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We investigate the generalisation performance of consistent classifiers,
i.e. classifiers that are contained in the so-callesion spaceboth from

a theoretical and experimental angle. In contrast to classical VC anal-
ysis—where no single classifier within version space is singled out on
grounds of a generalisation error bound—the data dependent structural
risk minimisation framework suggests that there existsgarécular clas-

sifier that is to be preferred because it minimises the generalisation error
bound. This is usually taken to provide a theoretical justification for learn-
ing algorithms such as the well known support vector machine. A rein-
terpretation of a recent PAC-Bayesian result, however, reveals that given
a suitably chosen hypothesis space there exists a large fraction of classi-
fiers with small generalisation error although we cannot readily identify
them for a specific learning task. In the particular case of linear classi-
fiers we show that classifiers found by the classical perceptron algorithm
have guarantees bounded by the size of version space. These results are
complemented with an empirical study for kernel classifiers on the task
of handwritten digit recognition which demonstrates that even classifiers
with a small margin may exhibit excellent generalisation. In order to per-
form this analysis we introduce the kernel Gibbs sampler—an algorithm
which can be used to sample consistent kernel classifiers.
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1 Introduction

Over the last ten years there has been some new conceptual work in machine learn-
ing concerning generalisation error of classifiers (see [33, 29]). Their results build
the theoretical basis for the well-known support vector machine (SVM) algorithm. It

is now widely accepted that for complex models it is hecessary to use regularisation
techniques such as margin maximisation in order to find a classifier exhibiting a small
generalisation error (see [32, p. 157]). Since for large datasets the SVM algorithm
is too time consuming many heuristics to approximate the SVM solution have been
put forward (see, e.g. [26, 15, 31]). Recently, it has been demonstrated experimentally
that even algorithms with no explicit regularisation perform comparably to SVMs (see
[23, 12]). This observation raises an interesting question:

What fraction of classifiers which correctly classify the training data
exhibit a small generalisation error?

In this paper we try to answer this question both from a theoretical and experimental
point of view. Using a recent result in the PAC-Bayesian framework we are able to
show that given a suitably chosen hypothesis space there exists a large fraction of clas-
sifiers with small generalisation error. More precisétg generalisation error of most

of the classifiers in version space is controlled by the size of the version space relative
to the size of the hypothesis spathis result, which we call thegalitariangenerali-

sation error bound, is complemented by an experimental study for linear classifiers on
the task of handwritten digit recognition using the MNIST database. It is worthwhile
mentioning that in a fully Bayesian treatment the size of version space is also called
theevidenceof the model or hypothesis space, respectively (see [20]).

The paper is structured as follows: in the following section we review generalisa-
tion error bounds for single classifiers consistent with the whole training sample. We
will also introduce the PAC-Bayesian framework and its main result which allows us
to give our main theoretical result together with its proof at the end of this section. In
the subsequent section we discuss the impact of this result for practical learning theory.
We also give a more specific result for the perceptron learning algorithm that points
into the same direction. In Section 4 we present the kernel Gibbs sampler algorithm
which allows us to validate our theoretical result on a benchmark problem in the field
of handwritten digit recognition. The paper concludes with a discussion of generalisa-
tion error bounds for specific algorithms as opposed to bounds thatihidedmlyover
version space.

We denote a probability measure By; random variables are typeset in upper
capital sans-serif font. The symbd@sandl denote the expectation of a random variable
and the indicator function, respectively. We use bold roman font for veat@nsd
denote tuples by . Finally, the symbok} denotes the space of all sequenges

(X1, ..., Xn) Of lengthn for which 3"_; x? < cc.



