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We investigate the generalisation performance of consistent classifiers,
i.e. classifiers that are contained in the so-calledversion space, both from
a theoretical and experimental angle. In contrast to classical VC anal-
ysis—where no single classifier within version space is singled out on
grounds of a generalisation error bound—the data dependent structural
risk minimisation framework suggests that there exists oneparticular clas-
sifier that is to be preferred because it minimises the generalisation error
bound. This is usually taken to provide a theoretical justification for learn-
ing algorithms such as the well known support vector machine. A rein-
terpretation of a recent PAC-Bayesian result, however, reveals that given
a suitably chosen hypothesis space there exists a large fraction of classi-
fiers with small generalisation error although we cannot readily identify
them for a specific learning task. In the particular case of linear classi-
fiers we show that classifiers found by the classical perceptron algorithm
have guarantees bounded by the size of version space. These results are
complemented with an empirical study for kernel classifiers on the task
of handwritten digit recognition which demonstrates that even classifiers
with a small margin may exhibit excellent generalisation. In order to per-
form this analysis we introduce the kernel Gibbs sampler—an algorithm
which can be used to sample consistent kernel classifiers.
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1 Introduction

Over the last ten years there has been some new conceptual work in machine learn-
ing concerning generalisation error of classifiers (see [33, 29]). Their results build
the theoretical basis for the well-known support vector machine (SVM) algorithm. It
is now widely accepted that for complex models it is necessary to use regularisation
techniques such as margin maximisation in order to find a classifier exhibiting a small
generalisation error (see [32, p. 157]). Since for large datasets the SVM algorithm
is too time consuming many heuristics to approximate the SVM solution have been
put forward (see, e.g. [26, 15, 31]). Recently, it has been demonstrated experimentally
that even algorithms with no explicit regularisation perform comparably to SVMs (see
[23, 12]). This observation raises an interesting question:

What fraction of classifiers which correctly classify the training data
exhibit a small generalisation error?

In this paper we try to answer this question both from a theoretical and experimental
point of view. Using a recent result in the PAC-Bayesian framework we are able to
show that given a suitably chosen hypothesis space there exists a large fraction of clas-
sifiers with small generalisation error. More precisely,the generalisation error of most
of the classifiers in version space is controlled by the size of the version space relative
to the size of the hypothesis space.This result, which we call theegalitariangenerali-
sation error bound, is complemented by an experimental study for linear classifiers on
the task of handwritten digit recognition using the MNIST database. It is worthwhile
mentioning that in a fully Bayesian treatment the size of version space is also called
theevidenceof the model or hypothesis space, respectively (see [20]).

The paper is structured as follows: in the following section we review generalisa-
tion error bounds for single classifiers consistent with the whole training sample. We
will also introduce the PAC-Bayesian framework and its main result which allows us
to give our main theoretical result together with its proof at the end of this section. In
the subsequent section we discuss the impact of this result for practical learning theory.
We also give a more specific result for the perceptron learning algorithm that points
into the same direction. In Section 4 we present the kernel Gibbs sampler algorithm
which allows us to validate our theoretical result on a benchmark problem in the field
of handwritten digit recognition. The paper concludes with a discussion of generalisa-
tion error bounds for specific algorithms as opposed to bounds that holduniformlyover
version space.

We denote a probability measure byPX; random variables are typeset in upper
capital sans-serif font. The symbolsE andI denote the expectation of a random variable
and the indicator function, respectively. We use bold roman font for vectorsx and
denote tuples byx . Finally, the symbol̀ n

2 denotes the space of all sequencesx =
(x1, . . . , xn) of lengthn for which

∑n
i=1 x2

i <∞.
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2 Generalisation Error Bounds for Consistent Classi-
fiers

Suppose we are given a samplex = (x1, . . . , xm) ∈ Xm together with a sampley =
(y1, . . . , ym) ∈ Ym = {−1,+1}m drawn iid from an unknown distributionPZ = PXY.
Furthermore, assume we are given a fixedhypothesis spaceH of functionsh : X → Y.
We consider learning algorithms that aim to find a functionh∗ ∈ H that minimises the
generalisation errorR [h] given by

R [h] = PXY (h (X) 6= Y) = EXY
[
Ih(X)6=Y

]
.

