
Separate Compositional Analysis of Class-based
Object-oriented Languages

Francesco Logozzo

STIX - Ecole Polytechnique
F-91128 Palaiseau (France)

Francesco.Logozzo@polytechnique.fr

Abstract. We present a separate compositional analysis for object-
oriented languages. We show how a generic static analysis of a context
that uses an object can be split into two separate semantic functions
involving respectively only the context and the object. The fundamental
idea is to use a regular expressions for approximating the interactions
between the context and the object. Then, we introduce an iterative
schema for composing the two semantic functions. A first advantage is
that the analysis can be parallelized, with a consequent gain in mem-
ory and time. Furthermore, the iteration process returns at each step
an upper approximation of the concrete semantics, so that the iterations
can be stopped as soon as the desired degree of precision is reached.
Finally, we instantiate our approach to a core object-oriented language
with aliasing.

1 Introduction

One important facet of object-oriented design is encapsulation. Encapsulation
hides the objects’ inner details from the outside world and allows a hierarchical
structuring of code. As a consequence, a program written in the object-oriented
style has often the structure of C[o], where C[·] is a context which interacts with
an encapsulated object o. The interaction between the context and the object
can be of two kinds. The first, direct, one is through method invocations. The
context invokes a method of the object which may return some value and modify
its internal state. In particular, the value returned by the method can be a pointer
to the value of a field. Thus, the object may expose a part of its internal state
to the context, which can arbitrarily change the value of the field. We call this
second kind of interaction an indirect one.

We are interested in an analysis that exploits the encapsulation features of the
object-oriented languages, so that the context and the object can be analyzed
separately. In fact, most available analyses are not separated e.g. [7], or they
are imprecise as they assume the worst case for the calling context, e.g. [8]. A
separate analysis presents several advantages. First, it may significantly reduce
the overall analysis cost both in time and space, as e.g. different computers can be
used for the analysis of the context and the object. Second, as the total memory
consumption is reduced, very precise analyses can be used for the context and/or

the object. Third, it allows a form of modular analysis: if o is replaced by another
object o′ then the analysis of C[o′] requires just the analysis of o′. For instance,
this is the case when C[·] is a function and o and o′ are actual parameters, or
when o′ is a refinement of o, e.g. o′ is a sub-object of o.

We present a compositional separate analysis of class-based object oriented
languages. We illustrate and prove our results for a core object-oriented language
with aliasing. In particular in the considered language the identity of an object
is given by the memory address where its environment is stored. This implies
that we handle objects aliasing and that objects are semantic rather than syn-
tactic entities. This is in line with mainstream object-oriented languages, so the
presented framework can be easily extended to cope with realistic languages.

In Sect. 2, we define the syntax and the concrete semantics for our language
and in Sect. 3 we present a generic monolithic static analysis of the context
and the object [[C[o]]]a, parameterized by an abstract domain Da. In Sect. 4, we
show how it can be split into two semantic functions, Γ and Θ, corresponding
respectively to the analysis of the context and the object. The fundamental idea
is the use of regular expressions for approximating the interactions between the
context and the object. Therefore, we refine the abstract domain Da with a
domain of regular expressions. We have that:

– The object analysis Θ is a function that takes as input a map from objects to
regular expressions. It returns a map from objects to their approximations.

– The context analysis Γ is a function that takes as input the approximation
of the semantics of the objects. It returns an abstract value and a map from
objects to regular expressions.

The functions Θ and Γ are mutually recursive. Thus, we handle this situation
with the usual iterative approach. In particular, we begin by assuming the worst-
case for the objects approximations and the contexts. Then, we show that the
iterations form a chain of increasing precision, each step being a sound upper-
approximation of [[C[o]]]a. This implies that the iterations can be stopped as
soon as the desired degree of precision is reached, enabling a trade-off between
precision and cost.

2 Concrete Semantics

We begin by defining the syntax and the semantics of a minimal Java-like lan-
guage. We make some simplifying assumptions. First, in order to simplify the
notation we assume the existence of just one class. The generalization of the
results to the case of an arbitrary number of classes is straightforward. Second,
we distinguish between a context, for which we will give the detailed syntax, and
a class, for which we give just the interface, i.e. the fields and the methods, but
not the definition of the methods body. This is not restrictive, as the notion of
context is relative. For example, a context that accesses an object o can be the
body of a method of an object o′. Such an o′ can be accessed by further context,
so that the contexts can be encapsulated.

2

2.1 Syntax

The class syntax can be abstractly modeled as a triplet 〈init, F, M〉 where init is
the class constructor, F is a set of variables and M is a set of function definitions.
We do not require to have typed fields or methods and without any loss of
generality we assume that a class has just a single constructor and each access
to a field f is done through set f/get f.

The syntax of a context is quite standard, except that we distinguish three
kinds of assignments: the assignment of the value of a side-effects free expression
to a variable, the assignment of the address pointed by a variable to another one
and the assignment of the return value of a method call to a variable. So, let x,
x1, x2 and o be variables, let E be an expression and let b be a boolean expression.
Then the language of contexts is generated by the following grammar:

C ::= A o = new A(E) | C1; C2 | skip | x = E | x1 = x2

| x = o.m(E) | if b then C1 else C2 | while b do C.

