
1

A Technology Transfer Retrospective
Roy Levin

Microsoft Research, Silicon Valley
January, 2003 (revised July, 2003)

Many have written about the challenges that industrial research organizations face in
trying to transfer the technology they create to other organizations. Research pursues
a long and winding road from the proof of concept of a technology in the lab to the
adoption of that technology by others and its use for corporate benefit. To follow the
road to its end requires persistence, determination, flexibility, and (when, as is often
the case, the road ends short of the destination) good humor. In this short paper, I
offer a personal recollection of a part of one such journey — one in which the
destination reached wasn’t the one originally sought.

The Road

My story tells of the Vesta system, the eventual result of an extraordinarily long
research activity that spanned more than twenty years and three companies. The
focus of this research was software configuration management, especially the problem
of building large-scale software systems incrementally and reproducibly. (An
incremental build is one in which the minimum amount of compiling and linking
occurs, exploiting as much as possible the results of previous compile/link steps.)
Butler Lampson sparked my initial interest in this topic in the early 1980’s at Xerox
PARC. At that time, the software environment in which we were working differed
significantly from those in general use elsewhere, since it had been constructed
around a custom programming language and operating system (both called Cedar).
Nevertheless, the overall problems of system-building were largely the same as one
would have encountered under Unix or any other programming environment at the
time.

Many researchers had investigated tools to build software incrementally, and some
commercial systems of the time included them. Perhaps the best known was make
[1], a simple tool originally built for Unix but subsequently adapted in many other
environments. Make provided facilities for two essential aspects of system-building:
(1) a concise way to express dependencies between components of a software system,
and (2) a script of rebuilding actions for each component, to be executed when a
predecessor in the dependency relation was updated. Make was designed and worked
well for systems of a few tens of thousands of source code lines, but its limited notion
of dependency did not extend well beyond that. Systems at the next order of
magnitude or larger typically required build tools that supported branched
development and/or multiple target platforms and/or a geographically dispersed
organization. Developers of such systems still wanted to build incrementally — the
value of doing so was even greater with large systems — but make could not do so
reliably. As a result, developers of larger systems had to abandon incremental
building and, while they might still use make as the mechanism for scripting the build
actions, they reverted to “scratch” building which, for large systems, was an overnight

2

activity conducted by a “release management” organization. As Lampson observed,
this was effectively a return to the 1960’s, when such systems were built overnight by
submitting large card decks as a batch process1.

This unsatisfactory state of affairs had not gone unnoticed in the research community,
and many variants of make were developed that sought to address the problem.
Mindful of Roger Needham’s maxim to do research “with a shovel rather than a
tweezers”, and unburdened at PARC by existing build processes based on make, we
embarked on a line of research to rethink software system building from first
principles. An early result of this research was the Cedar System Modeler [2], built
by Ed Satterthwaite. However, this tool focused less on the problems of scale and
incremental construction than on the use of a strong type system to minimize errors in
building.

Before the Cedar System Modeler could see any significant use, Lampson and others
(including me) left Xerox to found the DEC Systems Research Center (SRC). This
group immediately set about creating a programming environment incorporating some
of the features to which we had grown accustomed in Cedar. However, while this
environment had a custom operating system (Taos [3]) and programming language
(Modula-2+ [4]), the software development tools came from Unix and make was the
system builder. We thus became acquainted first-hand with make’s characteristics,
and I soon initiated a new project to attack “the system building problem” afresh. The
project was named Vesta2.

The Vesta research project produced a practical system that was deployed at SRC
around 1989. It used a modular, functional programming language to express the
build “script” and was able to build all of Taos, the Modula-2+ compiler and tools,
and hundreds of libraries and applications built on them, all incrementally and
reproducibly [5]. This body of code comprised nearly 1.5 million source lines, well
beyond what make could reliably build incrementally. It was language-independent
— that is, programs written in languages other than Modula-2+ could be built by
Vesta — and supported both branched and cross-platform development.

The Vesta developers were excited by this successful demonstration of the feasibility
of large-scale, incremental, reliable software system building.3 As a result, we
embarked on a series of visits to DEC product organizations that we hoped would
embrace the technology. DEC had two substantial programming environment product
suites, one based on VMS, one on Unix. Both used make or its relatives as their build

1 Those too young to have experienced system construction in the days of batch processing can glean
a sense of it, and much more besides, from Frederick Brooks’ classic retrospective on software
development The Mythical Man-Month (Addison-Wesley, New York, 1995).

2 According to Bulfinch, “Vesta (the Hestia of the Greeks) was a deity presiding over the public and
private hearth.” That duty struck me as an apt characterization of the role of a configuration
management tool.

