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Abstract. Coppersmith, Franklin, Patarin, and Reiter have shown that given
two RSA cryptograms xemodN; and (ax + b)emodN for any known
constants a; b 2 ZN one can compute x in O(e log2 e) ZN -operations with
some positive error probability. We show that given e cryptograms ci �
(ax + b � i)emodN; i = 0; 1; :::e � 1; for any known constants a; b 2 ZN ;
where gcd(a;N) = gcd(b;N) = gcd(e!; N) = 1; one can deterministically
compute x in O(e) ZN -operations using

x � a�1b[(bee!)�1
e�1X
i=0

�e� 1
i

�
� ci � (�1)e�1+i �

e� 1
2

]modN:

Other applications of the new technique are brie�y noted at the end of this
paper, including evidence that a certain class of polynomial reductions from
discrete-log problems to bi-linear Di¢ e-Hellman problem does not exist.

1. Introduction

In [CFPR] it was shown that given two RSA cryptograms xemodN; and (ax+
b)emodN for any known constants a; b 2 ZN one can compute x inO(e log2 e) ZN -
operations with some positive error probability. We show that given e cryptograms
ci � (ax+b � i)emodN; i = 0; 1; :::e�1; for any known constants a; b 2 ZN ; where
gcd(a;N) = gcd(b;N) = gcd(e!; N) = 1; one can deterministically compute x in
O(e) ZN -operations using

x � a�1b[(bee!)�1
e�1X
i=0

�
e� 1
i

�
� ci � (�1)e�1+i �

e� 1
2
]modN

(if any of the above gcd conditions doesn�t hold then the system is already broken).
It remains an open problem whether the new approach can improve more general

explicit linear dependence or the general case of implicit linear dependence, ie,Pk
i=1 aixi = a0; for known scalars ai; i = 0; 1; 2; :::k; whose current complexity is

O(ek=2k2) [CFPR]: Other applications of the new technique are brie�y noted at the
end of this paper, including evidence that a certain class of polynomial reductions
from discrete-log problems to bi-linear Di¢ e-Hellman problem does not exist.
Related message attacks can be avoided altogether if before RSA-encryption

the message, M; is transformed using the OAEP (Bellare-Rogoway) function into
M 0 = [M � G(r) jj r � H(M � G(r))]; where r is a truely-random nonce, H
is a secure hash function, G is a random number generator function, jj is the
concatenation sign, and � is the bit-by-bit exclusive-or operation. Once M 0 is
RSA-decrypted the net message M can be e¢ ciently extracted.
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2. Finite Differences

We use upper-case letters to denote indeterminate variables and lower-case letters
to denote particular values of those variables. Let h(X) �

Pn
i=0 aiX

imodN where
N = pq is a �safe�RSA composite (p and q are large primes, with some additional
restrictions) ai 2 ZN , an 6= 0; n � '(N); and de�ne

�(X) � h(X + 1)� h(X)modN:
The next lemma is not needed for our main result, related message attack on RSA.
It is needed only when deg(h) is not known (may happen in some examples in
section 4 and in the appendix). We nevertheless include it here for the sake of
completeness.

Lemma 1. If n < minfp; qg then (i) n = deg(h) > 0 implies deg(�) = deg(h)�1;
(ii) deg(h) = 0 i¤ � = 0 (the zero polynomial):

Proof. For n > 0; �(X) �
Pn

i=1 ai[(X + 1)i �Xi]

�
Pn

i=1 ai[
Pi

j=0

�
i
j

�
Xj �Xi]

�
Pn

i=1 ai[
Pi�1

j=0

�
i
j

�
Xj ] (�)

(i) From (�) deg(�) � deg(h)� 1: Since n < minfp; qg; and an 6= 0modN we
conclude that an

�
n
n�1

�
6= 0modN; and therefore deg(�) = deg(h)� 1:

(ii) All congruences are mod N; and therefore we omit the �modN�notation.
If n = 0 then h � a0; therefore � � 0: Let �(X) �

Pn�1
i=0 �iX

i: If � � 0

(the zero polynomial) then from (�); �(X) �
Pn�1

i=0 �iX
i �

Pn
i=1 ai[

Pi�1
j=0

�
i
j

�
Xj ];