C denotes an arbitrary context, C[·] denotes a context that may contain one or
more objects and C[o] denotes a context that uses an object o. However, as we
allow aliasing of objects, we cannot give the formal definition of C[o] on a strictly
syntactic basis. Therefore, such a definition is postponed to the next section.

2.2 Semantic Domains

The first step for the specification of the concrete semantics is the definition of
the concrete domain. In our case, we are interested in a domain that models
the fact that an object has its own identity and environment. Moreover, we
need to express object aliasing. In order to fulfill the above requirements, we
consider a domain whose elements are pairs of environments and stores. An
environment is a map from variables to memory addresses, Env = [Var→ Addr],
and a store is a map from addresses to memory elements, Store = [Addr→ Val].
A memory element can be a primitive value as well as an environment or an
address, i.e. Env ⊆ Val and Addr ⊆ Val. In such a setting, the identity of an
object is the memory address where its environment is stored. Therefore, two
distinct variables are aliases for an object if they reference the same memory
address.

2.3 Object Semantics

We consider an input/output semantics for the class constructor and the meth-
ods. The semantics of the constructor is a function I[[init]] ∈ [Val × Store →
Env×Store] which takes as input the constructor’s actual parameter and a store.
It returns the (initialized) object environment and the (possibly modified) store.
It is worth noting that the constructor does not return any value to the context.

The semantics of a method m is a function M[[m]] ∈ [Val × Env × Store →
Val× Env × Store]. It takes as input the method’s actual parameter, the object

3

C[[A o = new A(E)]] = λe, s.let v = E[[E]](e, s), a = alloc(s),

(e0, s0) = I[[init]](v, s),

in (e[o 7→ a], s0[a 7→ e0])

C[[C1; C2]] = λe, s.C[[C2]](C[[C1]](e, s)) C[[skip]] = λe, s.(e, s)

C[[x = E]] = λe, s.(e, s[e(x) 7→ E[[E]](e, s)])

C[[x1 = x2]] = λe, s.(e, s[e(x1) 7→ e(x2)])

C[[x = o.m(E)]] = λe, s.let v = E[[E]](e, s), (v0, e0, s0) = M[[m]](v, s(e(o)), s),

in (e, s0[e(x) 7→ v0, e(o) 7→ e0])

C[[if b then C1 else C2]] = λe, s.if B[[b]](e, s) = tt then C[[C1]](e, s) else C[[C2]](e, s)

C[[while b do C]] = lfpλφ.λe, s.if B[[b]](e, s) = tt then φ(C[[C]](e, s)) else (e, s)

Fig. 1. Semantics of the context

environment and the store. It returns a (possibly void) value, the new object
environment and the modified store. It is worth noting that as Addr ⊆ Val the
method may expose a part of the object’s internal state to the context.

2.4 Context Semantics

We define the context semantics in denotational style, by induction on the
syntax. The semantics of expressions and that of the boolean expressions are
assumed to be side-effect free, such that E[[e]] ∈ [Env × Store → Val] and
B[[b]] ∈ [Env×Store→ {tt,ff}]. A function alloc ∈ [Store→ Addr] returns a fresh
memory address. The semantics of a context, C[[C]] ∈ [Env×Store→ Env×Store]
is given in Fig. 1.

Some comments on the context semantics. When a class A is instanti-
ated, the initial value is evaluated, and the class constructor is invoked with that
value and the store. The class constructor returns the environment e0 of the new
object and the modified store s0. Then the environment and the store change, so
that o points to the memory allocated for storing e0. When a method of the ob-
ject o is invoked, its environment is fetched from the memory and passed to the
method. This implies that the method has no access to the caller environment,
but only to that of the object it belongs to. In other words, the context has the
burden of setting the right environment for a method call, so that the handling
of this is somehow transparent to the callee. For the rest, the semantics in Fig.
1 is a quite standard denotational semantics. In particular, the loop semantics is
handled by the least fixpoint operator on the flat Scott-domain Env×Store∪{⊥}.

Using the context semantics, we can formally define the writing C[o], i.e.
the context C[·] that uses an object o. Let (e0, s0) ∈ Env × Store, such that
C[[C]](e0, s0) = (e, s). Then a context C uses an object o if ∃x ∈ Var.e(x) =
o ∧ s(e(x)) ∈ Env.

4

2.5 Collecting Semantics

A semantic property is a set of possible semantics of a program. The set of seman-
tic properties P(Env × Store) is a complete boolean lattice 〈P(Env × Store),⊆, ∅,
Env × Store,∪,∩〉 for subset inclusion, that is logical implication. The standard
collecting semantics of a program, [[C]](In) = {C[[C]](e, s) | (e, s) ∈ In}, is the
strongest program property. The goal of a static analysis is to find a computable
approximation of [[C]].

3 Monolithic Abstract Semantics

We proceed to the definition of a generic abstract semantics for the language
presented in the previous section. First we consider the abstract semantic do-
mains. Afterward, we present the abstract semantics for the class constructor
and methods, and for the context.

3.1 Abstract Semantic Domains

The values in P(Val) are approximated by an abstract domain Vala. The corre-
spondence between the two domains is given by the Galois connection [2]:

〈P(Val),⊆, ∅,Val,∪,∩〉 −−−→←−−−
αv

γv 〈Vala,va
v,⊥a

v,>a
v,ta

v,ua
v〉.

