
Scrap More Boilerplate: Reflection, Zips,
and Generalised Casts

Ralf Lämmel
Vrije Universiteit & CWI, Amsterdam

Simon Peyton Jones
Microsoft Research, Cambridge

Abstract

Writing boilerplate code is a royal pain. Generic programming
promises to alleviate this pain by allowing the programmer to write
a generic “recipe” for boilerplate code, and use that recipe in many
places. In earlier work we introduced the “Scrap your boilerplate”
approach to generic programming, which exploits Haskell’s exist-
ing type-class mechanism to support generic transformations and
queries.

This paper completes the picture. We add a few extra “introspec-
tive” or “reflective” facilities, that together support a rich variety
of serialisation and de-serialisation. We also show how to perform
generic “zips”, which at first appear to be somewhat tricky in our
framework. Lastly, we generalise the ability to over-ride a generic
function with a type-specific one.

All of this can be supported in Haskell with independently-useful
extensions: higher-rank types and type-safe cast. The GHC imple-
mentation of Haskell readily derives the required type classes for
user-defined data types.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software; D.1.1
[Programming Techniques]: Functional Programming; D.3.1
[Programming Languages]: Formal Definitions and Theory

General Terms

Design, Languages

Keywords

Generic programming, reflection, zippers, type cast

1 Introduction

It is common to find that large slabs of a program consist of “boil-
erplate” code, which conceals by its bulk a smaller amount of “in-
teresting” code. So-called generic programming techniques allow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Proc ACM International Conference on Functional Programming (ICFP’04), Snow-
bird, Utah, Sept 2004, pp244-255 (with typos fixed).
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

programmers to automate this “boilerplate”, allowing effort to be
focused on the interesting parts of the program.

In our earlier paper, “Scrap your boilerplate” [16], we described
a new technique for generic programming, building on the type-
class facilities in Haskell, together with two fairly modest exten-
sions (Section 2). Our approach has several attractive properties:
it allows the programmer to over-ride the generic algorithm at ex-
actly the desired places; it supports arbitrary, mutually-recursive
data types; it is an “open-world” approach, in which it is easy to
add new data types; it works without inefficient conversion to some
intermediate universal data type; and it does not require compile-
time specialisation of boilerplate code.

The main application in our earlier paper was traversals and queries
over rich data structures, such as syntax trees or terms that represent
XML documents. However, that paper did not show how to imple-
ment some of the best-known applications of generic programming,
such as printing and serialisation, reading and de-serialisation, and
generic equality. These functions all require a certain sort of type
introspection, or reflection.

In this paper we extend our earlier work, making the following new
contributions:

• We show how to support a general form of type reflection,
which allows us to define generic “show” and “read” functions
as well as similar functions (Sections 3 and 4).

• These classical generic functions rely on a new reflection API,
supported on a per-data-type basis (Section 5). Once defined,
this API allows other generic reflective functions to be de-
fined, such as test-data generators (Section 5.4).

• Functions like generic equality require us to “zip together”
two data structures, rather than simply to traverse one. We
describe how zipping can be accommodated in the existing
framework (Section 6).

• A strength of the Scrap your boilerplate approach is that it
it easy to extend a generic function to behave differently on
particular, specified types. So far it has not been clear how to
extend a generic function for particular type constructors. In
Section 7 we explain why this ability is very useful, and show
how to generalise our existing type-safe cast operator so that
we can indeed express such generic function extension.

Everything we describe has been implemented in GHC, and many
examples are available online at the boilerplate web site [17]. No
new extensions to Haskell 98 are required, beyond the two already
described in Scrap your boilerplate, namely (a) rank-2 types, and
(b) type-safe cast. The latter is generalised, however, in Section 7.2.

2 Background

To set the scene for this paper, we begin with a brief overview of
the Scrap your boilerplate approach to generic programming. Sup-
pose that we want to write a function that computes the size of an
arbitrary data structure. The basic algorithm is “for each node, add
the sizes of the children, and add 1 for the node itself”. Here is the
entire code for gsize:

gsize :: Data a => a -> Int

gsize t = 1 + sum (gmapQ gsize t)

The type for gsize says that it works over any type a, provided a

is a data type — that is, that it is an instance of the class Data1

The definition of gsize refers to the operation gmapQ, which is a
method of the Data class:

class Typeable a => Data a where

...other methods of class Data...

gmapQ :: (forall b. Data b => b -> r) -> a -> [r]

(The class Typeable serves for nominal type cast as needed for
the accommodation of type-specific cases in generic functions. We
will discuss this class in Section 7, but it can be ignored for now.)
The idea is that (gmapQ f t) applies the polymorphic function f

to each of the immediate children of the data structure t. Each of
these applications yields a result of type r, and gmapQ returns a list
of all these results. Here are the concrete definitions of gmapQ at
types Maybe, list, and Int respectively:

instance Data a => Data (Maybe a) where

gmapQ f Nothing = []

gmapQ f (Just v) = [f v]

instance Data a => Data [a] where

gmapQ f [] = []

gmapQ f (x:xs) = [f x, f xs]

instance Data Int where

gmapQ f i = [] -- An Int has no children!

Notice that gmapQ applies f only to the immediate children of its
argument. In the second instance declaration above, f is applied to
x and xs, resulting in a list of exactly two elements, regardless of
how long the tail xs is. Notice too that, in this same declaration, f
is applied to arguments of different types (x has a different type to
xs), and that is why the argument to gmapQ must be a polymorphic
function. So gmapQ must have a higher-rank type – that is, one with
a forall to the left of a function arrow — an independently-useful
extension to Haskell [20].

It should now be clear how gsize works for term t whose type is
an instance of the class Data. The call (gmapQ gsize t) applies
gsize to each of t’s immediate children, yielding a list of sizes.
The standard function sum :: [Int] -> Int sums this list, and
then we add 1.

The class Data plays a central role in this paper. Our earlier paper
placed three generic mapping operations in class Data: the opera-
tion gmapQ for generic queries, as illustrated above, and the opera-
tions gmapT for transformations, and gmapM for monadic transfor-
mations. In fact, all such forms of mapping can be derived from
a single operator gfoldl for generic folding, as we also described
in the earlier paper. The instances of Data are easy to define, as
we saw for the operation gmapQ above. The definition of gfoldl is
equally simple. In fact, the instances are so easy and regular that a
compiler can do the job, and GHC indeed does so, when instructed
by a so-called “deriving” clause. For example

data Tree a = Leaf a | Node (Tree a) (Tree a)

deriving(Eq, Typeable, Data)

1Note: in our earlier paper [16] the class now called “Data” was
called “Term”.