A common approach to (approximately) findingh∗ based on the training samplez =
(x, y) ∈ Zm is to select a functionh ∈ H that minimises thetraining error Remp[h, z]

Remp[h, z] = 1

m

∑

(xi ,yi )∈z

Ih(xi )6=yi .

Let us assume thatPY|X=x (y) = Ih∗(x)=y, i.e. h∗ deterministically labels all the data
and thus has minimal generalisation error. Then we define theversion spaceV (z)
(phrase due to T. Mitchell [24]) as the set of all classifiersh ∈ H that areconsistent
with the training samplez,

V (z) = {h ∈ H
∣∣ Remp[h, z] = 0

}
.

Of course, solely based on the training errorRemp[h, z] all classifiers in version space
are indistinguishable. Moreover, even if a classifier has zero training error it can happen
that its generalisation error is large—an effect known asover-fitting. In order to cope
with this uncertainty a lot of research has been done to obtain probabilistic bounds on
the generalisation error of consistent classifiers. The basic idea is to guarantee that for
most training trials (random training samples) the generalisation error of a consistent
classifier does not exceed a certain value.

Definition 1 (PAC Generalisation Error Bound). A functionε : N×H×∪∞m=1Zm×
[0,1] → R such that for all measuresPZ, for all m ∈ N and for allδ ∈ (0, 1]

PZm (∀h ∈ H : (h /∈ V (Z)) ∨ (R [h] < ε (m, h,Z, δ))) ≥ 1− δ (2.1)

is called aPAC generalisation error boundfor the hypothesis spaceH.

Classical VC theory (see [33, 32]) provides the following bound for allm > dH and
for all hypothesesh ∈ H:

εVC (m, h, z, δ) = εVC (m, δ) =
4

m

(
ln

((
2em

dH

)dH
)
+ ln

(
2

δ

))
, (2.2)

wheredH is known as theVC dimensionof the hypothesis spaceH (see [33] for more
details). Obviously, the generalisation errorbound is independentof the particular
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classifierh ∈ V (z) and as such no single classifierh ∈ V (z) is singled out on the
basis of VC theory.

However, in applied classification learning it is common practice that the classifi-
cation is carried out by thresholding a real-valued function, i.e.h (x) = sign( f (x)).
It can be shown that the additional information of the real-valued magnitude| f (x)|
beforethresholding allows one to obtain a generalisation error bound in terms of the
marginγz (h) = min(xi ,yi )∈z yi f (xi ) attained on the given samplez, i.e., for all hy-
pothesesh ∈ H andm> dH (γ̃z (h)), γ̃z (h) := γz (h) /8

εfat (m, h, z, δ) = εfat(m, γ̃z (h) , δ)

= 2

m

(
log2

((
8em

dH (γ̃z (h))

)dH(γ̃z(h))
)

log2 (32m)+ log2

(
2m

δ

))
, (2.3)

wheredH (γ ) is known as thefat shatteringdimension of the hypothesis spaceH
at the observed scaleγ (see [29, 14] for details). The functiondH : R+ → N is
always monotonically non-increasing and is a straightforward generalisation of the VC
dimension to sets of real valued functions. An immediate consequence of this result is
that theboundon the generalisation errorR [h] depends inversely on the marginγz (h).
As such the result singles outoneclassifier within version space — the classifier with
maximal margin also known as the support vector solution (see [32]) which minimises
this bound.

Recently, D. McAllester presented “some PAC–Bayesian theorems” [21] which
provide a generalisation error bound for the Gibbs classification strategy Gibbsz. Given
a priorPH over hypothesis spaceH and a training samplez, for each test examplex the
Gibbs classification strategy samples a classifierh ∈ V (z) according toPH|H∈V(z) and
uses it for classification Gibbsz (x). Note that Gibbsz does not correspond to anysingle
classifierh ∈ V (z) but to a classification strategy based onPH|H∈V(z). For any prior
PH, the PAC boundεGibbson the generalisation errorR

[
Gibbsz

] = EH|H∈V(z)
[
R
[
H
]]

of this stochastic classification strategy is given by

εGibbs(m,PH, z, δ) = 1

m

(
ln

(
1

PH (V (z))

)
+ ln

(
em2

δ

))
, (2.4)

hence
PZm (R [GibbsZ] ≤ εGibbs(m,PH,Z, δ)) ≥ 1− δ . (2.5)

The first term in (2.2)—which is driven by the worst case number of equivalence classes
w.r.t. the two classesy ∈ Y—has been replaced by adata-dependentquantity—the
prior beliefPH in consistent classifiersh ∈ V (z). As opposed to classical PAC gener-
alisation error bounds, this resultdoes not provide any guarantee for single classifiers
h ∈ V (z). The first theoretical result of the present paper is a direct consequence of
(2.4) and is stated in the following theorem.