The set of abstract addresses is Addra ⊆ Vala. We assume Addra to be a sublattice
of Vala. If o ∈ Addr denotes an object in the concrete, then ϑ = αv({o}) is
the corresponding abstract address. On the other hand, ϑ stands for the set
of concrete addresses γv(ϑ), which may contain several objects. Therefore, ϑ
approximates all the objects in γv(ϑ). We call ϑ an abstract object.

The domain Da abstracts the domain of concrete properties P(Env × Store)
by means of a Galois connection:

〈P(Env × Store),⊆, ∅,Env × Store,∪,∩〉 −−−→←−−−α

γ
〈Da,va,⊥a,>a,ta,ua〉.

We call an element of Da an abstract state. In general, the domain Da is a
relational abstraction of P(Env × Store). We consider two projections such that
for each da ∈ Da, da �e and da �s are, respectively, the projections of da on
the environment and the store. We use the brackets b·c to denote the inverse
operation of the projection, i.e. given an abstraction for the environment and
the store it returns the abstract state. Moreover, some operations are defined
on Da: alloca, assigna, truea and falsea. The first one, alloca ∈ [Da → Addra], is
the abstract counterpart for memory allocation. It takes an approximation of
the state and it returns an abstract address where the object environment can
be stored. It satisfies the soundness requirement: ∀da ∈ Da.{alloc(s) | (e, s) ∈
γ(da)} ⊆ γv(alloca(da)).

The function assigna ∈ [Da×(Var×Da)+ → Da] handles the assignment in the
abstract domain. It takes as input an abstract state and a non-empty list of bind-
ings from variables to values. It returns the new abstract state. With an abuse

5

of notation, we sometimes write assigna(da, da �s 7→ da
0 �s) to denote that the ab-

stract store da �s is updated by da
0 �s. Moreover, truea, falsea∈ [BExp× Da → Da]

are the functions that given a boolean expression and an abstract element da

return an abstraction of the pairs (e, s) ∈ γ(da) that make the condition respec-
tively true or false. For instance truea is such that:

∀b ∈ BExp.∀da ∈ Da.{(e, s) | B[[b]](e, s) = tt} ∩ γ(da) ⊆ truea(b, da).

3.2 Abstract Object Semantics

The abstract semantics for the class constructor and methods mimics the con-
crete one. Therefore, the abstract counterpart for the constructor semantics is
a function I[[init]]a ∈ [Vala × Da → Da], which takes an abstract value and
an abstract state and returns an abstract environment, that of the new ob-
ject, and an abstract store. The abstract semantics for methods is a function
M[[m]]a ∈ [Vala × Da → Vala × Da]. The input is an abstract value and an ab-
stract state, and the output is an abstraction of the return value and a modified
abstract state.

3.3 Monolithic Abstract Context Semantics

The abstract semantics for contexts is defined on the top of the abstract se-
mantics for the expressions and the basic operations of the abstract domain
Da. In particular, the abstract semantics of expressions is E[[e]]a ∈ [Da → Vala].
It must satisfy the soundness requirement: ∀(e, s) ∈ Env × Store. E[[e]](e, s) ∈
γv ◦ E[[e]]a ◦ α({(e, s)}).

The generic abstract semantics mimics the concrete semantics. In particular,
when a method m is invoked, the corresponding abstract function M[[m]]a is used.
In practice, this means that the body of a method m is analyzed from scratch
at each invocation. Therefore the encapsulation of the object w.r.t. context is
not exploited in the analysis. We call such an abstract semantics a monolithic
abstract semantics in order to differentiate it from the separate compositional
abstract semantics that we will introduce in the next section.

Finally, the monolithic abstract context semantics [[C]]a ∈ [Da → Da] is de-
fined in Fig. 2. The semantics in Fig. 2 is quite similar to the concrete one in
Fig. 1. It is worth noting that the burden of handling the assignment is left to
the underlying abstract domain Da, and in particular to the function assigna. We
use the notation lfpvd λx.F (x, z) to denote the least fixpoint w.r.t. the order v,
greater than d of the equation F (x, z) = (x, y), for some z and y. Nevertheless, in
general the abstract domains Vala and Da may not respect the Ascending Chain
Condition (ACC), so that the convergence of the analysis is enforced through
the widening operators ∇a

v ∈ [Vala × Vala → Vala] and ∇a ∈ [Da × Da → Da].
The soundness of the above semantics is a consequence of the definitions of this
section:

6

[[A o = new A(E)]]a = λda.let va = E[[E]]a(da), ϑ = alloca(da),

d0
a = I[[init]]a(va, da)

in assigna(da, ϑ 7→ d0
a �e, d

a �s 7→ d0
a �s)

[[C1; C2]]
a = λda.[[C2]]

a([[C1]]
a(da)) [[skip]]a = λda.da

[[x = E]]a = λda.assigna(da, x 7→ E[[E]]a(da))

[[x1 = x2]]
a = λda.assigna(da, x1 7→ da �e(x2))

[[x = o.m(E)]]a = λda.let va = E[[E]]a(da), ϑ = da �e(o),

(v0
a, d0

a) = M[[m]]a(va, bda �s(ϑ), da �sc),
in assigna(da, x 7→ v0

a, ϑ 7→ d0
a �e, d

a �s 7→ d0
a �s)

[[if b then C1 else C2]]
a = λda.[[C1]]

a(truea(b, da))ta[[C2]]
a(falsea(b, da))

[[while b do C]]a = λda.falsea(b, lfpv
a

da λx.[[C]]a(truea(b, x)))

Fig. 2. Monolithic abstract semantics

Theorem 1 (Soundness of [[C]]a). The monolithic context abstract seman-
tics is a sound approximation of the concrete semantics: ∀In ∈ P(Env × Store).
[[C]](In) ⊆ γ ◦ [[C]]a ◦ α(In).