2 Generalisation Error Bounds for Consistent Classi-
fiers

Suppose we are given a sample= (Xg, ..., Xm) € X™ together with a samplg =
Y1, ..., Ym) € Y™ = {—1, +1}™ drawn iid from an unknown distributioRz = Pxy.
Furthermore, assume we are given a fikggdothesis spack of functionsh : X — ).
We consider learning algorithms that aim to find a functidre H that minimises the
generalisation errorR[h] given by

R[h] = Pxy (h(X) # Y) = Exy [Inx)2v] -

A common approach to (approximately) findihy based on the training sampte=
(X, y) € ZMisto select a functioh e H that minimises théraining error Remp[h, Z]

1
Remplh. 2] = m Z Ihoo) i -

(Xi,yi)ez

Let us assume th&yx=x (Y) = Ih+(x)=y, i.€. h* deterministically labels all the data
and thus has minimal generalisation error. Then we defineséngion space/ (z)
(phrase due to T. Mitchell [24]) as the set of all classifiers H that areconsistent
with the training sample,

V(2 ={heH | Remplh, 7 =0} .

Of course, solely based on the training erRamp[h, Z] all classifiers in version space

are indistinguishable. Moreover, even if a classifier has zero training error it can happen

that its generalisation error is large—an effect knowmesr-fitting In order to cope

with this uncertainty a lot of research has been done to obtain probabilistic bounds on

the generalisation error of consistent classifiers. The basic idea is to guarantee that for
most training trials (random training samples) the generalisation error of a consistent

classifier does not exceed a certain value.

Definition 1 (PAC Generalisation Error Bound). Afunctione : NxH x U®_; 2™ x
[0, 1] — R such that for all measuré,, for all m € N and for alls € (0, 1]

Pm(VheH:(he¢V @)V (R[] <emh,Z8)) >1-8 (2.1)
is called aPAC generalisation error bounfibr the hypothesis spadé.

Classical VC theory (see [33, 32]) provides the following bound fomalk- dy; and
for all hypothese$ € H:

d
fve (M, h, 2.5) = eve (. 5) = (ln ((2%‘) H) +in (;)) .22

wheredy, is known as thé&/C dimensiorof the hypothesis spadé (see [33] for more
details). Obviously, the generalisation ertmyundis independenbf the particular



classifierh € V (2) and as such no single classiftere V (2) is singled out on the
basis of VC theory.

However, in applied classification learning it is common practice that the classifi-
cation is carried out by thresholding a real-valued function,h.ex) = sign(f (x)).
It can be shown that the additional information of the real-valued magnittige)|
beforethresholding allows one to obtain a generalisation error bound in terms of the
marginyz (h) = miny yyez Yi f (Xi) attained on the given sampig i.e., for all hy-
pothesed € H andm > dy (72 (h)), yz (h) := y, (h) /8

gfat (M, h, 2, 8) = era(M, 7z (h) , §)

2 8em d (z(h)) om

wheredy (y) is known as thdat shatteringdimension of the hypothesis spaté
at the observed scabe (see [29, 14] for details). The functiah; : RT — N is
always monotonically non-increasing and is a straightforward generalisation of the VC
dimension to sets of real valued functions. An immediate consequence of this result is
that theboundon the generalisation erré&[h] depends inversely on the margin(h).
As such the result singles oaheclassifier within version space — the classifier with
maximal margin also known as the support vector solution (see [32]) which minimises
this bound.

Recently, D. McAllester presented “some PAC—Bayesian theorems” [21] which
provide a generalisation error bound for the Gibbs classification strategy /Gibhen
a priorPy over hypothesis spadé and a training sample for each test exampbethe
Gibbs classification strategy samples a classdifierV (z) according tPyjHev (2 and
uses it for classification Gibbg$x). Note that Gibbgdoes not correspond to asingle
classifierh € V (2) but to a classification strategy based®fev (. For any prior
Py, the PAC boundinns 0N the generalisation err&t [Gibbs;| = Epjnev (2 [R[H]]
of this stochastic classification strategy is given by

1 1 n?

Pzm (R[Gibbg] < egibbs(M, PH,Z,8)) > 1—-6. (2.5)

hence

The firstterm in (2.2)—which is driven by the worst case number of equivalence classes
w.r.t. the two classey € Y—has been replaced bydata-dependenquantity—the

prior beliefPy in consistent classifiets € V (z). As opposed to classical PAC gener-
alisation error bounds, this resulbes not provide any guarantee for single classifiers

h € V (2). The first theoretical result of the present paper is a direct consequence of
(2.4) and is stated in the following theorem.