Theorem 2 (Egalitarian Bound). For all measuresPZ, with probability at least1− δ
over the random draw of the training samplez of sizem according toPZm, for all
η > 1, at least a fraction of1 − 1

η
of the classifiers in version spaceV (z) have
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generalisation error less than

η · εGibbs(m,UH, z, δ) ,

whereUH is the uniform measure overH.

Proof. The proof is a simple application of Markov’s inequality along with the instan-
tiation ofPH by the uniform measureUH. Markov’s inequality says

∀η > 1 : PH|H∈V(Z)
(
R
[
H
] ≥ η · EH|H∈V(Z)

[
R
[
H
]])

<
1

η
,

because the generalisation errorR : H → [0, 1] as a functional over hypotheses is a
positive random variable. Hence, from (2.5) it follows

PZm

(
∀η > 1 : PH|H∈V(Z)

(
R
[
H
]
< η · εGibbs(m,UH,Z, δ)

) ≥ 1− 1

η

)
≥ 1− δ .

In the following section we shall discuss this result and its impact on the structure
of version space. However, one of the most intriguing features of this generalisation
error bound is that it holds true regardless of any property of the single classifiers
considered. In fact, the only quantity that drives the generalisation error bound is the
volume of version space which is aproperty of the modelH and the dataz but not of
single classifiersh.

3 Consequences of the Egalitarian Bound

3.1 Linear Classifiers

Consider the result of Theorem 2 withη = 2 and the hypothesis spaceH used in
SVMs. In this case we know that with high probability (≥ 1− δ) the generalisation
error of at least half of the classifiers in version spaceV (z) is bounded by at most twice
the generalisation error of the Gibbs classification strategy. This should be compared
with a typical generalisation error bound for linear classifiers in terms of margins (see
[11])1

2

m

(
ln

(
2

02
z (h)

)n

+ ln

(
(em)2

δ

))
≥ 2 · εGibbs(m,UH, z, δ) . (3.1)

Here,n is the dimensionality of the feature spaceK ⊆ `n
2 in which the linear classifi-

cation is carried out. The first term is the inverse of a lower bound on the volume of
version spaceV (z) in terms of anormalised margin0z (h) given by

0z (h) = min
(xi ,yi )∈z

yi f (xi )

‖xi ‖
, (3.2)

1Note that there are also margin bounds which are independent of the dimensionality of the feature space
(see [14, 29]). The tightest margin bounds known so far is given in [17]. Both this bound and the one we
present below are based on the PAC-Bayesian theorems presented in [21, 22].
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which coincides withγz (h) for normalised data only. Thus we see thatwhenever the
SVM solution has a small generalisation error bound at least half of the consistent
classifiers have the same (or even better) generalisation error bound.The practical
difficulty in exploiting these solutions, however, is that they keep changing over the
random draw of the training sample; the advantage of the large margin classifier is that
it is able towitnessits small generalisation error by an easy-to-determine quantity—its
margin. Nonetheless, randomly drawing a consistent classifier will do as well in at
least half of the learning trialsif the hypothesis space (model)was suited for the task
at hand. The result suggests one should not be too dismissive of algorithms such as the
perceptron learning algorithm [27] which merely ensure one gets anh ∈ V (z). This
conclusion supports the folklore result that feature selection, that is, the choice of the
hypothesis space and hence the kernel in kernel methods, is the key differentiator in
the performance of machine learning methods (see also Section 4).

3.2 From Margin To Sparsity—Revival of the Perceptron

Theorem 2 tells us that whenever the observed training samplezand chosen hypothesis
spaceH lead to a large version space, thereexistsa large fraction of classifiersh ∈
V (z) with a small generalisation error. In the special case of linear classifiers there
is also an efficient algorithm for finding some of these classifiers — the perceptron
algorithm [27]. In particular, we can prove the following theorem (see [10, 6] for more
details).