3 To be fair, the initial Vesta system was not without problems. Its build language was difficult to
use, the builder’s performance was quirky, and the whole system’s ability to scale was limited,
although still much better than make’s. Indeed, these problems led us to conduct an internal user
study to understand how Vesta might be improved, but that’s another story.

3

engine, and we believed the demonstrable superiority of the Vesta approach would be
appealing. The tools purveyed by these groups were DEC products and were also
used internally by the VMS and Unix operating system and layered product
development groups for their very large code bases.

We returned from these visits sadder but wiser. While these groups found the Vesta
technology attractive, they could not adopt it. There were several show-stoppers. For
expediency, we had implemented Vesta by exploiting features of the Taos operating
system that made it impractical to port Vesta to other platforms. We believed this
could be fixed4, but it nevertheless put off the potential recipients. Furthermore, the
whole Vesta system was implemented in Modula-2+, a language unsupported by DEC
and unknown to most of its developers. More seriously, Vesta’s idiosyncratic build-
scripting language, uncertain scalability beyond systems of a few million lines, and
inability to support geographically dispersed development made it an inadequate
replacement for the make-based build systems that the product development
organizations had cobbled together. We were disappointed, but went back to the
drawing board, and began a new project to address these shortcomings.

The result, several years later, was Vesta 2. While continuing the original research
goal, Vesta 2 had different technical objectives and substantially new personnel.
Goaded by Bill McKeeman, we recast the syntax of the build-scripting language to
resemble C, while retaining the underlying functional semantics that were essential
for Vesta’s incremental building machinery5. We completely redesigned the storage
system and language interpreter to accommodate systems of 10 million (or more)
source lines and to support geographic distribution of their development. We
implemented Vesta 2 in C++ on top of DEC’s Tru64 (Unix) operating system and
equipped it with Unix-like management tools. The resulting system is described in
detail in [6].

By the time that Vesta 2 was completed, DEC had largely ceased to invest in software
development tools as part of its product portfolio. Some of the organizations we had
previously visited no longer existed, but the operating system groups did, and the
Unix organization expressed some interest in Vesta 2. Ultimately, however, they
decided not to use Vesta for a combination of reasons, most of which are familiar to
researchers who have followed the technology transfer road. Two in particular
deserve note:

4 Indeed, by that time, SRC had shifted from Taos to Unix as its research platform and some of our
colleagues were encouraging us to reimplement the Taos-dependent parts of Vesta so that they
could continue to use it on Unix.

5 An explanation of the language semantics would go far beyond the scope of this paper. The key
idea, however, is that the function calls of interest in a Vesta build script are invocations of tools
(e.g., compiler, linker). The arguments to these function calls are all the dependencies (e.g.,
included files); there are no global variables and, because of the functional language, no side-
effects. Consequently, the function calls can be cached, and a cache hit indicates that a tool
invocation can be bypassed and the cached result (e.g., compiler or linker output) can be used
instead. This is the semantic basis of incremental building in Vesta. For an in-depth discussion,
see [6].

4

 Vesta 2, while technically superior to existing build tools, represented too
radical a departure from make. To adopt Vesta would require rethinking the
entire building methodology of the Unix organization, not to mention the
structure and function of its release management group. Despite Vesta 2’s
evident benefits, the conversion effort and retraining necessary to adopt it
were simply too much to consider.

 Vesta 2 came from a research group, not another product group or external
vendor. The Unix organization would need long-term assurances of support
before adopting the system, and (justifiably) didn’t believe that the research
organization could provide that assurance.

We could not make headway against these objections. To us it seemed ironic that the
operating system organizations periodically revised their build processes,
occasionally even building specialized tools to enable them to continue to build their
systems from scratch overnight or over a weekend, but they would not consider a
systematic rework that could have a major impact on their productivity6. We were
about to shelve Vesta 2 when we encountered an unexpected bend in the technology
transfer road.

An Unexpected Destination

I was sitting in Chuck Thacker’s office sometime in 1997 complaining about our
inability to find an outlet for the Vesta 2 technology. Chuck reminded me that
modern hardware development had become software-intensive and that DEC of
course was fundamentally a hardware company. The company was sharply reducing
its formerly broad investments in software to focus on its core line of Alpha-based
computers. The software involved in development of an Alpha chip was not quite on
the scale of an operating system, but it was well beyond what make could
comfortably handle. Chuck thought Vesta 2 might help.

I realized that I had been wearing blinders. As the Vesta group had considered
applications of Vesta and potential organizations for technology transfer, I had always
focused on enhancing a conventional C or C++ programming environment. The
Vesta group, being software developers ourselves, had never really considered the
applicability of our system to hardware development. Moreover, we had generally
focused on transferring Vesta technology to a group that already produced software
development tools, since we knew that the support of Vesta would have to be
assumed by the receiving organization. We didn’t expect that a receiving
organization would be willing to incur the support cost (or acquire the expertise) for
the Vesta system simply in order to use it — our experience with the operating
systems groups had taught us that. But we were wrong.