The “deriving(Eq)” part is standard Haskell 98, and in-
structs the compiler to generate an instance declaration for
instance Eq a => Eq (Tree a). GHC extends this by support-
ing deriving for the classes Typeable and Data as well.

While the operation gfoldl is sufficient for transformations and
queries, it is not enough for other applications of generic program-
ming, as we shall shortly see. Much of the rest of the paper fills out
the Data class with a few further, carefully-chosen operations.

3 Generic “show” and friends

We will now consider generic functions that take any data value
whatsoever, and render it in some way. For instance, a generic show
operation is a generic function that renders terms as text, and hence
it is of the following type:

gshow :: Data a => a -> String

That is, gshow is supposed to take any data value (i.e. any instance
of class Data), and to display it as a string. The generic function
gshow has many variants. For example, we might want to perform
binary serialisation with data2bits, where we turn a datum into
a string of Zeros and Ones (Sections 3.2 and 3.3). We might also
want to translate a datum into a rose tree with data2tree, where
the nodes store constructor names (Section 3.4).

data2bits :: Data a => a -> [Bit]

data2tree :: Data a => a -> Tree String

A generalisation of data2tree can perform type erasure for XML.

3.1 Data to text

We can almost do gshow already, because it is very like gsize2:

gshow t = "("

++ concat (intersperse " " (gmapQ gshow t)

++ ")"

Of course, this function only outputs parentheses!

gshow [True,False] = "(() (() ()))"

We need to provide a way to get the name of the constructor used
to build a data value. It is natural to make this into a new operation
of the class Data:

class Typeable a => Data a where

...

toConstr :: a -> Constr

Rather than delivering the constructor name as a string, toConstr
returns a value of an abstract data type Constr, which offers the
function showConstr (among others – Section 5):

showConstr :: Constr -> String

Given this extra function we can write a working version of gshow:

gshow :: Data a => a -> String

gshow t

= "(" ++ showConstr (toConstr t)

++ concat (intersperse " " (gmapQ gshow t))

++ ")"

We have made use of an intermediate data type Constr so that, as
well as supporting showConstr, we can also offer straightforward
extensions such as fixity:

constrFixity :: Constr -> Fixity

The type Fixity encodes the fixity and precedence of the construc-
tor, and we can use that to write a more sophisticated version of
gshow that displays constructors in infix position, with minimum
parenthesisation.

2The standard function concat :: [[a]] -> [a] concate-
nates the elements of a list of lists, while intersperse :: a ->

[a] -> [a] inserts its first argument between each pair of ele-
ments in its second argument.

Built-in data types, such as Int, are also instances of the Data class,
so (toConstr (3::Int)) is a value of type Constr. Applying
showConstr to this value yields the string representation of the in-
teger value 3.

3.2 Binary serialisation

Our next application is binary serialisation, in which we want to
encode a data value as a bit-string of minimum length:

data Bit = Zero | One

data2bits :: Data a => a -> [Bit]

Rather than outputting the constructor name as a wasteful string,
the obvious thing to do is to output a binary representation of its
constructor index, so we need another function over Constr:

constrIndex :: Constr -> ConIndex

type ConIndex = Int -- Starts at 1; 0 for undefined

But how many bits should be output, to distinguish the construc-
tor from other constructors of the same data type? To answer this
question requires information about the entire data type, and hence
a new function, dataTypeOf:

class Typeable a => Data a where

...

toConstr :: a -> Constr

dataTypeOf :: a -> DataType

We note that dataTypeOf never ever examines its argument; it
only uses its argument as a proxy to look-up information about its
data type.3 The abstract data type DataType offers the operation
maxConstrIndex (among others):

maxConstrIndex :: DataType -> ConIndex

Using these functions, we are in a position to write data2bits:

data2bits :: Data a => a -> [Bit]

data2bits t = encodeCon (dataTypeOf t) (toConstr t)

++ concat (gmapQ data2bits t)

-- The encoder for constructors

encodeCon :: DataType -> Constr -> [Bit]

encodeCon ty con = natToBin (max-1) (idx-1)

where

max = maxConstrIndex ty

idx = constrIndex con

Here we have assumed a simple encoder for natural numbers
natToBin :: Int -> Int -> [Bit] where (natToBin m x)

returns a binary representation of x in the narrowest field that can
represent m.

3.3 Fancy serialisation

One could easily imagine more sophisticated serialisers for data
values. For example, one might want to use adaptive arithmetic
coding to reduce the number of bits required for common construc-
tors [23, 18]. To do this requires the serialiser to carry along the
encoder state, and to update this state whenever emitting a new
constructor. So the fancy encoder will have this signature, which
simply adds a state to encodeCon’s signature:

data State -- Abstract

initState :: State

encodeCon :: DataType -> Constr

-> State -> (State, [Bit])

Now we just need to modify the plumbing in data2bits. At first
blush, doing so looks tricky, because gmapQ knows nothing about
passing a state, but we can use a standard trick by making gmapQ

3One could instead use a ‘phantom type’ for proxies, to make
explicit that dataTypeOf does not care about values of type a, i.e.:
data Proxy a = Proxy

dataTypeOf :: Proxy a −> DataType

return a list of functions of type [State -> (State,[Bit])]:

data2bits :: Data a => a -> [Bit]

data2bits t = snd (show_bin t initState)

show_bin :: Data a => a -> State -> (State, [Bit])

show_bin t st = (st2, con_bits ++ args_bits)

where

(st1, con_bits) = encodeCon (dataTypeOf t)

(toConstr t) st

(st2, args_bits) = foldr do_arg (st1,[])

enc_args

enc_args :: [State -> (State,[Bit])]

enc_args = gmapQ show_bin t

do_arg fn (st,bits) = (st’, bits’ ++ bits)

where

(st’, bits’) = fn st

Notice that the call to gmapQ partially applies show_bin to the chil-
dren of the constructor, returning a list of state transformers. These
are composed together by the foldr do_arg. Of course, the ap-
pending of bit-strings is not efficient, but that is easily avoided by
using any O(1)-append representation of bit-strings (see e.g. [9]).