Theorem 3 (Margin Bound). For any measurePZ, with probability at least1 − δ
over the random draw of the training setz = (x, y) ∈ (X × {−1,+1})m of sizem
according toPZm, if there exists a linear classifierh∗ ∈ H such that

κ∗ =
⌈

1

02
z (h
∗)

⌉
≤ m

then the generalisation errorR [h] of the classifierh ∈ V (z) found by the perceptron
algorithm is less than

1

m− κ∗
(

ln

((
m

κ∗

))
+ ln (m)+ ln

(
1

δ

))
. (3.3)

Proof. The proof is a combination of a results of Novikoff [25] on the number of
mistakes of the perceptron learning algorithm and a compression bound (see [18, 4, 9]).
At first, Novikoff’s theorem tells us that for normalised datax ∈ Xm the perceptron
learning algorithm is guaranteed to make at mostκ∗ mistakes. At each mistake, it
adds (or subtracts) the current data pointxi to the weight vector which was initially
set to0. As a consequence thereof, the number of training samples(xi , yi ) used to
construct the final hypothesis is always less than or equal toκ∗. Since there are at most(m
κ∗
)

different subsets of training samples of sizeκ∗ the effective number of different
hypothesesh ∈ V (z) is this number. A combination of the binomial tail bound on the
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m− κ∗ left-out training points, i.e.

∀h ∈ H : PZm−κ∗


(h /∈ V (Z)) ∨


R [h] ≤

ln
(

1
δ

)

m− κ∗




 ≥ 1− δ ,

with the union bound over the number of different subsets proves the theorem. Note
that the additional ln(m) term is due to the fact that the value ofκ∗ is not fixed. This
requires us to share the confidence of 1−δ among all its at mostm different values.

Similar to the egalitarian bound this result is somewhat surprising as the generalisation
error of the classifier learned by the perceptron learning algorithm is controlled by the
potential margin0z (h∗) a SVM would have achievedon the same training samplez.
Combining this result with the fact that margin bounds for support vector machines
just witness the good choice of a modelH (see (3.1)) we conclude that the simple
perceptron algorithm is theoretically well justified becausewhenever the SVM solution
has a small generalisation error bound then all the up tom! different classifiers learned
with the perceptron learning algorithm have the same (or even better) generalisation
error bound. This has also found some empirical evidence in the binary classification
problems of handwritten digit recognition (see [5]); some other experimental evidence
is presented later in the present paper.

3.3 Bayes Classification Strategy

Another consequence of Theorem 2 is that half of the classifiers within version space
V (z) have a generalisation error bound as good as that of the best known bound of
the generalisation error of the Bayes classification strategy. The Bayes classification
strategy—also known as Bayesian transduction (see [33, 8])—assigns a test examplex
to the classy by majority voting under the measurePH|H∈V(z),

Bayesz (x) = argmaxy∈Y PH|H∈V(z) (H (x) = y) .

In contrast to the Gibbs classification strategy, the Bayes classification strategydeter-
ministically assigns a new test example to a class. For|Y| = 2, whenever the Bayes
classification strategy is wrong atx, at least half of the classifiers in version space
misclassifyx, too. By this argument, the generalisation error bound of the Bayes clas-
sification strategy fulfils

∀PH : εBayes(m,PH, z, δ) ≤ 2 · εGibbs(m,PH, z, δ) . (3.4)

This equivalence of generalisation error bounds finds empirical support in [8, 12]. Note
that the “averaging” and “voting” feature of the Gibbs and Bayes strategies, respec-
tively, safeguards them against domination by a minority of inferior members of the
version spaceV (z).

6



3.4 Have we Thrown the Baby out with the Bath Water?

At first glance the egalitarian bound seems to imply that there is little hope in the search
for thequantity controlling generalisation error (bounds) because it gives a good gen-
eralisation error bound for a huge number of consistent classifiersh ∈ V (z) not re-
ferring to any property other than the choice of the modelH. This result, however,
comes at no surprise taking into account what we investigated theoretically (see Def-
inition 1). Although one is typically only interested in the performance of the one
classifierh learned using a fixed learning algorithmA : ∪∞m=1Zm → H, traditional
learning theory claims to need guarantees on the generalisation error that holduni-
formlyover the whole hypothesis spaceH or version spaceV (z), respectively. This is
much too demanding and can therefore only lead to bounds that indicate whether we
have chosen an appropriate model or not. A more promising approach is to investigate
generalisation error bounds for specific algorithms. In fact, the proof of Theorem 3
uses a compression bound which requires the specification of the algorithmA in ad-
vance, i.e., the bounds apply only to a small subset of learning algorithms (so called
compression schemes). A related idea is studied in [2] where the VC dimension as
a complexity measure of an hypothesis spaceH is replaced by therobustnessof the
learning algorithmA used. The robustness of an algorithmA measures by how much
the training error of the learned classifierA (z) changes when adding one additional
observation, i.e. maxz=(x,y)

