatom)
whereX is the input andd andB are the parameters of the system. '
These parameters are estimated by minimizing the cross-entropy Atom level
error function [6]: logit
detectors

S:—Zt,ylog(px)—l—(l—tx)log(l—pXL )

wheret xS are the target labels for the training dataand hence
is discriminative. This also provides the maximum likelihood esti-
mate of the class probability. Fig. 1. Stacked (left) or an unstacked (right) architectures can be

The logit function provides very good estimates of the poste- used based on the needs of the application.
rior probability of the membership of a clag&|X') for a wide va-
riety of class conditional densities of the daf46]. If the densities
are multivariate Gaussians with equal variances, then this estimate 3. POSTERIOR SNR BASED FEATURES
is the exact posterior probability. But to emphasize, normality is
not a necessary condition for logit to be effective. Further, the logit An important desired characteristic of a speech detector is that the
function does not run into all the other problems associated with features it uses remain sufficiently simple. Complex features de-
the Gaussian models mentioned in the previous paragraph. Theived solely for the purpose of detection add to the computational
model has many other advantages: The parameters can be easilgomplexity. In this paper, we introduce a very simple set of fea-
calculated using gradient descent based learning algorithms. If thetures based on the estimated signal-to-noise ratio (SNR). Since the
input vector X’ contains data from adjacent time and frequency actual SNR of each frame can be known only by estimating the
atoms, the logit function becomes an easy way to incorporate bothactual speech and noise components of each given noisy frame,
temporal and spectral correlation into the decision without overly it is easier to deal with thestimated posterior SNRhich is the
worrying about the underlying distributions. To summarize, the ratio of the energy in the given framg to estimatednoise en-
attraction of this technique is its richness and simplicity. ergy\: £(k,t) = |Y (k,t)[>/A(k, t), wherek, t are the frequency

. and time indices respectively. The terminology used here was first
2.3. Stacked Architecture proposed by McAulay and Malpass [1]. The estimate of the ac-
One additional advantage of the logit model is the flexibility it tual SNR (also referred to as tipeior SNR[1]) can also be used
provides in engineering a useful architecture. Some applicationsas a feature. The likelihood ratio based method proposed in [5],
need the probability of speech to be estimated at both the time-in fact, uses an estimate of such a feature. Our preliminary ex-
frequency atom level and at the frame level. In a classification periments show that this feature performs better than the poste-
problem, it is known that the transform of a variable that has mini- rior SNR based feature. But estimating this is equivalent to doing
mum Bayes risk is the one that estimates the posterior class probaspeech enhancement [2, 3], and can be complicated. Hence, for
bility of its true class [8]. Looking at the frame level detection from the sake of simplicity, we will not use it in this paper. To com-
this perspective, we can easily see that the conditional class probpute the spectrum we use modulated complex lapped transforms
abilities for each time-frequency atom is the best possible input (MCLTSs) [10]. MCLT is a particular form of cosine modulated
for the frame level detector. This suggests a bi-level architecture filter-bank that allows for perfect reconstruction. FFTs can easily
where the first level of detectors operate at the atom level, and thebe used instead of MCLTs without changing any other procedure
outputs of these are used as inputs to a frame level speech detectoin this paper.
Posterior class probabilities have been used as features for HMM  Since the features are being fed to a learning machine, some
based speech recognition (e.g. [9]). preprocessing is needed to improve generalization and learning ac-

The first level has one detector for each atom. The input to curacy. First, since short term spectra of speech are modeled well
each of these detectors is the vectfk,t) = [V(k —a : k + by log-normal distributions, we use the logarithm of the SNR es-
a,t — i : t + 1)] which is the concatenation of the featwein timate, rather than the SNR estimate itself. Second, we normalize
the time-frequency neighbourhood of the relevant time-frequency the input so that its variance is 1. In this paper, we precompute
bin (k,t). If a delay in processing cannot be tolerated, the feature the variance for each coefficient over the training set and use it
can be strictly causal and need not include future frames. For theas the normalizing factor. Thus our new feature is a normalized
single-layer systemY in the above equation is substituted by its logarithm of the estimated posterior SNR (nlpSNR), and is written
mel-band derivative (see Section 3.1). as:

Once the first layer of detectors compute the probabilties V(k,t) = 1
P(k,t), these can be concatenated in a fashion similax tand 20 (k)
fed to a single detector in the second layer. This architecture haswherec (k) is a normalizing factor, and all other variables are as
some similarities to the “stacked generalizer” proposed by Wolpert defined earlier in this section.

