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Abstract. Web services designed for human users are being abused by computer programs (bots). The bots steal
thousands of free email accounts in a minute; participate in online polls to skew results; and irritate people by
joining online chat rooms. These real-world issues have recently generated a new research area called Human
Interactive Proofs (HIP), whose goal is to defend services from malicious attacks by differentiating bots from
human users. In this paper, we make two major contributions to HIP. First, based on both theoretical and
practical considerations, we propose a set of HIP design guidelines which ensure a HIP system to be secure and
usable. Second, we propose a new HIP agorithm based on detecting human face and facial features. Human
faces are the most familiar object to humans, rendering it possibly the best candidate for HIP. We conducted user
studies and showed the ease of use of our system to human users. We designed attacks using the best existing

face detectors and demonstrated the difficulty to bots.
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1. Introduction
Web services are increasingly becoming part of people' s everyday life. For example, we use free email accounts
to send and receive emails; we use online polls to gather people’s opinion; and we use chat rooms to socialize

with others. But all these Web services designed for human use are being abused by computer programs (bots).

* Freeemail services



For people's convenience, Hotmail, Yahoo and others are providing free email services. But malicious
programmers have designed bots to register thousands of free email accounts every minute. These bots-
created email accounts not only waste large amount of disk space of the service providers, they are aso being

used to send thousands of junk emails [1][4][16].
Online polls and recommendation systems

Online polling is a convenient and cost-effective way to obtain people’s opinions. But if they are abused by

bots, their credibility reduces to zero. In 1998, http://www.slashdot.com released an online poll asking for the

best computer science program in the US[1]. This poll turned into a bots-voting competition between MIT
and CMU. Clearly, in this case the online poll has lost its intended objectives. Similar situation arises in
online recommendation systems. For example, at Amazon.com, people write reviews for books,
recommending others to buy or not to buy. But if malicious bots start to write book reviews, this online

recommendation system becomes useless.

Chat rooms

In the information age, people use online chat rooms to socialize with others. But bots start to join chat
rooms and point people to advertisement sites [3]. Chat room providers such as Y ahoo and MSN do not like

the bots, because they irritate human users and decrease human users' visit to their sites.

M eta services and shopping agents

Meta service is unwelcome among E-commerce sites and search engines [21][14]. In the case of E-
commerce, a malicious programmer can design a bots whose task is to aggregates prices from other E-
commerce sites. Based on the collected prices, the malicious programmer can make his’her price a little
cheaper, thus stealing away other sites’ customers. Meta service is a good thing to consumers but E-
commerce owners hate it because it consumes their site’'s resources but does not bring in any revenue.

Similar situations arise with search engine sites.



The above real-world issues have recently generated a new research area called Human Interactive Proofs (HIP),
whose goal is to defend services from malicious attacks by differentiating bots from human users. The design of

HIP systems turns out to have significant relationship with the famous Turing test.

In 1950, Turing proposed a test whose goal was to determine if a machine has achieved artificial intelligence (Al)
[18]. The test involves a human judge who asks questions to a human and a machine and decides which of them
is human based on their answers. So far, no machine has passed the Turing test in a generic sense, even after
decades of hard research in Al. This fact implies that there still exists considerable intelligence gap between
human and machine. We can therefore use this gap to design tests to distinguish bots from human users. HIPisa
unique research area in that it creates a win-win situation. |If attackers cannot defeat a HIP algorithm, that
algorithm can be used to defend Web services. On the other hand, if attackers defeat a HIP algorithm, that means

they have solved a hard Al problem, thus advancing the Al research.

So far, there exist several HIP algorithms. But most of them suffer from one or more deficiencies in ease of use,
resistance to attack, dependency on labeled database and lack of universality (see Section 3 for details). In this
paper, we make two major contributions. First, based on both theoretical and practical considerations, we
propose a set of HIP design guidelines which ensure a HIP system to be secure and usable. Second, we propose a
new HIP algorithm based on detecting human face and facial features. Human faces are the most familiar object

to humans, rendering it possibly the best candidate for HIP.