∣∣Remp[A (z) , z] − Remp[A (z∪ z) , z∪ z]
∣∣. This work on

algorithmic stability formalises the intuition that whenever a learning algorithm is very
robust we have small deviation between generalisation and training error for the classi-
fiers learned although the VC dimension of the hypothesis class used might have been
infinite.

Finally, it is worthwhile noticing that this result does not deny the importance of
inductive principles. Although we know that within a good modelH there are many
classifiers with a provably small generalisation error, there might exist procedures (the
maximum margin algorithm is one such procedure) that single out classifiers with small
generalisation error bounds for most random draws of the training samplez. A poten-
tial candidate for formulating such inductive principles is theluckiness framework[29],
which was recently reconceptualised to include an explicit dependency on the learning
algorithm [13].

4 Experimental Results for Linear Classifiers

In order to complement the above theoretical analysis we will empirically evaluate
the distribution of generalisation errors over version space members. Consider the
hypothesis classH provided by linear classifiers in feature spaceK ⊆ `n

2 as used in
SVMs. Each hypothesis is given by

hw (x) = sign(〈φ (x) ,w〉) = sign(〈x,w〉) , (4.1)
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Figure 4.1: (Left) The hypothesis spaceH of linear classifiers for a 3–dimensional
feature spaceK. Each point on the unit sphere is the weight vectorw ∈ W of a linear
classifierhw (see (4.1)). The convex polyhedron on top is a version spaceV (z); the
length of the gray line is proportional to the normalised margin0z (hw) of the classifier
on top of the sphere.(Right) Three data pointsx1, x2 and x3 in a 3–dimensional
feature spaceK ⊆ `3

2. Note that the planes in the left picture are incurred by each
of the three training points by{w ∈ K | 〈x,w〉 = 0}. Using exactly the same rule,
each pointw ∈ W on the unit sphere in the left picture induces a decision plane
{x ∈ K | 〈x,w〉 = 0} in feature space.

whereφ : X → K ⊆ `n
2 is a mapping2 from the input spaceX to the feature space

K. Note that it is sufficient to consider weight vectorsw ∈ K of unit length, i.e.w ∈
W, W = {w ∈ K | ‖w‖ = 1}, because

∀λ > 0 : hw = sign(〈x,w〉) = sign(〈x, λw〉) = hλw .

Ergo, the hypothesis spaceH is isomorphic to the unit sphereW ⊂ `n
2 (see also Fig-

ure 4.1). If the objective function optimised by the learning algorithm depends only
on the inner products of the weight vectorw with all the mapped training points it
can be shown that it is sufficient to consider normal vectorsw ∈ W that are linearly
expandable in the training points [16, 28],

w =
m∑

i=1

αi xi .

As a consequence, each hypothesish can be written in terms ofα ∈ Rm; that is

hα (x) = sign

(
m∑

i=1

αi 〈xi , x〉
)
= sign

(
m∑

i=1

αi k (xi , x)

)
,

2We abbreviateφ (x) by x always assumingφ to be fixed. This, however, should not be confused with
the training samplex ∈ Xm.
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Two data pointsy1x1 and y2x2 divide the
space of normalised weight vectorsw ∈W
into four equivalence classes with differ-
ent posterior density indicated by the gray
shading. In each iteration, starting from
w j−1 a random directionv with v⊥w j−1 is
generated. We sample from the piecewise
constant density on the great circle deter-
mined by the plane defined byw j−1 andv.
In order to obtainζ ∗, we calculate the 2m
anglesζi where the training samples inter-
sect with the circle and keep track of the
numberm ·ei of training errors for each re-
gion i .

Figure 4.2: Schematic view of the kernel Gibbs sampling procedure.

where the inner product functionk : X × X → R is also known as thekernel(see,
e.g. [32]). In practical applications, it is often more convenient to select the kernel than
the feature mappingφ.