�n�1 � an
�
n
n�1

�
; so since n < q we conclude that �n�1 � 0 implies an � 0:

�n�2 � an
�
n�1
n�2

�
+ an�1

�
n�2
n�2

�
� an�1. So �n�2 � 0 implies an�1 � 0: And in

general ai � �i�1; for i = n; ::::1; hence deg(h) = 0: �

De�nition 1. Let �(0)(X) = h(X); and let �(i)(X) � �(i�1)(X+1)��(i�1)(X)modN;
i = 1; 2; :::

Lemma 2. Let 0 � k � n = deg(h): �(k)(X) �
Pk

i=0

�
k
i

�
�h(X+i)�(�1)k�imodN:

Proof. By induction on k: �

Let 0 � k � n = deg(h); and let T (k)an;an�1(X) denote the two leading terms of
�(k)(X).

Lemma 3. T (k)an;an�1(X) =
(n�1)!
(n�k)!X

n�k�1(ann(X + k(n� k)=2) + an�1(n� k)):

Proof. Induction on k: Basis: T (0)an;an�1(X) =
Pn

i=n�1 aiX
i; We verify one more

step, k = 1; that is needed later.

T (1)an;an�1(X) = X
n�2(ann(X +

n� 1
2

) + an�1(n� 1))::::::::::(�)

�(1)(X) = h(X +1)�h(X); whose two leading terms are equal to T (1)an;an�1(X)
above.
Induction hypothesis: The two leading terms of �(k�1)(X) are
T
(k�1)
an;an�1(X) =

(n�1)!
(n�k+1)!X

n�k(ann(X +(k� 1)(n� k+1)=2)+ an�1(n� k+1)):
Let T (k�1)an;an�1(X) = �Xn�k+1 + �Xn�k; namely, � = (n�1)!

(n�k)!ann; and � =
(n�1)!
(n�k)! [annk(n� k)=2+an�1(n� k)]: The proof can be completed by showing that
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T
(1)
�;�(X) = T

(k)
an;an�1(X); namely, we compute the �rst di¤erence of T

(k�1)
an;an�1(X)

substituting � for an and � for an�1 in (*) to get the claim. �

3. Related-messages attack

Here we analyze the case where h(X) is the RSA encryption function.

Corollary 1. The case h(X) = XemodN; where e � 3; is a special case of the
previous lemma, with an = 1; an�1 = 0; and T

(e�1)
1;0 � e!(X+(e�1)=2)(modN):

Theorem 1. Let (e;N) be any public RSA key with gcd(e!; N) = 1; e � 3; and let
mi � x+ imodN; i = 0; 1; 2; :::; e�1: Let ci � me

i modN be known cryptograms.
Then x � e!�1

Pe�1
i=0

�
e�1
i

�
� ci � (�1)e�1+i� (e� 1)=2 modN , which is computable

in O(e) operations in ZN :

Proof. �(e�1)(X) � T (e�1)1;0 (X): For any particular value x of X; the lhs can be
computed using the previous theorem ie,

�(e�1)(x) �
e�1X
i=0

�
e� 1
i

�
� ci � (�1)e�1+imodN;

and the rhs is given by the above corollary. e!�1 exist by our assumptions. Since�
e�1
i

�
can be computed from

�
e�1
i�1
�
using one multiplication and one division, this

computation takes O(e) operations in ZN : �
Corollary 2. If mi � ax + bimodN; i = 0; 1; 2:::e � 1; for known a and b;
with gcd(a;N) = gcd(b;N) = 1; we can likewise compute x: Given cryptogram
ci � (ax + b � i )emodN we can transform it into c0i � ci � b�e � (y + i)emodN;
where y � xab�1modN: So

x � a�1b[bee!)�1
e�1X
i=0

�
e� 1
i

�
� ci � (�1)e�1+i �

e� 1
2
] modN:

4. Other cryptographic applications of finite differences

The results of section 2 can be easily generalized to polynomials h 2 Z[X], and
h 2 Zq[X]; where q is a prime.