We name our HIP algorithm ARTIFACIAL, standing for Automated Reverse Turing test using FACIAL features.
It relates to (and differs from) the original Turing test in several ways. First, our test is automatically generated
and graded, i.e., the Turing test judge is a machine instead of a human. Second, the goal of the test is the reverse
of the original Turing test — we want to differentiate bots from human, instead of proving botsis as intelligent as
human. These two features constitute the first three letters (ART) in ARTIFACIAL: Automated Reverse Turing

test.



ARTIFACIAL works as follows. Per each user request, it automatically synthesizes an image with a distorted
face embedded in a cluttered background. The user is asked to first find the face and then click on 6 points (4 eye
corners and 2 mouth corners) on the face. If the user can correctly identify these points, ARTiFACIAL concludes
the user is a human; otherwise, the user is a machine. We conduct user studies and show the ease of use of
ARTIFACIAL to human users. We design attacks using the best existing face detectors and demonstrate the

difficulty to malicious bots.

The rest of the paper is organized as follows. In Section 2, we discuss related work, which mainly uses letters,
digits and audio. In Section 3, we propose a set of design guidelines that are important to the success of a HIP
algorithm. We further evaluate existing HIP algorithms against the proposed guidelines. In Section 4, we first
give a brief review of various face detection techniques and point out their limitations. Based on these
limitations, we then design ARTIFACIAL, covering 3D wire model, cylindrical texture map, geometric head
transformation and deformation, and appearance changes. To demonstrate a HIP algorithm is effective, we need
to at least show it is easy for human and very hard for computer programs. In Section 5, we describe our user
study design and results, showing the ease of use to human users. In Section 6, we present various attacks to
ARTIFACIAL using the best existing techniques. The results show that ARTIFACIAL has very high resistance to

malicious attacks. We give concluding remarksin Section 7.

2. Related work

While HIP is a very new area, it has already attracted researchers from Al, cryptography, signal processing,
document understanding and computer vision. The first idea related to HIP can be traced back to Naor who
wrote an unpublished note in 1996 [14]. The note contained many important intuitive thoughts about HIP but did
not produce functional systems. The first HIP system in action was developed in 1997 by researchers at Alta
Vista [3]. Its goa was to prevent bots from adding URLSs to the search engine to skew the search results. The
specific technique they used was based on distorted characters, and it worked well in defeating regular optical

character recognition (OCR) systems.



In 2000, Udi Manber of Y ahoo talked to researchers (von Ahn, Blum, Hopper and others) at CMU that bots were
joining in Y ahoo's online chat rooms and pointing people to advertisement sites [1][4]. Udi Manber challenged
the CMU researchers to come up solutions to distinguish between humans and bots. Later that year, von Ahn, et.
al. proposed severa approachesto HIP [6]. The CMU team so far has been one of the most active teamsin HIP,

and we highly recommend readers to visit their web site at http://www.captcha.net to see concrete HIP examples.

The CMU team introduced the notion of CAPTCHA: Completely Automated Public Turing Test to Tell
Computers and Humans Apart. Intuitively, a CAPTCHA is a program that can generate and grade tests that 1)
most human can pass; but 2) current computer programs cannot pass [1][2]. They have developed severa

CAPTCHA systems|[6].
Gimpy

Gimpy picks seven random words out of a dictionary, distorts them and renders them to users. An example
Gimpy test isshown in Figure 1 (a). The user needs to recognize three out of the seven words to prove that he
or she is a human user. Because words in Gimpy overlap and undergo non-linear transformations, they pose
serious challenges to existing OCR systems. However, they also pose burden on human users. The burden is
so much that Y ahoo pulled Gimpy out from its website [4]. The CMU team later developed an easier version,
EZ Gimpy, which is shown in Figure 1 (b). It shows a single word over a cluttered background, and it is

currently used at Y ahoo' s website.
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Bongo explores human ability in visual pattern recognition [5]. It presents to a user two groups of visual
patterns (e.g., lines, circles and squares), named LEFT and RIGHT. It then shows new visual patterns and

asks the user to decide if the new patterns belong to LEFT or RIGHT.

 Pix
Pix relies on a large database of labeled images. It first randomly picks an object label (e.g., flower, baby,
lion, etc.) from the label list, and then randomly selects six images containing that object from the database,

and shows the imagesto auser. The user needs to enter the correct object label to prove he or sheis a human

user.

e Anima Pix

Animal Pix issimilar to Pix but differ in the following ways: 1). It uses 12 animals (bear, cow, dog, elephant,
horse, kangaroo, lion, monkey, pig and snake) instead of generic objects as the labeled objects; 2). Instead of

asking a user to enter the abject label, it asks a user to select from the set of predefine 12 animals [6].