4 Separate Abstract Semantics

The abstract semantics [[·]]a defined in the previous section does not take into
account the encapsulation features of object-oriented languages, so that, for in-
stance each time a method of an object is invoked, its body must be analyzed.
In this section we show how to split [[·]]a into two parts. The first part analyzes
the context using an approximation of the object. The latter analyzes the object
using an approximation of the context.

4.1 Regular Expressions Domain

The main idea for the separate analysis is to refine the abstract domain Da

with the abstract domain R of regular expressions over the infinite alphabet
({init}∪P(M))×Vala×Da. Given an object, the intuition behind the refinement
is to use a regular expression to abstract the method’s invocations performed
by the context. In particular, each letter in the alphabet represents a set of
methods that can be invoked, an approximation of their input values and an
approximation of the state. Such a regular expression is built during the analysis
of the context. Then it is used for the analysis of the object.

The definition of the regular expressions in R is given by structural induc-
tion. The base cases are the null string ε and the letters l of the alphabet
({init} ∪ P(M)) × Vala × Da. Then, if r1 and r2 are regular expressions so are
the concatenation r1 · r2, the union r1 + r2 and the Kleene-closure r∗1 .

7

>r∇rx = x∇r>r = >r x∇rε = ε∇rx = x

〈m, va, sa〉∇r〈m1, va
1, s

a
1〉 = 〈m ∪ m1, v

a∇a
vva

1, s
a∇asa

1〉 (r1 · r2)∇rn = (r1∇rn) · r2

(r1 + r2)∇rn = (r1∇rn) + (r2∇rn) r∗∇rn = (r∇rn)∗

(r1 · r2)∇r(r
′
1 · r′2) = (r1∇rr

′
1) · (r2∇rr

′
2) r∗1∇rr

∗
2 = (r1∇rr2)

∗

(r1 + r2)∇r(r
′
1 + r′2) = (r1∇rr

′
1) + (r2∇rr

′
2)

x∇ry = >r in all the other cases

Fig. 3. Widening on regular expressions

The language generated by a regular expression r is defined by structural
induction:

L(〈ms, va, sa〉) = {〈m, v, s〉 | m ∈ ms, v ∈ γv(va), s ∈ γ(sa)} L(ε) = ∅
L(r1 · r2) = {s1 · s2 | s1 ∈ L(r1), s2 ∈ L(r2)} L(r1 + r2) = L(r1) ∪ L(r2)

L(r∗) = lfp⊆∅ λX.L(r) ∪ {s1 · s2 | s1 ∈ X, s2 ∈ L(r)}.

The order on regular expressions is a direct consequence of the above defini-
tion: ∀r1, r2 ∈ R.r1 vr r2 ⇐⇒ L(r1) ⊆ L(r2). So, two expressions are equivalent
if they generate the same language: r1 ≡ r2 ⇐⇒ L(r1) = L(r2). From now on,
we consider all the operations and definitions on regular expressions modulo the
equivalence ≡. The expression >r = 〈{init} ∪ M,>a

v,>a〉∗ ∈ R stands for a con-
text that may invoke any method, with any input value and with any memory
configuration for a non-specified number of times. So, it gives no information.
Thus, it is the largest element of 〈R,vr〉. The join of two regular expressions is
simply their union: ∀r1, r2 ∈ R.r1 tr r2 = r1 + r2. Similarly, the meet operator
ur can be defined, so that 〈R,vr, ε,>r,tr,ur〉 is a complete lattice.

The domain R does not satisfy the ACC, so we define the widening operator
of Fig.3 to deal with strictly increasing chains of regular expressions. There are
two intuitions behind the operator in Fig.3. The first one is to preserve the
syntactic structure of the regular expressions between two successive iterations,
so that the number of {·,+,∗ } does not increase. The second one is to propagate
the ∇r inside the regular expressions in order to use the widenings on Vala and
Da. Convergence is assured as M is a finite set, and ∇a

v and ∇a are widenings on
the respective domains.

For the purpose of our analysis, we need to associate with each abstract ad-
dress, i.e. a set of concrete objects, a regular expression that denotes the inter-
action of the context on it. As a consequence we consider the functional lifting1

Ṙ = [Addra → R]. The order v̇r is defined pointwise: ∀ṙ1, ṙ2 ∈ Ṙ.ṙ1v̇r ṙ2 ⇔
∀ϑ ∈ Addra.ṙ1(ϑ) vr ṙ2(ϑ). In a similar way, the join and the meet are defined

1 We use the notation that given a domain Da, Ḋa stands for the domain of functions
[Addra → Da]. The operations on Ḋa are the pointwise extension of that of Da: given
an operation �, then ∀ḋa

1, ḋ
a
2 ∈ Ḋa. ḋa

1 �̇ ḋa
2 = λϑ.ḋa

1(ϑ) � ḋa
2(ϑ).