DEC’s Alpha division had two teams, each developing a new version of the Alpha
processor chip. One of these teams was finishing up its current chip and beginning to
prepare for the next one, code-named Araña. The build system they had been using

6 This syndrome was familiar to some of us from our time at Xerox, where analogous events
spawned the lament: “There’s never time to do it right, but there’s always time to do it over.”

5

was based on CVS, RCS, and make and had significant operational problems. Matt
Reilly, who had responsibility for the development tools that the chip designers would
use for Araña, was looking for something better. With a colleague, Walker Anderson,
he created a list of desiderata, then Walker prepared a comparative analysis of some
potential replacement tool suites, including Vesta 2. After some stress testing showed
that Vesta 2 could meet Arana’s needs, Matt initiated a series of exploratory meetings
with us. In the course of these discussions, we revisited all the issues that had
prevented the transfer of Vesta 2 to other DEC organizations. Many were significant,
but none proved to be show-stoppers. What was different this time?

 Because the Araña designers were beginning a new chip, they had the
opportunity to take a fresh look at their development environment and revise
or revamp it. Development of a modern CPU chip is a multi-year task
involving hundreds of people, so an investment in new tools that will
improve the process and resulting product merits serious consideration.
Thus, Vesta 2 arrived on the scene at a propitious moment.

 While some of the basic development tools carry over from one generation of
chip design to the next, many need to change to reflect advances in the
underlying process technology. Moreover, little of the previous design
(expressed as software) carries over; there is, in effect, a new “code base”
with no legacy code. This stands in sharp contrast to the situation in the
operating system groups, which have an ever-growing legacy code base.

 Despite their interest in Vesta, the Araña group could not risk wholesale
introduction of a new system, with the attendant training and inevitable
adoption problems involved. But, in part because they were getting a fresh
start, they could structure their development to introduce Vesta in a small
subgroup (about 20 engineers) first, fitting the outputs of that group into
those of the rest of the organization, which continued to use older build
processes. Over time, as they developed confidence in Vesta 2, they could
scale up its use by introducing it to additional subgroups.

 Matt Reilly found Vesta 2’s functionality (incremental build, scalability,
reproducibility, parallel builds, branched development) sufficiently
compelling that he was prepared to lobby his organization to commit an
engineer, Ken Schalk, to become their local Vesta expert. Ken understood
the needs of the Araña developers far better than we did, and could both
convey problems back to us and help the Araña developers to use their new
system-building tool to maximum effect7.

 Because the Araña group committed to taking on Vesta 2 maintenance
eventually, the Vesta researchers could agree to support the Araña group
until they could “go it alone”. By contrast, the operating system

7 Ken became intimately familiar with the Vesta 2 implementation and eventually became the
primary support engineer for the system on-site. In fact, he ultimately took overall responsibility
for porting Vesta 2 to Linux and making an open-source version available. See
www.vestasys.org .

6

organizations were looking for a customer/vendor relationship, which a tiny
research group could not provide. An atmosphere of mutual commitment
between the Vesta and Araña groups was thereby established from the outset.

The transfer of Vesta 2 technology thus began. The Vesta implementers (Allan
Heydon, Tim Mann, and Yuan Yu) worked closely with and through Matt and Ken to
provide training and support, which was occasionally challenging because the Araña
group was in Massachusetts and the Vesta group was in California. The groups took
advantage of Vesta’s support for geographically dispersed organizations, using it to
exchange updates between their sites and with a small remote branch of the Araña
group (also in California). This worked smoothly, enabling fast and orderly response
by the Vesta implementers to problems the Araña group uncovered and thereby
delivering on the support commitment required to make the technology transfer
succeed.

Gradually, the daily involvement of the Vesta implementers decreased; within a year
the Araña team had become essentially self-sufficient. By this time the user base had
grown from an initial cadre of about 20 to over 130, and a large fraction of the Araña
tools and code had come under Vesta 2’s management. By the time that the Alpha
business was sold by Compaq (which acquired DEC in 1998) to Intel, the Araña team
had come to depend on Vesta 2 and was even using it to build software outside the
scope of their original plan. They obtained permission for Vesta to be released under
an open source license before they left Compaq, and the system went to Intel with
them. We had reached the end of our technology-transfer road, though the destination
turned out to be an unexpected one.

Lessons

Our repeated attempts to transfer Vesta technology, and our eventual success, lead me
to draw the following lessons.