Almost at the same time that the CMU team was building their CAPTCHAS, Xu, Lipton and Essa were
developing their HIP system at Georgia Tech [21]. Their project was motivated by the security holes in E-
commerce applications (see meta services in Section 1). They developed a new type of trapdoor one-way hash
function, which transforms a character string into a graphical form such that human can recover the string while

bots cannot. No specific string examples were given in their paper [21].

In the past two years, researchers at PARC and UC Berkeley published a series of papers on HIP, e.g., [9][8][4].
In their systems, they mainly explored the gap between human and bots in terms of reading poorly printed texts
(e.g., fax prints). In Pessimal Print [9], Coates, Baird and Fateman reported close to zero recognition rates from
three existing OCR systems. Expervision, FineReader and IRIS Reader. In BaffleText [8], Chew and Baird

further used non-English words to defend dictionary attacks.



In addition to the above visual HIP designs, there also exist audio challenges, e.g., Byan [7] and Eco [6]. The
general ideais to add noise and reverberation to clean speech such that existing speech recognizers can no longer
recognize it. The audio challenges are complementary to the visual ones and are especially useful to vision-

impaired users.

To summarize, HIP is ill a young and developing area. But it has aready attracted researchers from
cryptograpy, Al, computer vision, and document analysis. The first HIP workshop was held in January 2002 in
PARC [12], and [4] provides a good summary. For a new area to develop and advance, it is necessary for
researchers to formulate design guidelines and evauation criteria. The CMU and PARC teams have proposed
many of the crucial aspects of HIP. In the next section, we present further guidelines on how to design a practical

HIP system and evaluate existing and our proposed approaches against the guidelines.

3. HIP guidelines

The CMU and PARC researchers have summarized the following desired properties of a HIP system [1][4]:

1. Thetest should be automatically generated and graded by a machine.

N

The test can be quickly taken by a human user.

3. Thetest will accept virtually all human users.

4. Thetest will reject virtually al bots.

o

The test will resist attacks for along time.

The above five properties capture many important aspects of a successful HIP system. But we redlize that there
are other theoretical and practical considerations that need to be taken into account. Furthermore, we think it is
beneficial to the HIP community that the desired HIP properties should be orthogonal to each other and can be

clearly evaluated against. We therefore propose the following new guidelines for designing a HIP agorithm:

1. Automation and gradability. The test should be automatically generated and graded by a machine. Thisis

the same as the old guideline and is the minimum requirement of a HIP system.



Table 1. Evaluation of existing HIP tests against the proposed criteria.

Guidelines  |1. Automation| 2. Easy to human | 3. Hardto 4. Universality | 5. Resistanceto | 6. Robustness
d aradabilit machine no-effort attacks| when database
and gragaoifity publicized
Gimpy Yes Yes No No Yes Yes
But the partially | It hasbeen |Peoplewho know
overlapped text | broken [13] English have
can be hard to much more
recognize [4] advantages
EZ Gimpy Yes Yes No Yes Yes No
It has been Has only 850
broken [13] words [8]
Bongo Yes Yes Yes Yes No Yes
A machine can
randomly guess
an answer
Pix Yes Yes Yes No Yes No
But the labels Some objects do With the
can be not exist in some database, it
ambiguous countries. becomes simple
(carsvs. White image matching.
cars)

Animal Pix Yes Yes Yes No No No
Some animals are| A machine can With the
only popular ina| randomly guess | database, it

few countries. an answer becomes simple
image matching.
Pessimal Yes Yes Yes No Yes No
People who know Has only 70
English have words [8][9]
much more
advantages
BaffleT ext Yes Yes Yes Yes Yes Yes
But has been But people who
attacked when know English
using single font may have
[8] advantages
Byan Yes Yes Yes No Yes Yes
Users need to
know English
ARTIFACIAL Yes Yes Yes Yes Yes Yes

than 30 seconds becomes less useful in practice.