8

O[[ϑ]]a(ε, 〈ia, pa〉) =〈ia, pa〉
O[[ϑ]]a(〈{init}, va, sa〉, 〈ia, pa〉) =let 〈ea

0, s
a
0〉 = I[[init]]a(va, sataia)

in 〈iatasa
0, p

a[init 7→ 〈⊥a
v, ea

0〉]〉
O[[ϑ]]a(〈ms, va, sa〉, 〈ia, pa〉) =let ∀mi ∈ ms.(va

i , s
a
i) = M[[mi]]

a(va, sataia), 〈wa
i , q

a
i〉 = pa(mi)

in (iata
⊔a

sa
i , p

a[mi 7→ 〈wa
i ta

v va
i , q

a
itasa

i〉])

O[[ϑ]]a(r1 · r2, 〈ia, pa〉) =let (ia1, p
a
1) = O[[ϑ]]a(r1, 〈ia, pa〉), (ia2, pa

2) = O[[ϑ]]a(r2, (i
a
1, p

a
1))

in (ia, pa)ta
o(i

a
1, p

a
1)ta

o(i
a
2, p

a
2)

O[[ϑ]]a(r1 + r2, 〈ia, pa〉) =let (ia1, p
a
1) = O[[ϑ]]a(r1, 〈ia, pa〉), (ia2, pa

2) = O[[ϑ]]a(r2, 〈ia, pa〉)
in (ia, pa)ta

o(i
a
1, p

a
1)ta

o(i
a
2, p

a
2)

O[[ϑ]]a(r∗, 〈ia, pa〉) =lfp
va

o
〈ia,pa〉 λx, y.O[[ϑ]]a(r, (x, y))

Fig. 4. Separate object abstract semantics

point-wise, so that 〈Ṙ, v̇r, λϑ.ε, λϑ.>r, ṫr, u̇r〉 is a complete lattice. We call an
element ṙ ∈ Ṙ an interaction history.

4.2 Separate Object Analysis

The goal of the separate object analysis is to infer an object invariant and the
method postconditions when the instantiation context is approximated by a
regular expression. Thus, the input of the abstract semantics O[[ϑ]]a is a regular
expression r and an initial abstract value for the object fields and the method
preconditions. The output is an invariant for the object fields and the method
postconditions, under the context represented by r. A postcondition is a pair
consisting of an approximation of the return value and an abstract state. Thus,
the result is an element of the abstract domain Oa = Da× [M→ Vala×Da]. From
basic domain theory, the orders on Da and Vala induce the order on Oa. So, the
order is va

o = va × (˙va
v ×va), the least element is ⊥a

o = 〈⊥a, λm.〈⊥a
v,⊥a〉〉 and

the largest >a
o = 〈>a, λm.〈>a

v,>a〉〉. The meet, the join and the widening can be
defined in a similar fashion, so that 〈Oa,va

o,⊥a
o,>a

o,ta
o,ua

o〉 is a complete lattice.
Finally, the separate object abstract semantics, O[[ϑ]]a ∈ [R×Oa → Oa], is defined
in Fig. 4. Its definition is by structural induction on the regular expression r.

Some comments on the separate object semantics. The base cases are
the empty expression ε and the letters 〈ms, va, sa〉 and 〈{init}, va, sa〉. In the first
case the context does not perform any action, so that the state of the object does
not change at all. In the latter, the context may invoke any method mi ∈ ms. The
abstract value

⊔asi
a approximates the object field values after calling the method

m1 or m2 or . . . or mn. As a consequence, iata
⊔asi

a approximates the object fields
before and after executing any method in ms. Hence, it is an object invariant. On
the other hand, if 〈wa

i , q
a
i 〉 is the initial approximation of the return values and

the states reached after the execution of a method mi ∈ ms, then 〈wa
ita

vva
i , q

a
itasai 〉

9

is the postcondition of mi after its execution. The case of the constructor init
is quite similar.

As for the inductive cases are concerned, the rules for concatenation and
union formalize respectively that “the context first performs r1 and then r2”
and “the context can perform either r1 or r2”. Finally, the rule for the Kleene-
closure is a little bit more tricky. In fact the intuitive meaning of r∗ is that,
starting from an initial abstract value 〈ia, pa〉 the context performs the interaction
encoded by r an unspecified number of times. We handle this case by considering
the least fixpoint greater than 〈ia, pa〉 according to the order va

o on Oa. If the
abstract domains Da and Vala do not respect the ACC then the convergence of
the iterations must be enforced using the following pointwise widening operator:

λ(ia, pa), (i′a, p′a).(ia∇ai′
a
, λm.pa(m) (∇a

v ×∇a) p′
a(m)).

The regular expression r> = 〈{init},>a
v,>a〉 · >r stands for a context that

calls at first the class constructor with an unknown value and then may invoke
any object method, with any possible value, an unspecified number of times.
Thus the abstract value 〈ia, pa〉 = O[[ϑ]]a(r>,⊥a

o) is such that ia is a property of
the object fields valid for all the object instances, in any context. So it is a class
invariant in the sense of [5,4]. In the following we refer to it as [[A]]a.

4.3 Separate Context Analysis

The separate context analysis C[[C[·]]]a has two goals. The first goal is to analyze
C[o] without referring to the o code, but just to a pre-computed approximation
of its semantics. The second goal is to infer, for each object o a regular expres-
sion r that describes the interaction of the context with o. This r can then be
used to refine the approximation of the object semantics. In general, a context
creates several objects and it interacts with each of them in a different way. As
a consequence, in the definition of the abstract context semantics C[[·]]a we use a
domain Ȯa = [Addra → Oa], whose elements are maps from abstract objects to
their approximations. The definition of C[[C]]a ∈ [Da× Ȯa× Ṙ→ Da× Ṙ] is given
by structural induction on C in Fig. 5.