A more elegant approach would instead present the encoder in a
monadic way:

data EncM a -- The encoder monad

instance Monad EncM where ...

runEnc :: EncM () -> [Bit]

emitCon :: DataType -> Constr -> EncM ()

The monad EncM carries (a) the sequence of bits produced so far
and (b) any accumulating state required by the encoding technol-
ogy, such as State above. The function emitCon adds a suitable
encoding of the constructor to the accumulating output, and updates
the state. The function runEnc runs its argument computation start-
ing with a suitable initial state, and returns the accumulated output
at the end. All the plumbing is now abstracted, leaving a rather
compact definition:

data2bits :: Data a => a -> [Bit]

data2bits t = runEnc (emit t)

emit :: Data a => a -> EncM ()

emit t = do { emitCon (dataTypeOf t) (toConstr t)

; sequence_ (gmapQ emit t) }

Here, the standard monad function

sequence_ :: Monad m => [m a] -> m ()

is used to compose the list computations produced by gmapQ emit.

3.4 Type erasure

The rendering operations so far are all forms of serialisation. We
can also render terms as trees, where we preserve the overall shape
of the terms, but erase the heterogeneous types. For instance, we
can easily turn a datum into a rose tree of the following kind:

data Tree a = Tree a [Tree a]

The rendering operation is easily defined as follows:

data2tree :: Data a => a -> Tree String

data2tree x = Tree (showConstr (toConstr x))

(gmapQ data2tree x)

Rendering data values as rose trees is the essence of type erasure for
XML. Dually, producing data values from rose trees is the essence
of type validation for XML. Generic functions for XML type era-
sure and type validation would necessarily reflect various technical-
ities of an XML binding for Haskell [21, 2]. So we omit the tedious
XML-line of scenarios here.

4 Generic “read” and friends

Our rendering functions are all generic consumers: they consume
a data structure and produce a fixed type (String or [Bit]).
(Generic traversals that query a term, are also consumers.) The
inverse task, of parsing or de-serialisation, requires generic produc-
ers, that consume a fixed type and produce a data structure. It is far
from obvious how to achieve this goal.

The nub of the problem is this. We are sure to need a new mem-
ber of the Data class, fromConstr, that is a kind of inverse of
toConstr. But what is its type? The obvious thing to try is to
reverse the argument and result of toConstr:

class Typeable a => Data a where

...

toConstr :: a -> Constr

fromConstr :: Constr -> a -- NB: not yet correct!

But simply knowing the constructor alone does not give enough
information to build a value: we need to know what the children of
the constructor are, too. But we can’t pass the children as arguments
to fromConstr, because then the type of fromConstr would vary,
just as constructor types vary.

We note that the type Constr -> a could be used as is, if
fromConstr returned a term constructor filled by bottoms (“⊥”).
A subsequent application of gmapT could still fill in the sub-terms
properly. However, this is something of a hack. Firstly, the bot-
toms imply dependence on laziness. Secondly, the approach fails
completely for strict data types. So we seek another solution.

The solution we adopt is to pass a generic function to fromConstr

that generates the children. To this end, we employ a monad to
provide input for generation of children:

fromConstrM :: (Monad m, Data a)

=> (forall b. Data b => m b)

-> Constr -> m a

We will first demonstrate fromConstrM, and then define it.

4.1 Text to data

Here is the code for a generic read, where we ignore the need to
consume spaces and match parentheses:

gread :: Data a => String -> Maybe a

gread input = runDec input readM

readM :: Data a => DecM a

readM =

do { constr <- parseConstr ??? -- to be completed

; fromConstrM readM constr }

The two lines of readM carry out the following steps:

1. Parse a Constr from the front of the input. This time we
employ a parser monad, DecM, with the following signature:

data DecM a -- The decoder monad

instance Monad DecM where ...

runDec :: String -> DecM a -> a

parseConstr :: DataType -> DecM Constr

The monad carries (a) the as-yet-unconsumed input, and (b)
any state needed by the decoding technology. The function
parseConstr parses a constructor from the front of the input,
updates the state, and returns the parsed constructor. It needs
the DataType argument so that it knows how many bits to
parse, or what the valid constructor names are. (This argument
still needs to be filled in for “???” above.)

2. Use fromConstrM to call readM successively to parse each
child of the constructor, and construct the results into a value
built with the constructor identified in step 1.

The function runDec runs the decoder on a particular input, discard-
ing the final state and unconsumed input, and returning the result.
In case the monadic presentation seems rather abstract, we briefly
sketch one possible implementation of the DecM monad. A parser
of type DecM a is represented by a function that takes a string and
returns a depleted string together with the parsed value, wrapped in
a Maybe to express the possibility of a parse error:

newtype DecM a = D (String -> Maybe (String, a))

The type DecM can be made an instance of Monad in the standard
way (see [10], for example). It remains to define the parser for
constructors. We employ a new function, dataTypeConstrs, that
returns a list of all the constructors of a data type. We try to match
each constructor with the beginning of the input, where we ignore
the issue of constructors with overlapping prefixes:

parseConstr :: DataType -> DecM Constr

parseConstr ty = D (\s -> match s (dataTypeConstrs ty))

where

match :: String -> [Constr] -> Maybe (String, Constr)

match _ [] = Nothing

match input (con:cons)

| take (length s) input == s

= Just (drop (length s) input, con)

| otherwise

= match input cons

where

s = showConstr con

The same code for gread, with a different implementation of DecM
and a different type for runDec, would serve equally well to read
the binary structures produced by data2bits.

4.2 Defining fromConstrM

The function fromConstrM can be easily defined as a new mem-
ber of the Data class, with the type given above. Its instances are
extremely simple; for example:

instance Data a => Data [a] where

fromConstrM f con

= case constrIndex con of

1 -> return []

2 -> do { a <- f; as <- f; return (a:as) }

However, just as gmapQ, gmapT and gmapM are all instances
of the highly parametric gfoldl operation, so we can define
fromConstrM as an instance of the dual of gfoldl — a highly para-
metric operation for unfolding. This operation, gunfold needs to
be added to the Data class:

class Typeable a => Data a where

...

gunfold :: (forall b r. Data b

=> c (b -> r) -> c r)

-> (forall r. r -> c r)

-> Constr

-> c a

The two polymorphically typed arguments serve for building non-
empty vs. empty constructor applications. In this manner, gunfold
really dualises gfoldl, which takes two similar arguments for the
traversal of constructor applications. The operations gunfold and
gfoldl also share the use of a type constructor parameter c in their
result types, which is key to their highly parametric quality.