4.1 The Kernel Gibbs Sampler

In order to sample consistent classifiers uniformly fromV (z) we suggest a Markov
Chain sampling method known as thekernel Gibbs3 sampler[7]. It is a variant of the
well-known hit-and-run sampling algorithm [30], which was recently shown to exhibit
a fast mixing time ofO (n3

)
, wheren is the dimensionality of the space [19]. The

kernel Gibbs sampler is applicable wheneverPH|Zm=z is a piecewise constant density
proportional to

L [h, z] = θm·Remp[h,z] (1− θ)m(1−Remp[h,z]) , for someθ ∈ [0, 1] . (4.2)

Note that this density arises from a Bayesian consideration of learning when assuming
that the classification is corrupted by label noise of levelθ ∈ [0, 1], i.e.

PY|X=x,H=h (y) = θ · Iy6=h(x) + (1− θ) Iy=h(x) . (4.3)

For a given value of the noise levelθ and an arbitrary starting pointw0 ∈ W, the
sampling scheme can be decomposed into the following steps (see also Figure 4.2):

1. Choose a directionv ∈W in the tangent space
{
ṽ ∈W

∣∣ 〈ṽ,w j
〉 = 0

}
.

2. Calculate allm hit pointsbi ∈ W from w in directionv with the hyperplane
having normalyi xi . Before normalisation, this is achieved by [12]

bi = w j −
〈
w j , xi

〉

〈v, xi 〉
v .

3This should not be confused with theGibbs classification strategy.
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θ = 0.0 θ = 0.1 θ = 0.2

Figure 4.3: A set of 50 samplesw j for various noise levelsθ . Shown are the resulting
decision boundaries in input spaceX = R2.

3. Calculate the 2m angular distancesζi from the current positionw j .

4. Sort theζi in ascending order (resulting in a permutation5 : {1, . . . , 2m} →
{1, . . . , 2m}) and calculate the training errorsei = Remp

[
hmi , z

]
of the 2m in-

tervals
[
ζ5(i−1), ζ5(i )

]
by evaluating

mi = cos

(
ζ5(i+1) − ζ5(i )

2

)
w j − sin

(
ζ5(i+1) − ζ5(i )

2

)
v .

Here, we have definedζ5(2m+1) = ζ5(1).
5. Sample an angleζ ∗ using the piecewise uniform distribution and (4.2). Calculate

a new samplew j+1 by w j+1 = cos(ζ ∗)w j − sin(ζ ∗) v.

6. Set j ← j + 1 and go back to step 1.

Since the algorithm is carried out in feature spaceK we use

w =
m∑

i=1

αi xi , v =
m∑

i=1

νi xi , b =
m∑

i=1

βi xi .

For the inner products and norms it follows that〈w, v〉 = α′Gν, ‖w‖2 = α′Gα,
where them × m matrix G is known as thekernelor Gram matrixand is given by
Gi j =

〈
xi , x j

〉 = k
(
xi , x j

)
.

In Figure 4.3 we have shown an application of the kernel Gibbs sampler to some
toy data inR2. As can be seen from these plots, increasing the noise levelθ leads to
more diverse classifiers on the training samplez. In the following we will fix the noise
level θ to zero in order to sample version space classifiers only. Other applications
of this sampling algorithm are active learning, transduction and confidence estimation
with kernel classifiers.

4.2 Distribution of Generalisation Errors and Margins

Based on the MNIST dataset4 for images of “1” and “2” we generated well-balanced
training and test samples of size 118 and 453, respectively. In order to explore the

4publicly available athttp://yann.lecun.com/exdb/mnist .
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structure of version space we were interested in the distribution of generalisation errors
(estimated on the given test sample)and its relation to the attained margin0z (h). In
Figure 4.4 (left) we plotted the distribution of generalisation errors forl = 10000
samplesw using different degrees of the polynomial kernel

k
(
xi , x j

) = (〈xi , x j
〉
X + 1

)p
, (4.4)

which produced excellent classifiers when used in SVM learning (popt = 5). In order
to reduce dependencies between successive samplesw of the Markov chain we used
only one in ten samples thus effectively havingleff = 1000 samples. For any value
of p considered there are at least 50% of consistent classifiers whose generalisation
error is smaller than the one found by the SVM (4) in accordance with (3.1) and the
egalitarian bound of Theorem 2. Surprisingly, with increasing polynomial degreep the
variance of the distribution keeps decreasing while only a small increase of its mean can
be observed beyond degree 5. Furthermore, using the Bayes point machine algorithm
that returns the “centre of mass” of version spaceV (z) (see [12]) or the SVM on the
normalised training sample in feature spaceK we seem to be able to find classifiers
always within the best 50% (◦ and×). Both these algorithms aim to find a solution at
the “centre” of version spaceV (z) in the sense of0z (see (3.2)).