[7] for minimizing bias in learning. In Wolpert's work, the first

and second _Iayers I_ooth estimate the same function, excgpt the}é.l. Mel-transform for single layer system

operate on different input spaces. Thus our proposed classifier can
be called “stacked” if we interpret each atom level detector to be a For a single layer system which does not need atom level decisions,
“poor” predictor of the frame level speech presence. we can use features that have poorer frequency resolution. For

{log |Y (k. t)|* — log A(k, 1)},



example, bothy|? and can be converted into Mel-band energies Y., andY;.:, are calculated over a recent time period so that
before nlpSNR is computed. they can track the local signal and noise variations. The results
are shown in Figure 2. The plots show the ROC curve (correct de-
tection of speech frames vs. false alarm). The “minimum error”
numbers, where the weighted error (false alarm*(ratio of noise
The noise poweh can be tracked using various algorithms [2, 4]. frames)+ false rejetion*(ratio of speech frames)) is the least, are
In this work, we use a two level online automatic noise tracker. also listed for each graph. The axes are shortened to highlight the
The initial estimate is bootstrapped using a minima tracker (e.g. upper-left quadrant of the plane. We can clearly see that the new
[4]) which is used to compute the probability of the presence of feature outperforms the others at all SNRs.

speech similar to the method in [2]. Following that, a maximum

a posterioriestimate of the noise spectrum is obtained. Since the
focus of this paper is not the estimate of the noise, we will eschew 1

3.2. Automatic noise tracking

20dB 15dB

discussing it in further detail.
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The knowledge that this is a “stereo” database i.e. the data
contains “clean” signals and their corresponding noisy counter-
parts, is usednlyto generate the true labels at the atom and frame
level needed for training. This information wiastused for online
noise estimation or in testing.

The true labels were generated by thresholding the energy in
each time-frequency bin/frame of the clean data. The thresholds
were selected so that all speech events were retained. This was ver-
ified through listening experiments on a small fraction of the train-
ing data. The threshold was tuned so that the low energy speechy.3. Atom level decisions
events and the transitions just barely made the cut.

A 128-pt MCLT was used to compute the spectrum every 16ms Now we demonstrate the strength of the classifier. We compare our
using a 32ms window. For each time indexhe input vectortothe ~ proposed approach to the “Gaussian” method mentioned earlier
logit functions contained all the spectral components of the feature [5]. The first set of experiments are at the atom level. We use 128

Fig. 2 ROC curves comparing features at various SNRs: (1)
New nIpSNR feature (solid line), (2) Signal power with elemen-
tary noise compensation (dashed line), and (3) Variance normal-
ized signal power (dotted line). Minimum error numbers are in-
scribed.

vector att and its immediate neighbors in time<{1 and¢+1). All detectors - one for each bin. Here we only show results from one
the logit parameters in this paper were estimated using stochastidrequency bin - the one centered at 1000 Hz. The results at this bin
gradient learning [6]. summarize the performance in most other bins. The rationale for

this statement will be clear as we explain the results. ROC curves
for four different SNRs are shown in Figure 3. The SNR labels
in the figure do not reflect the SNR in the bin, but the SNR of the
The first set of experiments demonstrate the effectiveness of theentire file. So for frequency bins that are not covered by the noise
nlpSNR feature over other spectral features. The classifiers werespectrum, the bin SNR will be much higher. We can see from
single layer logistic regressors for frame level speech detection.the figure that in bins with high SNR (e.g. 20dB) the Gaussian
The features are transformed into 20 mel-band energies for classiimethod is slightly better. But as the SNR worsens, the proposed
fication. We choose two other features for comparison, each with amethod significantly outperforms it. In general, in this database,
different method for spectral normalization: (1) variance normal- the bin SNRs are higher at very high indices. So for frequency bins
ized noisy speech spectra (referred to as “Y (normalized)”, and (2) closer to 4KHz, the Gaussian does slightly better e.g. at 3KHz, the
noise normalized spectra (referred to as “Y (min-max)”, based on average minimum error over 20dB-5dB data range is 9.85% for
maxima and minima tracking in the spirit of [4] except that fea- the new system versus 8.35% for the Gaussian. At the same time,
ture is normalized thusy = (Y (t) — Yimin)/(Ymaz — Ymin)- in frequency bins including a lot of noise, the new method is much