Theorem 2 (Egalitarian Bound). For all measure$?z, with probability at leastlL — &

over the random draw of the training sampteof sizem according toPzm, for all

n > 1, at least a fraction oflL — % of the classifiers in version spadé(z) have



generalisation error less than

1 - €Gibbs(M, Uy, Z,3) ,
whereUy is the uniform measure ovéf.

Proof. The proof is a simple application of Markov’s inequality along with the instan-
tiation of Py by the uniform measurgs,. Markov’s inequality says

1
Vi>1:  Pumev (R[H] = 1 Ennevg [R[H]]) < 7’
because the generalisation er®r H — [0, 1] as a functional over hypotheses is a
positive random variable. Hence, from (2.5) it follows

1
Pzm (Vn > 1: Pyevia) (R[H] < 1 - ecibbs(m, U, Z,8)) > 1 - ;) >1-3.

O

In the following section we shall discuss this result and its impact on the structure
of version space. However, one of the most intriguing features of this generalisation
error bound is that it holds true regardless of any property of the single classifiers
considered. In fact, the only quantity that drives the generalisation error bound is the
volume of version space which ispgoperty of the model and the dataz but not of
single classifiers.

3 Consequences of the Egalitarian Bound

3.1 Linear Classifiers

Consider the result of Theorem 2 with = 2 and the hypothesis spaé¢é used in
SVMs. In this case we know that with high probability (1 — §) the generalisation

error of at least half of the classifiers in version sp¥ae) is bounded by at most twice

the generalisation error of the Gibbs classification strategy. This should be compared
with a typical generalisation error bound for linear classifiers in terms of margins (see

[11])*
2 2 n 2
= (In (F%(h)) +1In ((e;n) )) > 2 egibbs(M, Uy, Z,6) . (3.1)

Here,n is the dimensionality of the feature spacec ¢} in which the linear classifi-
cation is carried out. The first term is the inverse of a lower bound on the volume of
version spac¥ (z) in terms of anormalised margir; (h) given by

yi ()

' (h) =
2= e sl

(3.2)

INote that there are also margin bounds which are independent of the dimensionality of the feature space
(see [14, 29]). The tightest margin bounds known so far is given in [17]. Both this bound and the one we
present below are based on the PAC-Bayesian theorems presented in [21, 22].



which coincides withy; (h) for normalised data only. Thus we see thdienever the

SVM solution has a small generalisation error bound at least half of the consistent
classifiers have the same (or even better) generalisation error botihd. practical
difficulty in exploiting these solutions, however, is that they keep changing over the
random draw of the training sample; the advantage of the large margin classifier is that
it is able towitnessts small generalisation error by an easy-to-determine quantity—its
margin. Nonetheless, randomly drawing a consistent classifier will do as well in at
least half of the learning triali§ the hypothesis space (modelas suited for the task

at hand. The result suggests one should not be too dismissive of algorithms such as the
perceptron learning algorithm [27] which merely ensure one gets arV (z). This
conclusion supports the folklore result that feature selection, that is, the choice of the
hypothesis space and hence the kernel in kernel methods, is the key differentiator in
the performance of machine learning methods (see also Section 4).

3.2 From Margin To Sparsity—Revival of the Perceptron

Theorem 2 tells us that whenever the observed training sangrid chosen hypothesis
spaceH lead to a large version space, thesdstsa large fraction of classifiers e

V (2) with a small generalisation error. In the special case of linear classifiers there
is also an efficient algorithm for finding some of these classifiers — the perceptron
algorithm [27]. In particular, we can prove the following theorem (see [10, 6] for more
details).