In Figure 4.4 (right) we additionally provide the distributions of generalisation er-
ror for given attained margins0z (h). As expected,almost all of the classifiersh with a
large margin0z (h) do have a small generalisation errorR [h]. The plot also clarifies
that large margins are only (probabilistically) asufficient conditionfor good generali-
sation ability and that there exist many consistent classifiers with good generalisation
error despite of their small margins. This is again in accordance with the egalitarian
bound of Theorem 2 keeping in mind that in high-dimensional feature spacesK the
uniform measure over volumes is concentrated near the edges. Hence, most of the
classifiers in version spaceV (z) do havea small margin (see width of the box-plots)
albeit exhibiting good generalisation.

5 Conclusion

The notion of version space plays a crucial rule both in the theoretical analysis of learn-
ing algorithms and in their practical implementation. We have presented a theorem
which shows that within a wisely chosen hypothesis space many consistent classifiers
show good generalisation irrespective of the maximisation of a pre-specified complex-
ity measure (luckiness) such as margin. Our empirical results strongly support this
conclusion and give an intuition for the structure of version space.

While the restriction to zero training-error classifiers may appear to be severe at
first glance, for linear classifiers this limitation is easily overcome by modifying the
kernel as follows:

kλ
(
xi , x j

) = k
(
xi , x j

)+ λIxi=x j .

This trick—well known in SVMs as the quadratic soft-margin technique [3]—gradually
(with increasingλ) decouples the training examplesφ (xi ) for learning and thus serves
to create a version space even if the training examples were not separable under the
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Figure 4.4:(Left) Box-plots of distributions of generalisation errors forl = 1000 sam-
plesw using different degrees in the polynomial kernel (4.4). The4, × and◦ depict
the generalisation errors of the SVM solution, the SVM solution when normalising in
feature spaceK and the Bayes point machine solution (see text), respectively.(Right)
Box-plots of distributions of generalisation for different attained margins (3.2) when
using a polynomial kernel of degree 5. The width of each box-plot is proportional to
the number of samples on which it is based.

original kernelk. Furthermore, it is straightforward to exploit Theorem 2 of [21] so
as to generalise the egalitarian bound toany subsetH of hypothesis spaceH. The
difference to the present result is that in this case for many classifiers the generalisation
error is effectively bounded by the training error plus the penalty− ln (PH (H)). When
most of the classifiers in hypothesis space exhibit a small training error (PH (H) ≈ 1)
we see that we get a conceptually similar result to Theorem 2. Hence, our results also
cover certain cases of inconsistent classifiers deemed so important in practice.

It is worthwhile mentioning that a consequence of the above mentioned generali-
sation of Theorem 2 is that with high probability over the random draw of the training
sample for many classifiers inhypothesis spacethe deviation between generalisation
and training error is small. This result holds regardless of the VC dimension of hypoth-
esis spaceH used. The challenge is to find generalisation error bounds that indicate
if this result also holds for thesingleclassifier we learned from the observed training
sample.

Finally, we would like to relate our work with the recent work of Ben-David et
al. [1]. In this paper it was shown that neither the VC dimension nor the margin can
provide a guarantee for the generalisation ability of the learning paradigm that embeds
the instances into a (Euclidean) feature space and uses linear classifiers on the embed-
ded images. Note, however, that this is not in contrast to our findings: While we show
that the existence of a large margin classifier provides a guarantee on a small gener-
alisation error for amajority of classifiersin version space (Subsection 3.2) including
the large margin classifier (Section 3.1), [1] prove that, in general, for themajority of
concept classeswith infinite VC dimension there exists no feature space embedding
such that the training sample will exhibit a large margin.

12



Acknowledgements We would like to thank Olivier Bousquet and Matthias Seeger
for careful proofreading and many useful suggestions. Furthermore, we are greatly
indebted to John Shawe-Taylor, Peter Bartlett, Jonathan Baxter and Martin Anthony
for helpful discussions and comments. This work was supported by the Australian
Research Council.