4.2. Comparing Features



better e.g. in the 500Hz bin the new method has a minimum error
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of 15.38% vs. 23.35% for the Gaussian.
0.9
1000Hz subband 20dB 1000Hz subband 15dB
1 1 ‘5 ‘5
8 808
J9% o
08 09 a Stacked :9.6% a |/ Stacked :11.5%
i
020 i
_E 08 .5 08 0.7 Single :9.3% 0.7 / Single :11.:5%
'g g Gaussian :10.6% Gaussian :13.6%
807 8 o7 06 06
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
) . False Alarm False Alarm
0.6 Logit :11.2% 0.6 Logit :13.3%
Gaussian :10.5% Gaussian :14.6% 10dB 5dB
1 . 1
0.5 0.5
0 0.1 0.2 03 0.4 0.5 0 0.1 0.2 0.3 04 0.5 i Syacked
False Alarm False Alarm Single
0.9 0.9/.— - Gaussian
1000Hz subband 10dB 1000Hz subband 5dB g
c [=4 -
1 1 S S -7
— Logtt S o8 Sos P
09 09 Gaussian b 3 L7
: a 7 Stacked :14.8% o  “Stacked :19.1%
4 . . ‘ ; .
_5 08 .5 08 0.7 // Single :14.8% 0.7 // Single :18:9%
'g g Gaussian :17.6% 4 Gaussian :21.9%
807 807 G 06 0.6
o 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
) . - False Alarm False Alarm
0.6 . Logit :16.6% 0.6 Logit :20.6%
Gaussian :18.9% Gaussian :23.2%
05 0.5 i i i i
0 01 o0z o3 07 o5 o 01 02 03 o2 o5 Fig. 4. ROC curves comparing the new design at various SNRs
False Alarm False Alarm using (1) a stacked architecture (solid line), (2) a single layer ar-

chitecture (dotted line) and (3) the Gaussian based approach [5]
Fig. 3. ROC curves for detection of speech in the frequency band (dashed line). Minimum error numbers are inscribed.

around 1000Hz at various SNRs using (1) the proposed logit de-
tector (solid line), and (2) the Gaussian method [5] (dotted line).
Minimum error numbers are inscribed.

architecture or in a uni-level architecture based on the needs of the
application. Both these methods are equally effective. We present

convincing results on the AURORA database to demonstrate the
strength and flexibility of the new approach.

4.4, Frame level decisions, Stacked vs. Single level

In this section, we compare classifiers at the frame level. Figure

4 shows the ROC curves for three cases: the new method using
both a stacked and an un-stacked architecture, and for the Gaus- [1]
sian method. The stacked and the unstacked methods perform very
similarly and both of them outperform the Gaussian method in all
parts of the ROC curve. Hence the new method will be better than [2]
the Gaussian method for any application.

Since the performance of the stacked and single layer system [3]
are so close, the choice of architecture can be made based only on
the application. If atom level decisions are also needed in addition [4]
to frame level decisions, then the stacked classifier can be used;
otherwise the single level network will suffice.

One advantage of a logistic regression system is that it is possi- [5]
ble to evaluate the influence of each component of the input vector
by analyzing the significance of the corresponding weight (using
for example the Wald statistic). Through such an analysis, it is
possible to use fewer input coefficents. Due to lack of space we [7]
postpone a detailed discussion for future publications.

(8]

5. SUMMARY

(9]
We present a simple, yet effective solution for estimating the prob-
abilty of the presence of speech at the frame level using logistic 10]
regression based detectors. We propose a new feature (nIpSNRg
which is easy to estimate online and aids detection significantly. It [11]
is also designed to fit well with our back-end classifier. The detec-
tor is flexible, so we can choose to implement it either in a stacked
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