2. Easy to human. The test should be quickly and easily taken by a human user. Any test that requires longer




3. Hard to machine. The test should be based on a well-known problem which has been investigated
extensively, and the best existing techniques are far from solving the problem. This guideline consolidates the
old guidelines 4 and 5. The old guideline 4 is a consequence of this new guideline. The old guideline 5 is
difficult to evaluate againgt, i.e., it is difficult to define “for along time”. Instead of predicting the future, we
only require that the problem is a well known problem, and the best existing techniques are far from solving
the problem. This new guideline avoids the interrelationship between old guidelines 4 and 5 and is much
easier to evaluate against. An example problem that satisfies our requirement is “automatic image
understanding” which is well known and has been investigated for more than three decades but is still
without success. On the other hand, printed clean text OCR is not a hard problem, as today’s existing
techniques can already do a very good job. As pointed out by von Ahn, et. al., HIP has an analogy to
cryptography: in cryptography it is assumed that the attacker cannot factor 1024-bit integer in reasonable

amount of time. In HIP, we assume that the attacker cannot solve awell-known hard Al problem [2].

4. Universality. The test should be independent of user’s language, physical location, and education
background, among others. This new guideline relates to the old guideline 3 but is more concrete, and is more
clear to evaluate against. This guideline is motivated by practical considerations, and is especially important
for companies with international customers, e.g., Y ahoo and Microsoft. It would be a nightmare for Y ahoo
or Microsoft if they had to localize a HIP test to 20 different languages. As an example, any digits-based
audio HIP tests are not universal because there is no universal language on digits (even though visually they
are the same). A different HIP test would have to be implemented for each different language, thus not cost
effective. Strictly speaking, no HIP test can be absolutely universal, as there are no two humans that are the
same in this world. However, we can make reasonable assumptions. For example, we can consider EZ
Gimpy as universal because if a user can use a computer, it is reasonable to assume he or she knows the 10
digits and the 26 English alphabets. In contrast, Gimpy is not as universal as EZ Gimpy because users who

know English have much better chance to succeed. Gimpy is quite difficult for non-English speakers.



5. Resistance to no-effort attacks. The test should survive no-effort attacks. No-effort attacks are the ones that
can solve a HIP test without solving the hard Al problem. Here is an example. Bongo is a two-class
classification challenge (see Section 1). To attack Bongo, the attacker needs no effort other than always
guessing LEFT. Thiswill guarantee the attacker to achieve 50% accuracy. Even if Bongo can ask a user to
solve 4 tests together, that still gives no-effort attacks 1/16 accuracy. Animal Pix is another example that will
not survive no-effort attack. Because there are 12 predefined animal labels, a no-effort attack can achieve
1/12 accuracy without solving the animal recognition problem. The HIP tests that cannot survive no-effort

attacks do not have practical usefulness and cannot advance Al research.

6. Robustness when database publicized. The test should be difficult to attack even if the database, from
which the test is generated, is publicized. For example, both Pix and Animal Pix would be very easy to attack

once the database is publicly available. They therefore are not good HIP tests [1].

Compared with the 5 old guidelines, the proposed 6 new guidelines are more comprehensive, more orthogonal to
each other and more clear to evaluate against. We summarize the evaluations of the existing approaches against
the new guidelinesin Table 1. From Table 1, it is clear that most of the existing HIP algorithms suffer from one
or more deficiencies. In the following section, we propose a new HIP algorithm: ARTIFACIA, which is based on
detecting human faces and facial features. It is easy to human, hard to bots, universal, survives no-effort attacks

and does not require a database.

4. Proposed test -- ARTIFACIAL

Human faces are arguably the most familiar object to humans [15][17][19], rendering it possibly the best
candidate for HIP. Regardless of nationalities, culture differences or educationa background, we all recognize
human faces. In fact, our ability is so good that we can recognize human faces even if they are distorted, partially

occluded, or in bad lighting conditions.

Computer vision researchers have long been interested in developing automated face detection algorithms. A

good survey paper on this topic is [23]. In general face detection algorithms can be classified into four



categories. The first is the knowledge-based approach. Based on people’'s common knowledge about faces, this
approach uses a set of rules to do detection. The second approach is feature-based. It first detects local facial
features, e.g., eyes, nose and mouth, and then infer the presence of a face. The third approach is based on
template matching. A parameterized face pattern is pre-designed manually, which is then used as a template to
locate faces in an image. The fourth approach is appearance-based. Instead of using pre-designed templates, it

learns the templates from a set of training examples. So far, the fourth approach is the most successful one [23].