The instances of gunfold are even simpler than those for
fromConstrM, as we shall see in Section 5.1. The operation
fromConstrM is easily derived as follows:

fromConstrM f = gunfold k z

where

k c = do { c’ <- c; b <- f; return (c’ b) }

z = return

Here, the argument z in (gunfold k z) turns the empty construc-
tor application into a monadic computation, while k unfolds one
child, and combines it with the rest.

4.3 Getting hold of the data type

In the generic parser we have thus-far shown, we left open the ques-
tion of how to get the DataType corresponding to the result type,
to pass to parseConstr, the “???” in readM. The difficulty is that
dataTypeOf needs an argument of the result type, but we have not
yet built the result value.

This problem is easily solved, by a technique that we frequently
encounter in type-class-based generic programming. Here is the
code for readM without “???”:

readM :: Data a => DecM a

readM = read_help

where

read_help

= do { let ty = dataTypeOf (unDec read_help)

; constr <- parseConstr ty

; fromConstrM readM constr }

unDec :: DecM a -> a

unDec = undefined

Here, unDec’s type signature maps the type DecM a to a as de-
sired. Notice the recursion here, where read_help is used in its
own right-hand side. But recall that dataTypeOf is not interested
in the value of its argument, but only in its type; the lazy argument
(unDec read_help) simply explains to the compiler what Data
dictionary to pass to dataTypeOf.

Rather than using an auxiliary unDec function, there is a more direct
way to express the type of dataTypeOf’s argument. That is, we
can use lexically-scoped type variables, which is an independently
useful Haskell extension. We rewrite readM as follows:

readM :: Data a => DecM a

readM = read_help

where

read_help :: DecM a

= do { let ty = dataTypeOf (undefined::a)

; constr <- parseConstr ty

; fromConstrM readM constr }

The definition

read_help :: DecM a = ...

states that read_help should have the (monomorphic) type
DecM a, for some type a, and furthermore brings the type variable
a into scope, with the same scope as read_help itself. The argu-
ment to dataTypeOf, namely (undefined::a), is constrained to
have the same type a, because the type variable a is in scope. A
scoped type variable is only introduced by a type signature directly
attached to a pattern (e.g., read_help :: DecM a). In contrast, a
separate type signature, such as

read_help :: Data a => DecM a

is short for

read_help :: forall a. Data a => DecM a

and does not introduce any scoping of type variables. However,
we stress that, although convenient, lexically-scoped type variables
are not required to support the Scrap your boilerplate approach to
generic programming, as we illustrated with the initial definition of
read_help.

5 Type reflection — the full story

The previous two sections have introduced, in a piecemeal fashion,
three new operations in the Data class. In this section we sum-
marise these extensions. The three new operations are these:

class Typeable a => Data a where

...

dataTypeOf :: a -> DataType

toConstr :: a -> Constr

gunfold :: (forall b r. Data b => c (b -> r) -> c r)

-> (forall r. r -> c r)

-> Constr

-> c a

Every instance of dataTypeOf is expected to be non-strict — i.e.
does not evaluate its argument. By contrast, toConstr must be
strict — at least for multi-constructor types — since it gives a result
that depends on the constructor with which the argument is built.

The function dataTypeOf offers a facility commonly known as “re-
flection”. Given a type — or rather a lazy value that serves as
a proxy for a type — it returns a data structure (DataType) that
describes the structure of the type. The data types DataType and
Constr are abstract:

data DataType -- Abstract, instance of Eq

data Constr -- Abstract, instance of Eq

The following sections give the observers and constructors for
DataType and Constr.

5.1 Algebraic data types

We will first consider algebraic data types, although the API is de-
fined such that it readily covers primitive types as well, as we will
explain in the next section. These are the observers for DataType:

dataTypeName :: DataType -> String

dataTypeConstrs :: DataType -> [Constr]

maxConstrIndex :: DataType -> ConIndex

indexConstr :: DataType -> ConIndex -> Constr

type ConIndex = Int -- Starts at 1

These functions should be suggestive, just by their names and
types. For example, indexConstr takes a constructor index and
a DataType, and returns the corresponding Constr. These are the
observers for Constr:

constrType :: Constr -> DataType

showConstr :: Constr -> String

constrIndex :: Constr -> ConIndex

constrFixity :: Constr -> Fixity

constrFields :: Constr -> [String]

data Fixity = ... -- Details omitted

(The name of showConstr is chosen for its allusion to Haskell’s
well-known show function.) We have already mentioned all of these
observers in earlier sections, except constrType which returns the
constructor’s DataType, and constrFields which returns the list
of the constructor’s field labels (or [] if it has none). Values of
types DataType and Constr are constructed as follows:

mkDataType :: String -> [Constr] -> DataType

mkConstr :: DataType -> String -> [String]

-> Fixity -> Constr

The function readConstr parses a given string into a constructor;
it returns Nothing if the string does not refer to a valid constructor:

readConstr :: DataType -> String -> Maybe Constr

When the programmer defines a new data type, and wants to use it
in generic programs, it must be made an instance of Data. GHC
will derive these instance if a deriving clause is used, but there
is no magic here — the instances are easy to define manually if
desired. For example, here is the instance for Maybe:

instance Data a => Data (Maybe a) where

... -- gfoldl as before

dataTypeOf _ = maybeType

toConstr (Just _) = justCon

toConstr Nothing = nothingCon

gunfold k z con =

case constrIndex con of

1 -> z Nothing -- no children

2 -> k (z Just) -- one child, hence one k

justCon, nothingCon :: Constr

nothingCon = mkConstr maybeType "Nothing" [] NoFixity

justCon = mkConstr maybeType "Just" [] NoFixity

maybeType :: DataType

maybeType = mkDataType "Prelude.Maybe"

[nothingCon, justCon]

Notice that the constructors mention the data type and vice versa, so
that starting from either one can get to the other. Furthermore, this
mutual recursion allows mkDataType to perform the assignment of
constructor indices: the fact that Nothing has index 1 is specified
by its position in the list passed to mkDataType.