 Successful technology transfer depends on finding a window of opportunity.
Candidate recipient organizations have development cycles and, during most
of a cycle, they cannot absorb new technology. In our case, the window was
the “clean point” between Alpha chip generations, across which little code
and few tools are carried forward. Only when the window is open is the
development organization receptive; when the window is closed, they can’t
hear the researchers, no matter how loudly they shout. We found the window
open largely by accident. If I had it to do over again, I certainly would seek
to understand the development organization’s schedule well enough to
respond if/when the window opens.

 Appearances matter. Researchers often look for intellectual or aesthetic
purity and ignore ugly details that are conceptually straightforward to clean
up8. By contrast, development groups want things that work, and therefore

8 This is not a character flaw. Rather, it is an often necessary aspect of getting research done with a
small team – non-essential corners should and must be cut. Nevertheless, what gets the research

7

they care about the details. Those details tell them how carefully the
researchers have thought about their needs, which amounts to a litmus test of
the practicality of the system under consideration. So, the lesson for
researchers seeking to transfer a software system is: remove the twigs over
which the developers will otherwise trip. In Vesta 1, the language syntax
repeatedly tripped up potential adopters. We resisted, essentially on aesthetic
grounds, marrying C syntax with functional language semantics. When we
finally did so, we removed a place to stumble9.

 Having a champion within the candidate receiving organization is essential.
Matt Reilly and Ken Schalk were our champions. The old adage that “you
can’t push on a rope” applies; without pull from the technology recipients,
the transfer will fail. Some believe that successful technology transfer
requires people transfer. I don’t subscribe to this view — Vesta 2 is a
counter-example — but I do believe that technology transfer requires a
champion, who pulls on the rope. An influential champion is especially
important when a methodological change is involved, as with Vesta, because
that change must be embraced and promulgated by management.

 Commitment by the research group to make the transfer succeed is equally
essential. As Allan Heydon put it, “While you can’t push on a rope, if the
other side pulls and you’re not holding on, things won’t go very well either.”
Supporting technology transfer can be very time-consuming; the Vesta 2
implementers each spent the better part of a year supporting the Araña group.
(This is the alternative to people-transfer.) Therefore, both researchers and
their management must believe this is time well-spent.

 When the technology transfer requires a substantial change in thinking or
operation, success depends on finding a small, somewhat separable group as
the point of introduction. Even the forward-thinking Araña group couldn’t
swallow Vesta 2 all at once; they had to adopt it incrementally. Success is
contagious, and once the initial group has had a successful adoption
experience, they then become champions for the new technology within the
rest of their organization.

 Technology transfer must take bounded time; there must be a plan for
making the recipient organization self-sufficient. This generally means that
either the receiving organization or some other non-research group commits
to ongoing support of the technology. In our case, it was the former, in the
person of Ken Schalk.

done faster can be an impediment to subsequent technology transfer, and researchers need to
recognize the trade-off.

9 Matt Reilly confirmed that the old Vesta language syntax would have been a significant
impediment, giving the Araña developers one more new thing to learn. By hiding the functional
semantics under C syntax, we removed that impediment and enabled many developers to read the
standard build scripts without being immediately aware of the non-C semantics. Going even
further, Ken Schalk created user-interface tools that made it possible for most Araña developers to
manipulate build scripts without having to write in the scripting language at all!

8

None of these lessons is particularly earth-shaking. Some have been noted by others,
and no doubt other travelers on the technology-transfer road have encountered them
along the way. However, if in recording the Vesta 2 experience I have helped to
straighten the road for some future researcher, I will be well satisfied.

References

[1] S. I. Feldman. Make — A Program for Maintaining Computer Programs. Software Practice
and Experience, vol. 9 #4, 1979, pp.255–265.

[2] Butler W. Lampson and Eric E. Schmidt. Practical Use of a Polymorphic Applicative
Language. Proceedings of the Tenth Annual ACM Symposium on Principles of Programming
Languages (POPL), 1983, pp. 237–255.

[3] Paul McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded
programs. Research Report 21, Systems Research Center, Digital Equipment Corporation,
September, 1987. Available as http://www.hpl.hp.com/techreports/Compaq-
DEC/SRC-RR-21.html

[4] Paul Rover, Roy Levin, John Wick. On Extending Modula-2 for building large, integrated
systems. Research Report 3, Systems Research Center, Digital Equipment Corporation, January,
1985. Available as http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-
3.html

[5] Roy Levin and Paul R. McJones. The Vesta Approach to Precise Configuration of Large
Software Systems. Research Report 105, Systems Research Center, Digital Equipment
Corporation, June, 1993. Available as
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-105.html

[6] Allan Heydon, Roy Levin, Timothy Mann, Yuan Yu. The Vesta Software Configuration
Management System. Research Report 177, Systems Research Center, Compaq Computer
Corporation, January, 2002. Available as
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-177.html