Theorem 3 (Margin Bound). For any measurd®z, with probability at leastl — §
over the random draw of the training set= (x, y) € (X x {-1, +1}))™ of sizem
according toPzm, if there exists a linear classifidr* € H such that

* 1 <m
“ JF%(h*)L

then the generalisation erraR [h] of the classifieh € V (z) found by the perceptron
algorithm is less than

L ('n ((:‘)) Fin(m) +1n (%)) (3.3)

Proof. The proof is a combination of a results of Novikoff [25] on the number of
mistakes of the perceptron learning algorithm and a compression bound (see [18, 4, 9]).
At first, Novikoff's theorem tells us that for normalised datas X™ the perceptron
learning algorithm is guaranteed to make at mgsimistakes. At each mistake, it
adds (or subtracts) the current data pointo the weight vector which was initially

set to0. As a consequence thereof, the number of training san{gley;) used to
construct the final hypothesis is always less than or equdl.t8ince there are at most

(,f,l) different subsets of training samples of sizethe effective number of different
hypothese$ € V (2) is this number. A combination of the binomial tail bound on the




m — «* left-out training points, i.e.

In(%)
vheH: P |hgv@yv(Rins =) |=1-s,
— K

with the union bound over the number of different subsets proves the theorem. Note
that the additional Iim) term is due to the fact that the valuedf is not fixed. This
requires us to share the confidence efslamong all its at mosn different values. [

Similar to the egalitarian bound this result is somewhat surprising as the generalisation
error of the classifier learned by the perceptron learning algorithm is controlled by the
potential margin; (h*) a SVM would have achievedn the same training sampte
Combining this result with the fact that margin bounds for support vector machines
just witness the good choice of a modgl (see (3.1)) we conclude that the simple
perceptron algorithm is theoretically well justified becawbenever the SVM solution
has a small generalisation error bound then all the upricdifferent classifiers learned
with the perceptron learning algorithm have the same (or even better) generalisation
error bound This has also found some empirical evidence in the binary classification
problems of handwritten digit recognition (see [5]); some other experimental evidence
is presented later in the present paper.

3.3 Bayes Classification Strategy

Another consequence of Theorem 2 is that half of the classifiers within version space
V (2) have a generalisation error bound as good as that of the best known bound of
the generalisation error of the Bayes classification strategy. The Bayes classification
strategy—also known as Bayesian transduction (see [33, 8])—assigns a test example
to the classy by majority voting under the measuPgy ey (z),

Bayes (X) = argmax,cy PHHev (g (HX) =Y) .

In contrast to the Gibbs classification strategy, the Bayes classification stohttgy
ministically assigns a new test example to a class. |BYr= 2, whenever the Bayes
classification strategy is wrong &t at least half of the classifiers in version space
misclassifyx, too. By this argument, the generalisation error bound of the Bayes clas-
sification strategy fulfils

VPH : SBayes(m, PH7 Z, 5) < 2. SGibbS(m’ PHa Z, 8) . (34)

This equivalence of generalisation error bounds finds empirical supportin [8, 12]. Note
that the “averaging” and “voting” feature of the Gibbs and Bayes strategies, respec-
tively, safeguards them against domination by a minority of inferior members of the

version spac¥ (2).



3.4 Have we Thrown the Baby out with the Bath Water?

Atfirst glance the egalitarian bound seems to imply that there is little hope in the search
for the quantity controlling generalisation error (bounds) because it gives a good gen-
eralisation error bound for a huge number of consistent classifiersv (z) not re-
ferring to any property other than the choice of the mdoHel This result, however,
comes at no surprise taking into account what we investigated theoretically (see Def-
inition 1). Although one is typically only interested in the performance of the one
classifierh learned using a fixed learning algorithh : U, Z™ — H, traditional
learning theory claims to need guarantees on the generalisation error thairfold
formly over the whole hypothesis spakgor version spac¥ (z), respectively. This is
much too demanding and can therefore only lead to bounds that indicate whether we
have chosen an appropriate model or not. A more promising approach is to investigate
generalisation error bounds for specific algorithms. In fact, the proof of Theorem 3
uses a compression bound which requires the specification of the algoditinnad-
vance, i.e., the bounds apply only to a small subset of learning algorithms (so called
compression schenjesA related idea is studied in [2] where the VC dimension as