In spite of decades of hard research on face and facial feature detection, today’s best detectors still suffer from

the following limitations:

1. Head Orientations. Let axis x point to the right of the paper, axisy point to the top of the paper, and axis z
point out of the paper. All face detectors handle frontal face well. That is, they work well when there is no
rotation around any of the three axes. They can also handle rotations around axis y to some extent, but worse

than handling frontal faces. They do not handle rotations around axes x and z well.

2. Face Symmetry. Face detectors assume, either explicitly or implicitly, that the faces are symmetric, e.g., the
left eye and right eye are roughly of the same height, and are roughly of the same distance from the nose

bridge.

3. Lighting and Shading. Face detectors rely on different intensity levels of landmarks on human faces. For
example, they assume that the two eyes are darker than the surrounding region, and the mouth/lip region is
also darker than the rest of the face. When a face image is taken under very low or high lighting conditions,
the image's dynamic range decreases. This in turn results in difficulties in finding the landmark regions in

faces. In addition, lighting also creates shading which further complicates face detection.

4. Cluttered Background. If there exist facelike clutters in the background of the face image, the face

detectors can be further distracted.

The above 4 conditions are among the most difficulty cases for automated face detection, yet we human seldom

have any problem under those conditions. If we use the above 4 conditions to design a HIP test, it can take



(b)

Figure 2. (a) The 3D wire model of a generic head. (b)
Thecylindrical head texture map of an arbitrary person.

advantage of the large detection gap between human and machine. Indeed, this gap motivates our design of
ARTIFACIAL. When taking a closer exam of ARTiFACIAL against the HIP criteria, we can see that it is one of

the best HIP candidates (see Table 1).

ARTIFACIAL works as follows. Per each user request, it automatically synthesizes an image with a distorted
face embedded in a cluttered background. The user is asked to first find the face and then click on 6 points (4 eye
corners and 2 mouth corners) on the face. If the user can correctly identify these points, we can conclude the user

is a human; otherwise, the user is a machine.

We next use a concrete example to illustrate how to automatically generate an ARTIFACIAL test image, taking
into account of the 4 conditions summarized above. For clarity, we use F to indicate a foreground object in an
image, e.g., aface; B to indicate the background in an image; | to indicate the whole image (i.e., foreground and

background); and T to indicate cylindrical texture map.

[Procedure] ARTIFACIAL

[Input] The only inputs to our algorithm are the 3D wire model of a generic head (see Figure 2 (a)) and a 512 x
512 cylindrical texture map Tm of an arbitrary person (see Figure 2 (b)). Note that any person’s texture map will

work in our system and from that single texture map we can in theory generate infinite number of test images.

[Output] An 512 x 512 ARTIFACIAL test image I (see Figure 5 (d)) with ground truth (i.e., face location and

facial feature locations).



1. Confusion texture map Tc generation
This process takes advantage of the Cluttered Background limitation to design the HIP test. The 512 x 512
confusion texture map Tc (see Figure 3) is obtained by moving facial features (e.g., eyes, nose and mouth) in

Figure 2 (b) to different places such that the “face” no longer looks like a face.

2. Global head transformation
Because we have the 3D wire model (see Figure 2 (a)), we can easily generate any global head
transformations we want. Specifically, the transformations include translation, scaling, and rotation of the
head. Trandation controls where we want to position the head in the final image . Scaling controls the size
of the head, and rotation can be around all the three x, y, and z axes. At run time, we randomly select the
global head transformation parameters and apply them to the 3D wire model texture-mapped with the input

texture Tm. This process takes advantage of the Head Orientations limitation to design the HIP test.

3. Local facial feature deformations
The local facial feature deformations are used to modify the facial feature positions so that they are dightly
deviated from their original positions and shapes. This deformation process takes advantage of the Face
Symmetry limitation to design the HIP test. Each geometric deformation is represented as a vector of vertex
differences. We have designed a set of geometric deformations including the vertical and horizontal

trangations of the left eye, right eye, left eyebrow, right eyebrow, left mouth corner, and right mouth corner.