5.2 Primitive types

Some of Haskell’s built-in types need special treatment. Many
built-in types are explicitly specified by the language to be alge-
braic data types, and these cause no problem. For example, the
boolean type is specified like this:

data Bool = False | True

There are a few types, however, primitive types, that cannot be
described in this way: Int, Integer, Float, Double, and Char.
(GHC happens to implement some of these as algebraic data types,
some with unboxed components, but that should not be revealed to
the programmer.) Furthermore, GHC adds several others, such as
Word8, Word16, and so on.

How should the “reflection” functions, dataTypeOf, toConstr,
and so on, behave on primitive types? One possibility would be
to support dataTypeOf for primitive types, but not toConstr and
fromConstr. That has the disadvantage that every generic function
would need to define special cases for all primitive types. While
there are only a fixed number of such types, it would still be tire-
some, so we offer a little additional support.

We elaborate Constr so that it can represent a value of primitive
types. Then, toConstr constructs such specific representations.
While Constr is opaque, we provide an observer constrRep to get
access to constructor representations:

constrRep :: Constr -> ConstrRep

data ConstrRep

= AlgConstr ConIndex -- Algebraic data type

| IntConstr Integer -- Primitive type (ints)

| FloatConstr Double -- Primitive type (floats)

| StringConstr String -- Primitive type (strings)

The constructors from an algebraic data type have an AlgConstr

representation, whose ConIndex distinguishes the constructors of
the type. A Constr resulting from an Int or Integer value will
have an IntConstr representation, e.g.:

constrRep (toConstr (1::Int)) == IntConstr 1

The same IntConstr representation is used for GHC’s data types
Word8, Int8, Word16, Int16, and others. The FloatConstr rep-
resentation is used for Float and Double, while StringConstr is
used for anything else that does not fit one of these more efficient
representations. We note that Chars are represented as Integers,
and Strings are represented as lists of Integers.

There is a parallel refinement of DataType:

dataTypeRep :: DataType -> DataRep

data DataRep

= AlgRep [Constr] -- Algebraic data type

| IntRep -- Primitive type (ints)

| FloatRep -- Primitive type (floats)

| StringRep -- Primitive type (strings)

There are dedicated constructors as well:

mkIntType :: String -> DataType

mkFloatType :: String -> DataType

mkStringType :: String -> DataType

mkIntConstr :: DataType -> Integer -> Constr

mkFloatConstr :: DataType -> Double -> Constr

mkStringConstr :: DataType -> String -> Constr

The observers constrType, showConstr and readConstr all work
for primitive-type Constrs. All that said, the Data instance for a
primitive type, such as Int, looks like this:

instance Data Int where

gfoldl k z c = z c

gunfold k z c = case constrRep c of

IntConstr x -> z (fromIntegral x)

_ -> error "gunfold"

toConstr x = mkIntConstr intType (fromIntegral x)

intType = mkIntType "Prelude.Int"

5.3 Non-representable data types

Lastly, it is convenient to give Data instances even for types that are
not strictly data types, such as function types or monadic IO types.
Otherwise deriving (Data) would fail for a data type that had
even one constructor with a functional argument type, so the user
would instead have to write the Data instance by hand. Instead,
we make all such types into vacuous instances of Data. Traversal
will safely cease for values of such types. However, values of these
types can not be read and shown.

For example, the instance for (->) is defined as follows:

instance (Data a, Data b) => Data (a -> b) where

gfoldl k z c = z c

gunfold _ _ _ = error "gunfold"

toConstr _ = error "toConstr"

dataTypeOf _ = mkNoRepType "Prelude.(->)"

Here we assume a trivial constructor for non-representable types:

mkNoRepType :: String -> DataType

To this end, the data type DataRep provides a dedicated alternative:

data DataRep = ... -- As before

| NoRep -- Non-representable types

Some of GHC’s extended repertoire of types, notably Ptr, fall into
this group of non-representable types.

5.4 Application: test-data generation

As a further illustration of the usefulness of dataTypeOf, we
present a simple generic function that enumerates the data struc-
tures of any user defined type. (The utility of generic programming
for test-data generation has also been observed elsewhere [14].)
Such test-data generation is useful for stress testing, differential
testing, behavioural testing, and so on. For instance, we can use
systematic test-data generation as a plug-in for QuickCheck [3].

Suppose we start with the following data types, which constitute
the abstract syntax for a small language:

data Prog = Prog Dec Stat

data Dec = Nodec | Ondec Id Type | Manydecs Dec Dec

data Id = A | B

data Type = Int | Bool

data Stat = Noop | Assign Id Exp | Seq Stat Stat

data Exp = Zero | Succ Exp

We want to define a generic function that generates all terms of a
given finite depth. For instance:

> genUpTo 3 :: [Prog]

[Prog Nodec Noop, Prog Nodec (Assign A Zero),

Prog Nodec (Assign B Zero), Prog Nodec (Seq Noop

Noop), Prog (Ondec A Int) Noop, Prog (Ondec A Int)

(Assign A Zero), Prog (Ondec A Int) (Assign B Zero),

Prog (Ondec A Int) (Seq Noop Noop), ...]

Here is the code for genUpTo:

genUpTo :: Data a => Int -> [a]

genUpTo 0 = []

genUpTo d = result

where

-- Recurse per possible constructor

result = concat (map recurse cons)

-- Retrieve constructors of the requested type

cons :: [Constr]

cons = dataTypeConstrs (dataTypeOf (head result))

-- Find all terms headed by a specific Constr

recurse :: Data a => Constr -> [a]

recurse = fromConstrM (genUpTo (d-1))

The non-trivial case (d > 0) begins by finding cons, the list of all
the constructors of the result type. Then it maps recurse over cons
to generate, for each Constr, the list of all terms of given depth
with that constructor at the root. In turn, recurse works by using
fromConstrM to run genUpTo for each child. Here we take advan-
tage of the fact that Haskell’s list type is a monad, to produce a
result list that consists of all combinations of the lists returned by
the recursive calls.

The reason that we bind result in the where-clause is so that we
can mention it in the type-proxy argument to dataTypeOf, namely
(head result) — see Section 4.3.