Some comments on the separate context semantics. The semantics
takes three parameters: an abstract state, an approximation of the semantics of
the objects and the invocation history. When a class is instantiated, the seman-
tics C[[·]]a (abstractly) evaluates the value to pass to the constructor init and
it obtains an address ϑ for the new object. Then, it uses the object abstraction
ϑ̇(ϑ) to get the constructor postcondition pa(init) and it updates the invoca-
tion history. In general, the abstract address ϑ identifies a set γv(ϑ) of concrete
objects. So, the semantics adds an entry to the ϑ history corresponding to the
invocation of init, with an input va and an abstract state da. Eventually, the
result is the new abstract state, obtained considering the store after the execu-
tion of the constructor, and the updated invocation history. The sequence, the
skip and the two assignments do not interact with objects so, in these cases,
C[[·]]a is very close to the corresponding semantics of Fig. 2. The definition of

10

C[[A o = new A(e)]]a = λda, ϑ̇, ṙ.let va = E[[e]]ada, ϑ = alloca(da),

〈ia, pa〉 = ϑ̇(ϑ), 〈⊥a
v, da

0〉 = pa(init),

ṙ′ = ṙ[ϑ 7→ 〈{init}, va, da〉 tr ṙ(ϑ)]

in (assigna(da, ϑ 7→ da
0 �e, d

a �s 7→ da
0 �s), ṙ

′)

C[[C1; C2]]
a = λda, ϑ̇, ṙ.let (da

1, ṙ1) = C[[C1]]
a(da, ϑ̇, ṙ)

in C[[C2]]
a(da

1, ϑ̇, ṙ1)

C[[skip]]a = λda, ϑ̇, ṙ.(da, ṙ)

C[[x =e]]a = λda, ϑ̇, ṙ.(assigna(da, x 7→ E[[e]]a(da)), ṙ)

C[[x1 = x2]]
a = λda, ϑ̇, ṙ.(assigna(da, x1 7→ da �e(x2)), ṙ)

C[[x = o.m(e)]]a = λda, ϑ̇, ṙ.let va = E[[e]]a(da), ϑ = da �e(o),

〈ia, pa〉 = ϑ̇(ϑ), 〈va
m, q

a
m〉 = pa(m)

d′
a
= assigna(da, x 7→ va

m, ϑ 7→ qa
m �e, d

a �s 7→ qa
m �s),

in (d′
a
, ṙ[ϑ 7→ ṙ(ϑ) · 〈m, va, bda �s(ϑ), da �sc〉])

C[[if b then C1 else C2]]
a = λda, ϑ̇, ṙ.let (da

1, ṙ1) = C[[C1]]
a(truea(b, da), ϑ̇, ṙ),

(da
2, ṙ2) = C[[C2]]

a(falsea(b, da), ϑ̇, ṙ)

in (da
1tada

2, ṙ1ṫr ṙ2)

C[[while b do C]]a = λda, ϑ̇, ṙ.let (d′
a
, ṙ′) = lfp

va×v̇r
(da,λϑ.ε)λ(x, y).C[[C]]a(truea(b, x), ϑ̇, y)

in (falsea(b, d′
a
), λϑ.ṙ(ϑ) · (ṙ′(ϑ))∗)

Fig. 5. Separate context semantics

C[[·]]a for method invocation is similar to the constructor’s one: it fetches the
(abstract) address corresponding to o and the corresponding invariant. Then, it
updates the abstract state, using the m postcondition, and the invocation history.
The definition of the conditional merges the abstract states and the invocation
histories originating from the two branches. Eventually, the loop is handled by
the least fixpoint operator on the abstract domain Da × Ṙ. In particular we
consider the least fixpoint greater than (da, λϑ. ε) as we need to compute an in-
vocation history that is valid for all the iterations of the loop body. The history
for the whole while command is the concatenation of the input history with
the body one, repeated an unspecified number of times. As usual, the conver-
gence of the analysis can be forced through the use of the widening operator
λ(da

1, ṙ1).(da
2, ṙ2), (da

1∇ada
2, ṙ1∇̇r ṙ2).

We conclude this section with two soundness lemmata. The proof for both
can be found in [6]. The first one states that for each initial value and ob-
ject approximation, all the history traces computed by C[[·]]a are of the form of
〈{init}, va, sa〉 · r, for some va ∈ Vala, sa ∈ Da and regular expression r. Intu-
itively, it means that the first interaction of the context with an object is the

11

invocation of init with some value and store configuration. This fact can be
used to show that [[A]]a, as defined in the previous section, overapproximates the
semantics of all the objects. Thus, that it is a sound class invariant.

Lemma 1 (Soundness of the class invariant). Let da
0 ∈ Da, ϑ̇ ∈ Ȯa and

C[[C]]a(da
0, ϑ̇, λϑ.ε) = (da, ṙ). Then for all the abstract objects ϑ such that ṙ(ϑ) 6= ε:

(i) ṙ(ϑ) = 〈{init}, va, sa〉 · r, for some va ∈ Vala, sa ∈ Da and r ∈ R;
(ii) O[[ϑ]]a(ṙ(ϑ), ⊥̇o) va

o [[A]]a.