Figure 3. The confusion texture map T, is generated
by randomly moving facial features (e.g., eyes, nose
and mouth) in Figure 2 (b) to different places such
that the“ face” nolonger lookslike a face.



(b)

Figure 4. (a) The head after global transformation and
facial feature deformation. We denote this head by Fy.
(b) The confusion head after global transformation and
facial feature deformation. We denote this head by Fc.

Each geometric deformation is associated with a random coefficient uniformly distribution in [-1, 1], which
controls the amount of deformation to be applied. At run time, we randomly select the geometric deformation
coefficients and apply them to the 3D wire model. An example of a head after Steps 2 and 3 is shown in

Figure 4 (a). Note that the head has been rotated and facial features deformed.

Confusion texture map transformation and deformation
In this step, we conduct exactly the same Steps 2 and 3 to the confusion texture map Tc, instead to Tm. This

step generates the transformed and deformed confusion head Fc as shown in Figure 4 (b).

Stage-1 image |; generation
Use the confusion texture map Tc as the background B and use F;, as the foreground to generate the 512 x 512

stage-1 image |, (see Figure 5 (a)).

Stage-2 image |, generation

Make L copies of randomly shrunk Tc and randomly put them into image |, to generate the 512 x 512 stage-2
image |, (see Figure 5 (b)). This process takes advantage of the Cluttered Background limitation to design
the HIP test. Note that none of the copies should occlude the key face regions including eyes, nose and

mouth.



(®. Image ;. (b). Image 1.

(c). Image 5. (d). Final Image .
Figure 5. Different stages of theimage.

7. Stage-3image |3 generation
There are three steps in this stage. First, make M copies of the confusion head Fc and randomly put them
into image |,. This step takes advantage of the Cluttered Background limitation. Note that none of the
copies should occlude the key face regions including eyes, nose and mouth. Second, we now have M+1

regions in the image, where M of them come from Fc and one from Fy. Let Avg(m), m= 0, ..., M+1, be the



average intensity of region m. We next re-map the intensities of each region m such that Avg(m)'s are
uniformly distributed in [0,255] across the M+1 regions, i.e., some of the regions become darker and others
become brighter. This step takes advantage of the Lighting and Shading limitation. Third, for each of the
M+1 regions, randomly select a point within that region which divides the region into four quadrants.
Randomly select two opposite quadrants to undergo further intensity changes. If the average intensity of the
region is greater than 128, the intensity of all the pixelsin the selected quadrants will decrease by a randomly
selected amount; otherwise, it will increase by a randomly selected amount. This step takes advantage of
both the Face Symmetry and Lighting and Shading limitations. An example Izimage is shown in Figure
5(c). Note in the image that 1) the average intensities of the M+ 1 regions are uniformly distributed, i.e., some
regions are darker while others are brighter; 2) two of the quadrants undergo further intensity changes.
8. Final ARTIFACIAL test image I generation

Make N copies of the facial feature regionsin Fy, (e.g., eyes, nose, and mouth) and randomly put theminto |5
to generate the final 512 x 512 ARTIFACIAL test image |- (see Figure 5 (d)). This process takes advantage
of the Cluttered Background limitation to design our HIP test. Note that none of the copies should occlude

the key face regions including eyes, nose and mouth.

The above 8 steps take the 4 face detection limitations into account and generate ARTIFACIAL test images that
are very difficult for face detectors. We used the above described procedure and generated 1,000 images to be

used in both user study (Section 5) and bots attacks (Section 6).

5. User study design and results
For a HIP test to be successful, we need at least prove that it is easy for human user and very hard for bots. In this
section, we design user studies to evaluate human user’s performance to our test. We will discuss bots attacks in

the following section.



5.1 User Study Design
To evauate our HIP system across diversified user samples, we invited 34 people to be our study subjects,
consisting of accountants, administrative staff, architects, executives, receptionists, researchers, software

developers, support engineers and patent attorneys. The user study procedure is summarized as follows:

1. A laptop is set up in the subject’s office, and the subject is asked to adjust the laptop so that he or she is
comfortable using the laptop screen and mouse.

2. The subject is given the following instructions: “We will show you 10 images. In each image, there is one
and only one distorted but complete human face. Your task is to find that face and click on 6 points: 4 eye

corners and 2 mouth corners.”