Notice that we have not taken account of the possibility of primi-
tive types in the data type — indeed, dataTypeConstrs will fail
if given a primitive DataType. There is a genuine question here:
what value should we return for (say) an Int node? One very sim-
ple possibility is to return zero, and this is readily accommodated
by using dataRep instead of dataTypeConstrs:

cons = case dataTypeRep ty of

AlgRep cons -> cons

IntRep -> [mkIntConstr ty 0]

FloatRep -> [mkIntConstr ty 0]

StringRep -> [mkStringConstr ty "foo"]

where

ty = dataTypeOf (head result)

We might also pass around a random-number generator to select
primitive values from a finite list of candidates. We can also re-
fine the illustrated approach to accommodate other coverage crite-
ria [15]. We can also incorporate predicates into term generation
so that only terms are built that meet some side conditions in the
sense of attribute grammars [6]. Type reflection makes all manner
of clever test-data generators possible.

6 Generic zippers

In our earlier paper, all our generic functions consumed a single
data structure. Some generic functions, such as equality or com-
parison, consume two data structures at once. In this section we
discuss how to program such zip-like functions. The overall idea is
to define such functions as curried higher-order generic functions
that consume position after position.

6.1 Curried queries

Consider first the standard functions map and zipWith:

map :: (b->c) -> [b] -> [c]

zipWith :: (a->b->c) -> [a] -> [b] -> [c]

By analogy, we can attempt to define gzipWithQ — a two-
argument version of gmapQ thus. The types compare as follows:

gmapQ :: Data a

=> (forall b. Data b => b -> r)

-> a -> [r]

gzipWithQ :: (Data a1, Data a2)

=> (forall b1 b2. (Data b1, Data b2)

=> b1 -> b2 -> r)

-> a1 -> a2 -> [r]

The original function, (gmapQ f t), takes a polymorphic function
f that it applies to each immediate child of t, and returns a list
of the results. The new function, (gzipWithQ f t1 t2) takes a
polymorphic function f that it applies to corresponding pairs of
the immediate children of t1 and t2, again returning a list of the
results. For generality, we do not constrain a1 and a2 to have the
same outermost type constructor, an issue to which we return in
Section 6.5.

We can gain extra insight into these types by using some type ab-
breviations. We define the type synonym GenericQ as follows:

type GenericQ r = forall a. Data a => a -> r

That is, a value of type GenericQ r is a generic query function that
takes a value of any type in class Data and returns a value of type r.
Haskell 98 does not support type synonyms that contain forall’s,
but GHC does as part of the higher-rank types extension. Such ex-
tended type synonyms are entirely optional: they make types more
perspicuous, but play no fundamental role.

Now we can write the type of gmapQ as follows:

gmapQ :: GenericQ r -> GenericQ [r]

We have taken advantage of the type-isomorphism ∀a.σ1 → σ2 ≡
σ1 →∀a.σ2 (where a 6∈ σ1) to rewrite gmapQ’s type as follows:

gmapQ :: (forall b. Data b => b -> r)

-> (forall a. Data a => a -> [r])

Applying GenericQ, we obtain GenericQ r -> GenericQ [r].
So gmapQ thereby stands revealed as a generic-query transformer.

The type of gzipWithQ is even more interesting:

gzipWithQ :: GenericQ (GenericQ r)

-> GenericQ (GenericQ [r])

The argument to gzipWithQ is a generic query that returns a generic
query. This is ordinary currying: when the function is applied to the
first data structure, it returns a function that should be applied to the
second data structure. Then gzipWithQ is a transformer for such
curried queries. Its implementation will be given in Section 6.3.

6.2 Generic comparison

Given gzipWithQ, it is easy to define a generic equality function:

geq’ :: GenericQ (GenericQ Bool)

geq’ x y = toConstr x == toConstr y

&& and (gzipWithQ geq’ x y)

That is, geq’ x y checks that x and y are built with the same con-
structor and, if so, zips together the children of x and y with geq’

to give a list of Booleans, and takes the conjunction of these results
with and :: [Bool] -> Bool. That is the entire code for generic
equality. Generic comparison (returning LT, EQ, or GT) is equally
easy to define.

We have called the function geq’, rather than geq, because it has a
type that is more polymorphic than we really want. If we spell out
the GenericQ synonyms we obtain:

geq’ :: (Data a1, Data a2) => a1 -> a2 -> Bool

But we do not expect to take equality between values of different
types, a1 and a2, even if both do lie in class Data! The real function
we want is this:

geq :: Data a => a -> a -> Bool

geq = geq’

Why can’t we give this signature to the original definition of geq’?
Because if we did, the call (gzipWithQ geq’ x y) would be
ill-typed, because gzipWithQ requires a function that is indepen-
dently polymorphic in its two arguments. That, of course, just begs
the question of whether gzipWithQ could be less polymorphic, to
which we return in Section 6.5. First, however, we describe the
implementation of gzipWithQ.

6.3 Implementing gzipWithQ

How can we implement gzipWithQ? At first it seems difficult, be-
cause we must simultaneously traverse two unknown data struc-
tures, but the gmap combinators are parametric in just one type.
The solution lies in the type of gzipWithQ, however: we seek a
generic query that returns a generic query. So we can evaluate
(gzipWithQ f t1 t2) in two steps, thus:

gzipWithQ f t1 t2 -- NB: not yet correct!

= gApplyQ (gmapQ f t1) t2

Step 1: use the ordinary gmapQ to apply f to all the children of t1,
yielding a list of generic queries.

Step 2: use an operation gApplyQ to apply the queries in the pro-
duced list to the corresponding children of t2.

Each of these steps requires a little work. First, in step 1, what is
the type of the list (gmapQ f t1)? It should be a list of generic
queries, each of which is a polymorphic function. But GHC’s sup-
port for higher-rank type still maintains predicativity. What this
means is that while we can pass a polymorphic function as an argu-
ment, we cannot make a list of polymorphic functions. Since that
really is what we want to do here, we can achieve the desired result
by wrapping the queries in a data type, thus:

newtype GQ r = GQ (GenericQ r)

gzipWithQ f t1 t2

= gApplyQ (gmapQ (\x -> GQ (f x)) t1) t2

Now the call to gmapQ has the result type [GQ r], which is fine.
The use of the constructor GQ serves as a hint to the type inference
engine to perform generalisation at this point; there is no run-time
cost to its use.