a complexity measure of an hypothesis spates replaced by theobustnesof the
learning algorithmA used. The robustness of an algoritthmeasures by how much

the training error of the learned classifidr(z) changes when adding one additional
observation, i.e. max x,y) |Remp[A(z) ,Z] — Remp[A(zU 2), zU z]|. This work on
algorithmic stability formalises the intuition that whenever a learning algorithm is very
robust we have small deviation between generalisation and training error for the classi-
fiers learned although the VC dimension of the hypothesis class used might have been
infinite.

Finally, it is worthwhile noticing that this result does not deny the importance of
inductive principles Although we know that within a good mod#{ there are many
classifiers with a provably small generalisation error, there might exist procedures (the
maximum margin algorithm is one such procedure) that single out classifiers with small
generalisation error bounds for most random draws of the training sanpl@oten-
tial candidate for formulating such inductive principles islilnekiness frameworj29],
which was recently reconceptualised to include an explicit dependency on the learning
algorithm [13].

4 Experimental Results for Linear Classifiers

In order to complement the above theoretical analysis we will empirically evaluate
the distribution of generalisation errors over version space members. Consider the
hypothesis clas#( provided by linear classifiers in feature spacec ¢5 as used in
SVMs. Each hypothesis is given by

hw (X) = sign((¢ (X) , w)) = sign((x, w)) , (4.1)



Figure 4.1: (Left) The hypothesis spack of linear classifiers for a 3—dimensional
feature spacé&. Each point on the unit sphere is the weight veetoz VWV of a linear
classifierhy, (see (4.1)). The convex polyhedron on top is a version spa@@; the
length of the gray line is proportional to the normalised matrgiithy,) of the classifier

on top of the sphere(Right) Three data pointg;, X2 andxs in a 3—dimensional
feature spacéC C Eg. Note that the planes in the left picture are incurred by each
of the three training points byw € K | (x, w) = 0}. Using exactly the same rule,
each pointw € W on the unit sphere in the left picture induces a decision plane
{x € K | (x, w) = 0} in feature space.

where¢ : ¥ — K C (Jisa mapping from the input spacet’ to the feature space
K. Note that it is sufficient to consider weight vectovse K of unit length, i.ew €
W, W={weK ||w| =1}, because

Vi >0: hy = sign({x, w)) = sign({x, Aw)) = h, .

Ergo, the hypothesis spaé¢is isomorphic to the unit sphed¢ C ¢} (see also Fig-

ure 4.1). If the objective function optimised by the learning algorithm depends only
on the inner products of the weight vecterwith all the mapped training points it
can be shown that it is sufficient to consider normal vectors )V that are linearly
expandable in the training points [16, 28],

m
W= Zaixi .
i=1

As a consequence, each hypothéstan be written in terms af € R™; that is

m m
he (X) = sign(Z o (Xi, x)) = sign(z aik(xi,x)) ,

i=1 i=1

2We abbreviatep (x) by x always assuming to be fixed. This, however, should not be confused with
the training sample € X™M.



Two data pointsy;X; and y2xo divide the
space of normalised weight vectavse W

. into four equivalence classes with differ-
ent posterior density indicated by the gray
shading. In each iteration, starting from
wj_1 a random direction with v.Lw;_1 is
generated. We sample from the piecewise
constant density on the great circle deter-
mined by the plane defined ly;_; andv.

In order to obtain;*, we calculate thera
anglesz; where the training samples inter-
sect with the circle and keep track of the
numbem - g of training errors for each re-
gioni.

cos(¢*)w.— sin({*)v

Figure 4.2: Schematic view of the kernel Gibbs sampling procedure.

where the inner product functidn: X x X — R is also known as thkernel(see,
e.g. [32]) In practical applications, it is often more convenient to select the kernel than
the feature mapping.