3. The user study application is launched on the laptop. It randomly selects an ARTIFACIAL test image from
the 1,000 images generated in Section 4, and shows it to the subject. The subject detects the face and clicks
on the 6 points. The coordinates of the 6 points and the time it takes the subject to finish the task are both

recorded for latter analysis.
4. Repeat Step 3 for another 9 randomly selected images. Note that no two images of the 10 tests are the same.

5. The user study application is closed and the subject is debriefed. At this stage, the subject is given the

opportunity to ask questions or give comments on the system and on the study procedure.

5.2 User Sudy Results

Table 2 summarizes the average time taken for each of the 10 tests. The numbers are averaged over all 34
subjects. Table 3 summarizes the average mismatch, in pixels, between the ground truth and what were actually
clicked for the 6 points. Combining the statistics in the two tables and feedback obtained during debriefing, we

can make the following observations:

* On average, it takes 14 seconds for a subject to find the face and click on the 6 points. This shows that the
test is easy to complete for human users. Out of the 34x10=340 tests, for the best case, it takes a subject 6

seconds to finish the task. For the worst case, there are 3 tests that take longer than 30 seconds to finish. And



Table 2. The average time (in seconds) taken for each of the 10 tests. The
last column gives the average time over all the 10 tests.

Test| 1 213|415 6 7 8 | 9 10 | Avg

Time
221516 | 13|12 (11|12 |12 |11 | 12 14
(sec)

Table 3. Mismatches (in pixels) of the 6 points, averaged over the 34

subjects.
Paints (x,y) Mismatches (in pixels)

Left corner of the left eye (2.0, 2.3)
Right corner of the left eye (3.3,5.5)
Left corner of the Right eye (3.2,5.0)
Right corner of the Right eye (2.6, 1.8)
Left corner of the mouth (2.5, 1.8)
Right corner of the mouth (2.7, 3.6)

interestingly they all occurred with the same subject. During our debriefing, the subject told us that he was a

perfectionist and was willing to spend longer time to ensure no mistakes.

Table 3 tells us that the mismatches between the point coordinates of the ground truth and where the subjects
actually clicked are small. This fact allows us to enforce a tight mismatch threshold (in pixels) to efficiently
distinguish bots from human users. Currently we set the threshold to be twice of the average mismatches (in

pixels) as in Table 3. Out of the 340 tests, human subjects only made one wrong detection (see Figure 6).

P

Figure 6. The only wrong detection made by human users out of 340 tests.
The 6 black dots indicate the 6 points clicked by the human user. The black
bounding box isinferred from the 6 points as the user detected face region.
The ground truth face region is shown with a white bounding box. We only
show part of thetest image for clarity.



The correct rate is 99.7%. During debriefing, the subject told us that she was not paying too much attention
for this image but should be able to get it correct if she was given a second chance. Indeed, she only made

one mistake out of the 10 tests.

e Thefirst test takes longer than the rest of the tests (see Table 2). Thisimplies that our instruction may not be
clear enough to the subjects. One possible solution is, as suggested by several subjects, to show users an

example of the task before asking them to conduct the test.

To summarize, in this section we designed and conducted a user study and demonstrated that the proposed HIP
test is easy for human to take. A byproduct of the user study is that it also provides us with human behavior
statistics (e.g., small mismatches for the coordinates of the 6 points) which enables us to defend our system from

attacks.

6. Attacksand results

To succeed in an attack, the attacker must first locate the face from a test image’s cluttered background by using

= O h& & = r
Figure 7. The MD face detector’s best detection out of the 1,000 attacks.
The detected face region is shown with a black bounding box while the
ground truth face region is shown with a white bounding box. The face
detector isdistracted by the two dark regions above the true face — the face
detector thinks the two dark regions as left and right eye regions. We only
show part of thetest image for clarity.



aface detector, and then find the facial features (e.g., eyes, nose, and mouth) by using a facial feature detector. In

this section we present results of attacks from three different face detectors and one face feature detector.

6.1 Face Detectors
The three face detectors used in this paper represent the state of the art in automatic face detection. The first face
detector was developed by Colmenarez and Huang [10]. It uses the information-based maximum discrimination

(MD) to detect faces.