Step 2 is a little harder. A brutal approach would be to add gApplyQ

directly to the class Data. As usual, the instances would be very
simple, as we illustrate for lists:

class Typeable a => Data a where

...

gApplyQ :: [GQ r] -> a -> [r]

instance Typeable a => Data [a] where

...

gApplyQ [GQ q1, GQ q2] (x:xs) = [q1 x, q2 xs]

gApplyQ [] [] = []

But we can’t go on adding new functions to Data, and this one
seems very specific to queries, so we might anticipate that there
will be others yet to come.

Fortunately, gApplyQ can be defined in terms of the generic fold-
ing operation gfoldl from our original paper, as we now show. To
implement gApplyQ, we want to perform a fold on immediate sub-
terms while using an accumulator of type ([GQ r], [r]). Again,
for lists, the combination of such accumulation and folding or map-
ping is a common idiom (cf. mapAccumL in module Data.List).
For each child we consume an element from the list of queries (com-
ponent [GQ r]), while producing an element of the list of results
(component [r]). So we want a combining function k like this:

k :: Data c => ([GQ r], [r]) -> c -> ([GQ r], [r])

k (GQ q : qs, rs) child = (qs, q child : rs)

Here c is the type of the child. The function k simply takes the
accumulator, and a child, and produces a new accumulator. (The
results accumulate in reverse order, but we can fix that up at the
end using reverse, or we use the normal higher-order trick for
accumulation.) We can perform this fold using gfoldl, or rather a
trivial instance thereof — gfoldlQ:

gApplyQ :: Data a => [GQ r] -> a -> [r]

gApplyQ qs t = reverse (snd (gfoldlQ k z t))

where

k (GQ q : qs, rs) child = (qs, q child : rs)

z = (qs, [])

The folding function, gfoldlQ has this type4:

gfoldlQ :: (r -> GenericQ r) -> r -> GenericQ r

The definition of gfoldlQ employs a type constructor R to mediate
between the highly parametric type of gfoldl and the more specific
type of gfoldlQ:

newtype R r x = R { unR :: r }

gfoldlQ k z t = unR (gfoldl k’ z’ t)

where

z’ _ = R z -- replacement of constructor

k’ (R r) c = R (k r c) -- fold step for child c

6.4 Generic zipped transformations

We have focused our attention on generic zipped queries, but all the
same ideas work for generic zipped transformations, both monadic
and non-monadic. For example, we can proceed for the latter as
follows. We introduce a type synonym, GenericT, to encapsulate
the idea of a generic transformer:

type GenericT = forall a. Data a => a -> a

Then gmapT, from our earlier paper, appears as a generic trans-
former transformer; its natural generalisation, gzipWithT, is a
curried-transformer transformer:

gmapT :: GenericT -> GenericT

gzipWithT :: GenericQ GenericT -> GenericQ GenericT

The type GenericQ GenericT is a curried two-argument generic
transformation: it takes a data structure and returns a function that
takes a data structure and returns a data structure. We leave its im-
plementation as an exercise for the reader, along with similar code
for gzipWithM. Programmers find these operations in the generics
library [17] that comes with GHC.

6.5 Mis-matched types or constructors

At the end of Section 6.2, we raised the question of whether
gzipWithQ could not have the less-polymorphic type:

gzipWithQ’ :: (Data a)

=> (forall b. (Data b) => b -> b -> r)

-> a -> a -> [r]

Then we could define geq directly in terms of gzipWithQ’, rather
than detouring via geq’. One difficulty is that gzipWithQ’ is now
not polymorphic enough for some purposes: for example, it would
not allow us to zip together a list of booleans with a list of integers.
But beyond that, an implementation of gzipWithQ’ is problematic.
Let us try to use the same definition as for gzipWithQ:

gzipWithQ’ f t1 t2 -- Not right yet!

= gApplyQ (gmapQ (\x -> GQ (f x)) t1) t2

The trouble is that gApplyQ requires a list of polymorphic queries
as its argument, and for good reason: there is no way to ensure
statically that each query in the list given to gApplyQ is applied to an
argument that has the same type as the child from which the query
was built. Alas, in gzipWithQ’ the query (f x) is monomorphic,

4Exercise for the reader: define gmapQ using gfoldlQ. Hint: use
the same technique as you use to define map in terms of foldl.

because f’s two arguments have the same type. However, we can
turn the monomorphic query (f x) into a polymorphic one, albeit
inelegantly, by using a dynamic type test: we simply replace the
call (f x) by the following expression:

(error "gzipWithQ’ failure" ‘extQ‘ f x)

The function extQ (described in our earlier paper, and reviewed
here in Section 7.1) over-rides a polymorphic query (that always
fails) with the monomorphic query (f x).

Returning to the operation gzipWithQ, we can easily specialise
gzipWithQ at more specific types, just as we specialised geq’ to
geq. For example, here is how to specialise it to list arguments:

gzipWithQL :: (Data a1, Data a2)

=> (forall b1,b2. (Data b1, Data b2) => b1 -> b2 -> r)

-> [a1] -> [a2] -> [r]

gzipWithQL = gzipWithQ

A related question is this: what does gzipWithQ do when the con-
structors of the two structures do not match? Most of the time this
question does not arise. For instance, in the generic equality func-
tion of Section 6.2 we ensured that the structures had the same con-
structor before zipping them together. But the gzipWithQ imple-
mentation of Section 6.3 is perfectly willing to zip together differ-
ent constructors: it gives a pattern-match failure if the second argu-
ment has more children than the first, and ignores excess children
of the second argument. We could also define gzipWithQ such that
it gives a pattern-match failure if the two constructors differ. Either
way, it is no big deal.

7 Generic function extension

One of the strengths of the Scrap your boilerplate approach to
generic programming, is that it is very easy to extend, or over-ride,
the behaviour of a generic function at particular types. To this end,
we employ nominal type-safe cast, as opposed to more structural
notions in other approaches. For example, recall the function gshow

from Section 3:

gshow :: Data a => a -> String

When gshow is applied to a value of type String we would like
to over-ride its default behaviour. For example, (gshow "foo")

should return the string "\"foo\"" rather than the string
"(: ’f’ (: ’o’ (: ’o’ [])))", which is what gshow will give
by default, since a String is just a list of characters.