4.1 The Kernel Gibbs Sampler

In order to sample consistent classifiers uniformly fréhiz) we suggest a Markov
Chain sampling method known as tkernel Gibbg sampler[7]. Itis a variant of the
well-known hit-and-run sampling algorithm [30], which was recently shown to exhibit
a fast mixing time ofO (n3), wheren is the dimensionality of the space [19]. The
kernel Gibbs sampler is applicable wheneRgjzm_ is a piecewise constant density
proportional to

£h, 7] = g™Remd.2 (1 _ gym(A-RemdN.2)  for somes € [0, 1] . (4.2)

Note that this density arises from a Bayesian consideration of learning when assuming
that the classification is corrupted by label noise of lével[0, 1], i.e.

Pyix=x,H=h (¥) = 6 - ly£hx) + (L = 6) ly—n(x) - 4.3)

For a given value of the noise leveland an arbitrary starting pointg € W, the
sampling scheme can be decomposed into the following steps (see also Figure 4.2):

1. Choose a direction € WV in the tangent spacf’ € W | (v, wj) = 0}.

2. Calculate alim hit pointsb; € W from w in directionv with the hyperplane
having normaly; x;. Before normalisation, this is achieved by [12]

Wi, X

fwy. ]

b= Wi =)

3This should not be confused with tkBibbs classification strategy



Figure 4.3: A set of 50 samplesg; for various noise level8. Shown are the resulting
decision boundaries in input spate= R?.

3. Calculate the angular distances from the current positiow;.

4. Sort theg; in ascending order (resulting in a permutatidn: {1,...,2m} —
{1,...,2m}) and calculate the training erroes = Remp[hm,, z] of the 2n in-
tervals[¢r—1), {rigy | by evaluating

i — COS((HGH)Z— Cl‘[(i))wj _sin <§n(i+1)2— Cn(i)) v,

Here, we have defineghom+1) = ¢nq)-

5. Sample an anglg* using the piecewise uniform distribution and (4.2). Calculate
anew samplevjq by wj 1 = cos(¢*)wj —sin(¢*) v.

6. Setj < j + 1 and go back to step 1.

Since the algorithm is carried out in feature spicee use
m m m

szmxi, V=Zvixi, bzz,BiXi.
i=1 i=1 i=1

For the inner products and norms it follows that, v) = &'Gv, |w|? = &G,
where them x m matrix G is known as the&kernelor Gram matrixand is given by
Gij =[x, xj) =k (x;, x)).

In Figure 4.3 we have shown an application of the kernel Gibbs sampler to some
toy data inR2. As can be seen from these plots, increasing the noise deleslds to
more diverse classifiers on the training sanplén the following we will fix the noise
level 6 to zero in order to sample version space classifiers only. Other applications
of this sampling algorithm are active learning, transduction and confidence estimation
with kernel classifiers.

4.2 Distribution of Generalisation Errors and Margins

Based on the MNIST datadefor images of “1” and “2” we generated well-balanced
training and test samples of size 118 and 453, respectively. In order to explore the

“4publicly available ahttp://yann.lecun.com/exdb/mnist
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structure of version space we were interested in the distribution of generalisation errors
(estimated on the given test sampéeid its relation to the attained margin, (h). In

Figure 4.4 (left) we plotted the distribution of generalisation errorsl fer 10000
samplesv using different degrees of the polynomial kernel

k(3. %) = (6. %) +2)° (4.4)

which produced excellent classifiers when used in SVM learnigg: & 5). In order
to reduce dependencies between successive sammpéshe Markov chain we used
only one in ten samples thus effectively havigg = 1000 samples. For any value
of p considered there are at least 50% of consistent classifiers whose generalisation
error is smaller than the one found by the SV)(in accordance with (3.1) and the
egalitarian bound of Theorem 2. Surprisingly, with increasing polynomial dggtiee
variance of the distribution keeps decreasing while only a small increase of its mean can
be observed beyond degree 5. Furthermore, using the Bayes point machine algorithm
that returns the “centre of mass” of version sp&cez) (see [12]) or the SVM on the
normalised training sample in feature spaceve seem to be able to find classifiers
always within the best 50% (and x). Both these algorithms aim to find a solution at
the “centre” of version spaceé (z) in the sense of ; (see (3.2)).