(1) DL mod a prime (given gx in any multiplicative group, �nd x). Suppose
that given gx an oracle returns the value of some polynomial h(x) instead
of x: The straight forward way of solving for x would be to interrogate
the oracle n + 1 times, where n = deg(h), extrapolate h; then factor h to
�nd its root x: This has complexity almost quadratic in n: Since we can
interrogate the oracle with any gx+i; we can do it in linear time in n; using
the �nite di¤erence method modulo a prime.

(2) DL modulo a �safe�composite: Here we cannot use the alternative method
proposed in (1) above, since e¢ cient polynomial factorization is not known
to be possible modulo a �safe�composite modulus, while the new method
using �nite di¤erences still works with the same e¢ ciency as modulo a
prime. In particular (as a special case) suppose some DL oracle returns
its results RSA-encrypted. We can create linearly related messages (eg, if
c0 � gxmod p we can create ci � c1 � g � gx+imod p: The indexes x+ i are
the messages to be RSA encrypted), and use the �nite-di¤erence method
to �nd x:
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(3) We can use the �nite di¤erence technique to create evidence that one-oracle-
call polynomial reductions from old DL type problems to the new Binary
Di¢ e-Hellman problem do not exist (see appendix).
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6. Appendix: Impossible reductions

We give evidence that certain 1-oracle-call polynomial reduction from Decision
Di¢ e-Hellman in multiplicative group G2 (DDHG2) to Binary Di¢ e-Hellman in
additive group G1 (BDH) do not exist. We restrict the discussion to single oracle
call reductions, since we don�t yet have a more general proof.

6.1. De�nition of the problems BDH and DDHG2 . Let G1 and G2 be cyclic
groups of order q; with generators P and g; respectively. We describe elements
of these groups in terms of these generators, where G2 is assumed multiplicative
and G1 is assumed additive. Let ê : G1�G1! G2 be a non-degenerate bi-linear
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mapping. Examples of such mappings are the modi�ed Weil pairing [BF] and the
modi�ed Tate pairing [J]. The map must satisfy the following properties [BF]:

(1) Bilinear: We say that a map ê : G1�G1! G2 is bilinear if ê(P1 + P2; Q) =
ê(P1; Q) � ê(P2; Q) and ê(P;Q1 + Q2) = ê(P;Q1) � ê(P;Q2): This implies
ê(aP; bQ) = ê(P;Q)ab for all P;Q 2 G1; and all a; b 2 Z:

(2) Non-degenerate: The map does not send all pairs in G1�G1 into the iden-
tity element in G1: It follows that if P is a generator of G1 then ê(P; P ) is
a generator of G2:

(3) Computable: There is an e¢ cient algorithm to compute ê(R;S) for any
R;S 2 G1:

The problem for which we seek assurance that it is of high complexity is the
BDH problem:
Given < P; aP; bP; cP > 2 G41; Find ê(P; P )abc 2 G2:
The main old problem under consideration is the Decision Di¢ e-Hellman in the

group G2 (denoted DDHG2), de�ned as follows:
Given: < g; gx; gy; gz > 2 G42; Decide: gxy = gz?

6.2. The function �: G2 ! G1. Let � be a problem with input and output
domains In(�);and Out(�); respectively, and let Turing Machine (TM) M� solve
problem �: This can be viewed as a function M� :In(�) ! Out(�): We combine
machines with matching domains in the natural way. If problem � is reducible to
problem � in polynomial time using one oracle call then there exist polynomial
time TM M1 and M2 such that M� = M2M�M1 (where M� is the oracle that
solves problem �), and where M1 : In(�) ! In(�); and M2 : Out(�) ! Out(�):
We are interested in the following problems (in all the cases we refer to the set of
elements of groups and to functions from one set to another rather than to group
morphisms, but we use short hand of the form � : G2 ! G1): (i) BDH: G41 ! G2;
(ii) DDHG2

: G42 ! fyes; nog:

6.2.1. < �; h > pairs. We assume that G1 is an additive group de�ned by some
elliptic curve E over some �eld F, and that it has a generator P: Likewise, G2 is
a multiplicative group with generator g:

Let q = jG2j = jG1j and � : G2 ! G1. There exists a function h de�ned
over F such that for all 0 � x < q; �(gx) = h(x)P: Any function h on F is a
polynomial with deg(h) � jFj:
From Hasse�s Theorem ([K], pp. 158) the di¤erence between N; the number of

points in E; and jFj+ 1 is upper bounded by 2jFj1=2:
So the upper bound on deg(h) cannot be too far from N: If G1 is chosen so that

jG1j = q is a large prime divisor of N then the upper bound on deg(h) cannot
be too far from q either.