References

[1] S. Ben-David, N. Eiron, and H.-U. Simon. Limitations of learning via embed-
dings in Euclidean half spaces.Journal of Machine Learning Research, 3:441–
461, 2002.

[2] O. Bousquet and A. Elisseeff. Algorithmic stability and generalization perfor-
mance. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,Advances in Neural
Information Processing Systems 13, pages 196–202. MIT Press, 2001.

[3] C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20:273–
297, 1995.

[4] S. Floyd and M. Warmuth. Sample compression, learnability, and the Vapnik
Chervonenkis dimension.Machine Learning, 27:1–36, 1995.

[5] Y. Freund. An adaptive version of the boost by majority algorithm.Machine
Learning, 43(3):293–318, 2001.

[6] Y. Gat. A learning generalization bound with an application to sparse-
representation classifiers.Machine Learning, 42(3):233–240, 2001.

[7] T. Graepel and R. Herbrich. The kernel Gibbs sampler. In T. K. Leen, T. G. Diet-
terich, and V. Tresp, editors,Advances in Neural Information Processing Systems
13, pages 514–520, Cambridge, MA, 2001. MIT Press.

[8] T. Graepel, R. Herbrich, and K. Obermayer. Bayesian Transduction. In S. A.
Solla, T. K. Leen, and K.-R. M̈uller, editors,Advances in Neural Information
Processing Systems 12, pages 456–462, Cambridge, MA, 2000. MIT Press.

[9] T. Graepel, R. Herbrich, and J. Shawe-Taylor. Generalisation error bounds for
sparse linear classifiers. InProceedings of the Thirteenth Annual Conference on
Computational Learning Theory, pages 298–303, 2000.

[10] T. Graepel, R. Herbrich, and R. C. Williamson. From margin to sparsity. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors,Advances in Neural Information
Processing Systems 13, pages 210–216, Cambridge, MA, 2001. MIT Press.

[11] R. Herbrich and T. Graepel. A PAC-Bayesian margin bound for linear classifiers.
IEEE Transactions on Information Theory, pages 3140–3150, 2002.

13



[12] R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines.Journal of
Machine Learning Research, 1:245–279, 2001.

[13] R. Herbrich and R. C. Williamson. Algorithmic luckiness.Journal of Machine
Learning Research, 3:175–212, 2002.

[14] M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilis-
tic concepts.Journal of Computer and System Sciences, 48(3):464–497, 1994.

[15] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iter-
ative nearest point algorithm for support vector machine classifier design.IEEE
Transactions on Neural Networks, 11:124–136, 2000.

[16] G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estima-
tion on stochastic processes and smoothing by splines.Annals of Mathematical
Statistics, 41:495–502, 1970.

[17] J. Langford and J. Shawe-Taylor. PAC-Bayes and margins. In S. Becker, S. Thrun,
and K. Obermayer, editors,Advances in Neural Information Processing Systems
15, pages 423–430, Cambridge, MA, 2002. MIT Press.

[18] N. Littlestone and M. Warmuth. Relating data compression and learnability. Tech-
nical report, University of California Santa Cruz, 1986.

[19] L. Lovasz. Hit-And-Run mixes fast.Mathematical Programming A, 86:443–461,
1999.

[20] D. J. C. MacKay. The evidence framework applied to classification networks.
Neural Computation, 4(5):720–736, 1992.

[21] D. A. McAllester. Some PAC Bayesian theorems. InProceedings of the An-
nual Conference on Computational Learning Theory, pages 230–234, Madison,
Wisconsin, 1998. ACM Press.

[22] D. A. McAllester. PAC-Bayesian model averaging. InProceedings of the An-
nual Conference on Computational Learning Theory, pages 164–170, Santa Cruz,
USA, 1999.

[23] S. Mika, G. R̈atsch, J. Weston, B. Schölkopf, and K.-R. M̈uller. Fisher discrim-
inant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas,
editors,Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

[24] T. M. Mitchell. Generalization as search.Artificial Intelligence, 18(2):202–226,
1982.

[25] A. B. J. Novikoff. On convergence proofs on perceptrons. InProceedings of the
Symposium on the Mathematical Theory of Automata, volume 12, pages 615–622.
Polytechnic Institute of Brooklyn, 1962.

14



[26] J. Platt. Fast training of support vector machines using sequential minimal opti-
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