The second face detector was developed by Yang et. al. [24]. It used a sparse network (SNoW) of linear
functions and was tailored for learning in the presence of avery large number of features. It used awide range of

face images in different poses, with different expressions and under different lighting conditions.

The third face detector was developed by Li and his colleagues [11][25] following the Viola-Jones approach [20].
They used AdaBoost to train a cascade of linear features, and had a very large database consisting of over 10,000
faces. Their system has been demonstrated live in various places and is regarded as one of the best existing face

detectors.

We apply the three face detectors to attack the 1,000 images generated in Section 4. When evaluating if an attack
is successful, we use very forgiving criterion for the face detectors: as long as the detected face region overlaps
with the ground truth face region for 60% (or above), we cal it a correct detection. For the MD face detector, it
has only one correct detection. For SNoW face detector, it has three correct detections. For AdaBoost face
detector, it has zero correct detection. Comparing these results with the 99.7% detection rate of human users, we
can clearly see the big gap. Figure 7 shows the only correctly detected face region (in black bounding box) by the
MD face detector and the ground truth face region (in white bounding box). It is clear that even this “correct

detection” is arguable as it is apparently distracted by two dark regions above the true face.



Table 4. The number of images with O, 1, 2, 3, 4, 5 and 6 correctly
detected points.

Number of

correctly 0 1 2 3 4 5 6
detected points

Number of | 55q | 257 | 194 | 79 [ 33 | 6 | 2
images

6.2 Facial Feature Detector
The facial feature detector proposed by Yan et. al. [22] is an improved version of the Active Shape Model
(ASM). It assumes that a face detector has already found the general location of the face region. It then searches

for the facial featuresin that region. It works quite well with undistorted and clean faces [22].

Again, we use those 1,000 images as our test set. During the attack, to the facial feature detector’ s advantage, we
tell it exactly where the true face is. The detection results over the 1,000 test images are summarized in Table 4,

and the correct detection rate is only 0.2%.

6.3 Resistance to No-Effort Attacks

Asafinal sanity check, let’stake alook at ARTIFACIAL’s resistance to no-effort attacks.
e The chance for face detectors.

Theimage sizeis 512 x 512 and the face region is about 128 x 128. It is easy to compute that there are (512-
128) x (512-128) = 147,456 possible face regions in the image. If we allow 10 pixel mismatch with the

ground truth, the chance for a no-effort attack is therefore (10x10)/147,456 = 6.8E-4.
* The chancefor facial feature detectors.

If we use the very forgiving mismatch tolerance region of 10 x 10 for each point, the chance for each point is
(10x10) / (128x128) = 0.0061. For 6 points, 0.0061° = 5.2E-14. The final success rate is the product of face

detector and facial feature detector: 6.8E-4 x 5.2E-14 = 3.5E-17.

Before we conclude the paper, we want to make an observation. HIP researchers normally choose hard Al
problems to create a HIP test. The hope is that if attackers cannot defeat a HIP algorithm, that algorithm can be

used to defend applications and services; if attackers defeat a HIP algorithm, that means they solved a hard Al



problem, thus advancing the Al research. Mori and Malik’s attack on EZ Gimpy is a good example of how HIP
motivates people to solve hard Al problems [13]. But we should be careful that HIP tests do not necessarily lead
to Al advancement. An obvious example is the no-effort attacks. In that case, the HIP test is broken and thereis
no Al advancement. We therefore want to advocate the importance of the presentation aspect of a HIP system.
Even if the problems themselves are hard, but if there is no good way to present them to users, e.g., the cases of
Bongo and Animal Pix, they are not good HIP tests. Today’ s HIP researchers have not given enough attentions to

this presentation aspect of HIP design.

7. Conclusions

In this paper, we have proposed a set of HIP design guidelines which are important to ensure the security and
usability of a HIP system. Furthermore, we have developed a new HIP algorithm ARTIFACIAL based on human
face and facial feature detection. Because human face is the most familiar object to al human users,
ARTIFACIAL is possibly the most universal HIP system so far. We used three state-of-the-art face detectors and
one facial feature detector to attack our system, and their success rate are all very low. We also conducted user
studies on 34 human users with diverse background. The results have shown that our system is robust to machine

attacks and easy for human users.
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