The next lemma shows that the history traces computed by C[[·]]a are an
overapproximation of the history traces computed by [[·]]a. Thus, the soundness
of [[·]]a implies that the history traces are a sound approximation of the context.

Lemma 2 (Soundness of the history traces). Let [[C[o]]]a(⊥a) = da, αv({o})
= ϑ and t = 〈init, va, sa〉 · 〈m1, v

a
1, s

a
1〉 . . . 〈mn, va

n, san〉 a sequence of method invo-
cations of ϑ when the rules of Fig. 2 are used to derive da. Then C[[C[o]]]a(⊥a,
λϑ.[[A]]a, λϑ.ε) = (d′a, ṙ′) is such that davad′

a and L(t) ⊆ L(ṙ′(ϑ)).

4.4 Putting It All Together

In this section we show how to combine the two abstract semantic functions
O[[·]]a and C[[·]]a in order to obtain a separate compositional analysis of C[o]. The
functions O[[·]]a and C[[·]]a are mutually related. The first one takes as input an
approximation of the context and it returns an approximation of the object
semantics. The second one takes as input an approximation of the objects. It
returns an abstract state and, for each abstract object ϑ, an approximation
of the context that interacts with ϑ. Then it is natural to handle this mutual
dependence with a fixpoint operator.

Nevertheless, before doing it we need to define formally the function Θ ∈
[Ṙ→ Ȯa], that maps an interaction history ṙ to a function ϑ̇ from abstract objects
to their approximation. First we consider the set of the abstract objects that
interact with the context, i.e. the abstract addresses whom interaction history is
non-empty: I = {ϑ | ṙ(ϑ) 6= ε}. Next, we define a function that maps elements
of I to their abstract semantics and the others to the class invariant [[A]]a:

ϑ̇ṙ = λϑ.

{
O[[ϑ]]a(ṙ(ϑ),⊥a

o) if ϑ ∈ I

[[A]]a otherwise.
(1)

Moreover, we require that the more precise the abstract object, the more precise
its abstract semantics. Therefore we perform the downward closure of ϑ̇ṙ, to
make it monotonic. Finally, the object abstractions function in a context ṙ,
Θ ∈ [Ṙ→ Ȯa], is defined as Θ(ṙ) = λϑ. ua

o{ϑ̇ṙ(ϑ′) | ϑ′ ∈ Addra and ϑ va
vϑ′}. The

function Θ is well-defined as Addra is a sublattice of Vala and the monotonicity
of Θ(ṙ) is a direct consequence of the definition.

12

Using the above definition and defining Γ (ϑ̇) = C[[C]]a(⊥a, ϑ̇, λϑ.ε), it is now
possible to formally state the interdependence between the context and the ob-
jects semantics as follows:

ϑ̇ = Θ(ṙ)

(da, ṙ) = Γ (ϑ̇).
(2)

A solution to the recursive equation (2) can be found with the standard iterative
techniques. Nevertheless, our goal is to parallelize the iterative computation
of Θ and Γ , in order to speed up the whole analysis. Therefore, we start the
iterations by considering a worst-case approximation for ṙ and ϑ̇: ṙ0 = λϑ.r> and
ϑ̇0 = λϑ.>a

o. In other words, we assume an unknown context when computing
the abstract object semantics and an unknown semantics when analyzing the
context. Then we obtain ϑ̇1 = Θ(ṙ0) and (da

1, ṙ1) = Γ (ϑ̇0).
As we consider the worst-case approximation for the objects semantics, the

abstract state da
1 is an upper approximation of [[C]]a(⊥a). Furthermore, it is easy

to see that ṙ1v̇r ṙ0 and ϑ̇1v̇oϑ̇0. Roughly speaking, this means that after one
iteration we have a better approximation of the context and the object semantics.
As a consequence, if we compute ϑ̇2 = Θ(ṙ1) and (da

2, ṙ2) = Γ (ϑ̇1), we obtain
a better approximation for the abstract state, the semantics of the objects and
that of the context. This process can be iterated, so that at step i + 1 we have:

ϑ̇i+1 = Θ(ṙi)

(da
i+1, ṙi+1) = Γ (ϑ̇i).

(3)

The next theorem synthesizes what has been said so far. It states that the
iterations of (3) form a decreasing chain and that at each iteration step da

i+1

is an sound approximation of the monolithic abstract semantics. Hence, of the
concrete semantics:

Theorem 2 (Soundness). Let C be a context. Then ∀i ≥ 0.

(i) da
i+1vada

i , ṙi+1v̇r ṙi and ϑ̇i+1v̇oϑ̇i.
(ii) [[C]]a(⊥a)vada

i .

Roughly speaking the first point of the theorem states that the more the
iterations the more precise the result of the analysis. On the other hand, the
second point states that the abstract states are all above the result of the mono-
lithic abstract semantics. As a consequence it is possible to stop the iterations
at a step i, the resulting abstract state da

i being a sound approximation of the
concrete semantics.