In Figure 4.4 (right) we additionally provide the distributions of generalisation er-
ror for given attained margiris; (h). As expectedalmost all of the classifiers with a
large marginI"; (h) do have a small generalisation err@ [h]. The plot also clarifies
that large margins are only (probabilistically}afficient conditiorfor good generali-
sation ability and that there exist many consistent classifiers with good generalisation
error despite of their small margins. This is again in accordance with the egalitarian
bound of Theorem 2 keeping in mind that in high-dimensional feature spgadhe
uniform measure over volumes is concentrated near the edges. Hence, most of the
classifiers in version spadé (z) do havea small margin (see width of the box-plots)
albeit exhibiting good generalisation.

5 Conclusion

The notion of version space plays a crucial rule both in the theoretical analysis of learn-
ing algorithms and in their practical implementation. We have presented a theorem
which shows that within a wisely chosen hypothesis space many consistent classifiers
show good generalisation irrespective of the maximisation of a pre-specified complex-
ity measure (luckiness) such as margin. Our empirical results strongly support this
conclusion and give an intuition for the structure of version space.

While the restriction to zero training-error classifiers may appear to be severe at
first glance, for linear classifiers this limitation is easily overcome by modifying the
kernel as follows:

ks (Xi, Xj) = k(Xi,Xj) + Ay =x; -

This trick—well known in SVMs as the quadratic soft-margin technique [3]—gradually
(with increasingh) decouples the training exampl@gx;) for learning and thus serves
to create a version space even if the training examples were not separable under the

11
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degree of polynomial

generalisation error
generalisation error
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margin

Figure 4.4:(Left) Box-plots of distributions of generalisation errors fee 1000 sam-
plesw using different degrees in the polynomial kernel (4.4). Thex ando depict

the generalisation errors of the SVM solution, the SVM solution when normalising in
feature spacé and the Bayes point machine solution (see text), respecti{iRight)
Box-plots of distributions of generalisation for different attained margins (3.2) when
using a polynomial kernel of degree 5. The width of each box-plot is proportional to
the number of samples on which it is based.

original kernelk. Furthermore, it is straightforward to exploit Theorem 2 of [21] so

as to generalise the egalitarian boundaty subsetH of hypothesis spacél. The
difference to the present result is that in this case for many classifiers the generalisation
error is effectively bounded by the training error plus the penalty (P4 (H)). When

most of the classifiers in hypothesis space exhibit a small training étyotH) ~ 1)

we see that we get a conceptually similar result to Theorem 2. Hence, our results also
cover certain cases of inconsistent classifiers deemed so important in practice.

It is worthwhile mentioning that a consequence of the above mentioned generali-
sation of Theorem 2 is that with high probability over the random draw of the training
sample for many classifiers imypothesis spacthe deviation between generalisation
and training error is small. This result holds regardless of the VC dimension of hypoth-
esis spacé{ used. The challenge is to find generalisation error bounds that indicate
if this result also holds for theingleclassifier we learned from the observed training
sample.

Finally, we would like to relate our work with the recent work of Ben-David et
al. [1]. In this paper it was shown that neither the VC dimension nor the margin can
provide a guarantee for the generalisation ability of the learning paradigm that embeds
the instances into a (Euclidean) feature space and uses linear classifiers on the embed-
ded images. Note, however, that this is not in contrast to our findings: While we show
that the existence of a large margin classifier provides a guarantee on a small gener-
alisation error for anajority of classifiersn version space (Subsection 3.2) including
the large margin classifier (Section 3.1), [1] prove that, in general, fom@gerity of
concept classewith infinite VC dimension there exists no feature space embedding
such that the training sample will exhibit a large margin.
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