6.3. Related work. Our work is related to a work by Coppersmith and Shparlinski
[CS] on the degree of a polynomial that evaluate the DL of x, or in fact to an even
earlier work, by Mullen and White [MW], showing that the DL mod a prime p,
denoted ind(x) in those papers, is ind(x) � (�1 +

Pp�2
k=1(g

�k � 1)�1xk)mod p;
where g is a primituve root of a �nite �eld of q elements, Fq: But our polynomial
is h(ind(x)); not h(x); as in [CS], and in addition we cover any modulus, including
a composite.
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The XTR is a computationally e¢ cient subgroup of order p2 � p + 1 of the
multiplicative group GF (p6)� of the �nite �eld GF (p6): In [V], Verheul shows that
�nding an e¢ cient injective homomorphism from the XTR subgroup into the group
of points of a particular supersingular elliptic curve group over GF (p2) is at least
as hard as solving the Di¢ e-Hellman problem in the XTR subgroup.
Joux [J] gives a very detailed review on known reductions between the various

DL-type problems and BDH.

6.4. Claims.

Theorem 2. Let G1;G2 be groups of prime order q; with G1 written additively and
G2 written multiplicatively, and let P 2 G1nf1g and g 2 G2nf1g be their genera-
tors, respectively. Suppose we have oracle � : G2 ! G1; whose associated function
on G1 is h, ie for all 0 � x < q; �(gx) = h(x)P: If deg(h) = O(poly log(q)) then
� can be used to solve DDHG2 in polynomial time.

Proof. We use the lemmas of section 2 with a twist, since here we don�t have
direct access to the polynomials h(x): Rather we have access to the values h(x)P:
But as shown below this is su¢ cient for the decision problems at hand. Since
�(gx) = h(x)P = �(0)(x)P; we can compute�(1)(x)P = �(0)(x+1)P��(0)(x)P =
�(gx � g)� �(gx); and recursively compute any �(k)(x)P; k � deg(h):
Even more e¢ ciently, analogously to lemma 2 we can compute it using a variant

of the Pascal triangle as follows (see comment at the beginning of section 4):

�(k)(x) �
kX
i=0

�
k

i

�
� h(x+ i)P � (�1)k�i �

kX
i=0

�
k

i

�
� �(gx+i) � (�1)k�imod q:

This can be done even if the polynomial h is unknown, however, in that case
we cannot make use of lemma 3 (and it is unimportant, since here all we need is a
complexity which is polynomial in n = deg(h)): We proceed assuming that h and its
degree, n; are unknown. For i = 1; 2; ::: compute �(i)(x)P until �(n+1)(x)P = O,
the identity element of G1 (i.e. the point at in�nity if G1 is a group de�ned by
elliptic curve; here we use lemma 1(ii)). The value of the polynomial before this
step is �(n)(x) = ux+v for some constants u and v; and we know �(n)(x)P: Since
vP = �(n)(0)P; we can compute uxP = �(n)(x)P � �(n)(0)P: Likewise we can
compute uyP and uzP . We can also compute uP = �(n)(1)P ��(n)(0)P: Note
that ê(uxP; uyP ) � ê(uzP; uP ) i¤ gu

2xy � gu
2z: Since q is prime, gcd(u; q) = 1

and this congruence is true i¤ gxy � gz: The complexity of this process is O(n2) =
O(poly log(q)): �

Corollary 3. Since we believe that DDHG2
is a hard problem, either deg(h)>O(polylog

q), or a 1-oracle call reduction (from DDHG2
to BDH) does not exist.

We can prove a similar result with the Computational Di¢ e-Hellman in G1
replacing DDHG2

; and from these two results via the transitivity of 1-oracle-call
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polynomial reduction reach similar conclusions with respect to all DL-type problems
which are higher in the hierarchy (see hierarchy in [J]).
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