An analysis based on (3) has several advantages. First, it is possible to use
the asynchronous iterations with memory [1] in order to parallelize the analysis
of the context and the objects. Intuitively, this is a consequence of the fact that
at each iteration, the result of Θ and Γ depends just on the result of the previous
iteration. Furthermore, Θ computes the abstract semantics for several, indepen-
dent, abstract objects (cf. (1)). Therefore, even the effective implementation of

13

o1 = new A(5, 10);
o2 = new A(3, 10);
while . . . do

if o1.get y() + o2.get y() ≥ 0 then

o1.addA(5); o1.addB(3);
else

o2.addA(7); o2.addA(1);
{ assert(Prop) }

(a) The context

F : {a, b, y}

init(a0, c0) : a = a0; b = c0 − a0; y = 0

addA(x) : a = a + x; b = b− x; y = y + 1

addB(x) : a = a− x; b = b + x; y = y− 1

get y() : return y

(b) The class A

Fig. 6. Example of a context and a class

Θ may take advantage of a further parallelization. Finally the fact that each
iteration is a sound approximation allows a fine tuning of the trade-off preci-
sion/cost. In particular, we can stop the iterations as soon as the desired degree
of precision is reached.

Example 1. As an example, we can consider the context and the class A in Fig.
6, where Prop is the property: (o1.a + o1.b)− (o2.a + o2.b) + (o1.y + o2.y) ≥ 0.

We are interested in proving that the assert condition is never violated. In
order to do it, we instantiate the abstract domain Da with Polyhedra [3], and
we consider the two abstract objects ϑ1 and ϑ2 corresponding respectively to o1

and o2. According to the iteration schema (3), the first step approximates the
objects semantics with the class invariant: Θ(ṙ0) = λϑ.〈ia, λm.pa(m)〉. The object
fields invariant is ia = {a + b = c0} and the method postconditions are:

pa =


init 7→ 〈⊥a

v, ia ∪ {y = 0}〉
addA 7→ 〈⊥a

v, ia ∪ {y = y + 1}〉
addB 7→ 〈⊥a

v, ia ∪ {y = y− 1}〉
get y 7→ 〈>a

v, ia〉.

On the other hand, as far as the context analysis is concerned, we have (∅, ṙ1) =
Γ (ϑ̇0), where ṙ1 is the interaction history below. For lack of space we simplify the
structure of the interaction history by omitting the abstract state. Nevertheless,
in the example this is not problematic, as the objects do not expose the internal
state.

ṙ1 =

{
ϑ1 7→ 〈{init}, (5, 10)〉 · (〈{get y}, ∅〉 · 〈{addA}, 5〉 · 〈{addB}, 3〉)∗

ϑ2 7→ 〈{init}, (7, 10)〉 · (〈{get y}, ∅〉 · 〈{addA}, 7〉 · 〈{addA}, 1〉)∗.

The result of the next iteration, Γ (ϑ̇1), is still too imprecise for verifying the as-
sertion, as the object fields invariant ia implies that (o1.a+o1.b)−(o2.a+o2.b) = 0,
but nothing can be said about o1.y+o2.y. Nevertheless, the analysis of the object
semantics under the context ṙ1 results in a more precise approximation of the
objects semantics. In particular, we obtain for the first object the field invariant
ia1 = ia ∪ {0 ≤ y ≤ 1} and for the latter ia2 = ia ∪ {y ≥ 0}. As a consequence, a

14

further iteration is enough to infer that the condition Prop is verified. From Th.
2 it follows that the result is sound, even if it is not the most precise one. In
fact it is easy to see that a further iteration gives a more precise result, proving
that the else branch in the conditional is never taken. Therefore that o2.y is
identically equal to zero.

5 Conclusions and Future Work

In this work we introduced a separate compositional analysis and we proved
it correct for a small yet realistic object-oriented language. In particular we
presented an iteration schema for the computation of the abstract semantics
that approximates it from above. The central idea for the parallelization is the
use of a domain of regular expressions to encode the interactions between the
context and the objects.

In future work we plan to study the practical effectiveness of the presented
technique, for example with regard to memory consumption. Moreover, it would
be interesting to study how many iterations are needed in order to reach an ac-
ceptable degree of precisions. As far as the theoretical point of view is concerned,
a straightforward extension of this work is a direct handling of inheritance. Nev-
ertheless, in our opinion the combination of the present work with modular
techniques for the handling of inheritance presents some more challenges that
deserve to be explored [5].

Acknowledgments. We would like to thank R. Cousot, J. Feret, C. Hymans,
A. Miné and X. Rival for their comments.

References

1. P. Cousot. Asynchronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice. Technical Report R.R. 88, Laboratoire
IMAG, Université scientifique et médicale de Grenoble, 1977.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL ’77.
ACM Press, 1977.

3. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In POPL ’78. ACM Press, 1978.

4. F. Logozzo. Class-level modular analysis for object oriented languages. In SAS’03,
volume 2694 of LNCS. Springer-Verlag, 2003.

5. F. Logozzo. Automatic inference of class invariants. In VMCAI’04, volume 2937 of
LNCS. Springer-Verlag, 2004.

6. F. Logozzo. Modular Static Analysis of Object Oriented Languages. PhD thesis,
École Polytechnique, France, 2004. To appear.

7. I. Pollet, B. Le Charlier, and A. Cortesi. Distinctness and sharing domains for static
analysis of Java programs. In ECOOP’01, volume 2072 of LNCS. Springer-Verlag,
2001.

8. A. Rountev, A. Milanova, and B.G. Ryder. Fragment class analysis for testing of
polymorphism in Java software. In ICSE’03. IEEE Press, 2003.

15