The key idea is to provide a type-safe cast operation, whose real-
isation formed a key part of our earlier paper; we review it in Sec-
tion 7.1. However, further experience with generic programming
reveals two distinct shortcomings, which we tackle in this section:

• The type of type-safe cast is not general enough for some
situations. We show why it should be generalised, and how,
in Section 7.2.

• Type-safe cast works on types but not on type constructors.
This limitation is important as we show in Section 7.3, where
we also describe how the restriction can be lifted.

We use the term generic function “extension” for the accommo-
dation of type-specific cases. We do not use the term “specialisa-
tion” to avoid any confusion with compile-time specialisation of
generic functions in other approaches. Our approach uses fixed
code and run-time type tests. As a separate matter, however, our
dynamic code can, if desired, be specialised like any other type-
class-overloaded function, to produce type-test-free residual code.

7.1 Monomorphic function extension

In our earlier paper [16], we described a function extQ that can ex-
tend (or, over-ride) a fully-generic query with a type-specific query.
This allows us to refine gshow as follows:

gshow :: Data a => a -> String

gshow = gshow_help ‘extQ‘ showString

gshow_help :: Data a => a -> String

gshow_help t

= "("

++ showConstr (toConstr t)

++ concat (intersperse " " (gmapQ gshow t))

++ ")"

showString :: String -> String

showString s = "\"" ++ concat (map escape s) ++ "\""

where

escape ’\n’ = "\\n"

...etc...

escape other_char = [other_char]

Here, the type-specific showString over-rides the fully-generic
gshow_help to make the combined function gshow. Notice the
mutual recursion between gshow and gshow_help. The function
extQ is defined in the generics library as follows:

extQ :: (Typeable a, Typeable b)

=> (a -> r) -> (b -> r) -> (a -> r)

extQ fn spec_fn arg

= case cast arg of

Just arg’ -> spec_fn arg’

Nothing -> fn arg

The function (gshow_help ‘extQ‘ showString) behaves like
the monomorphic showString if given a String, and like the poly-
morphic function gshow_help otherwise. To this end, extQ uses a
type-safe cast operator, which is regarded as a primitive of the fol-
lowing type:

cast :: (Typeable a, Typeable b) => a -> Maybe b

If the cast from a to b succeeds, one obtains a datum of the form
Just ..., and Nothing otherwise. The constraints on the argu-
ment and result type of cast highlight that cast is not a parametri-
cally polymorphic function. We rather require the types a and b to
be instances of the class Typeable, a superclass of Data:5

class Typeable a where

typeOf :: a -> TypeRep

Given a typeable value v, the expression (typeOf v) computes
the type representation (TypeRep) of v. Like dataTypeOf, typeOf
never inspects its argument. Type representations admit equality,
which is required to coincide with nominal type equivalence. One
specific implementation of type-safe cast is then to trivially guard
an unsafe coercion by type equivalence. This and other approaches
to casting are discussed at length in [16]. In what follows, we are
merely interested in generalising the type of cast.

7.2 Generalising cast

The scheme that we used for extending generic queries is specific
to queries. It cannot be reused as is for generic transformations:

extT :: (Typeable a, Typeable b)

=> (a -> a) -> (b -> b) -> (a -> a)

extT fn spec_fn arg

= case cast arg of -- WRONG

Just arg’ -> spec_fn arg’

Nothing -> fn arg

The trouble is that the result of spec_fn arg’ has a different type
than the call fn arg. Hence, extT must be defined in a different
style than extQ. One option is to cast the function spec_fn rather
than the argument arg:

5We use two separate classes Data and Typeable to encourage
well-bounded polymorphism. That is, the class Typeable supports
nominal type representations, just enough to do cast and dynamics.
The class Data is about structure of terms and data types.

extT fn spec_fn arg

= case cast spec_fn of -- RIGHT

Just spec_fn’ -> spec_fn’ arg

Nothing -> fn arg

This time, the cast compares the type of spec_fn with that of fn,
and uses the former when the type matches. The only infelicity is
that we thereby compare the representations of the types a->a and
b->b, when all we really want to do is compare the representations
of the types a and b. This infelicity becomes more serious when we
move to monadic transforms:

extM :: (???) => (a -> m a) -> (b -> m b) -> (a -> m a)

extM fn spec_fn arg

= case cast spec_fn of

Just spec_fn’ -> spec_fn’ arg

Nothing -> fn arg

Now, we need to construct the representation of a -> m a, and
hence m a must be Typeable too! So the (...???...) must be
filled in thus:

extM :: (Typeable a, Typeable b,

Typeable (m a), Typeable (m b))

=> (a -> m a) -> (b -> m b) -> (a -> m a)

Notice the Typeable constraints on (m a) and (m b), which
should not be required. The type of cast is too specific. The prim-
itive that we really want is gcast — generalised cast:

gcast :: (Typeable a, Typeable b) => c a -> Maybe (c b)

Here c is an arbitrary type constructor. By replacing cast by gcast

in extT and extM, and instantiating c to Λa.a->a, and Λa.a -> m a
respectively, we can achieve the desired effect.

But wait! Haskell does not support higher-order unification, so how
can we instantiate c to these type-level functions? We resort to the
standard technique, which uses a newtype to explain to the type
engine which instantiation is required. Here is extM:

extM :: (Typeable a, Typeable b)

=> (a -> m a) -> (b -> m b) -> (a -> m a)

extM fn spec_fn arg

= case gcast (M spec_fn) of

Just (M spec_fn’) -> spec_fn’ arg

Nothing -> fn arg

newtype M m a = M (a -> m a)

Here, (M spec_fn) has type (M m a), and that fits the type of
gcast by instantiating c to M m. We can rewrite extQ and extT

to use gcast, in exactly the same way:

extQ fn spec_fn arg

= case gcast (Q spec_fn) of

Just (Q spec_fn’) -> spec_fn’ arg

Nothing -> fn arg

newtype Q r a = Q (a -> r)

extT fn spec_fn arg

= case gcast (T spec_fn) of

Just (T spec_fn’) -> spec_fn’ arg

Nothing -> fn arg

newtype T a = T (a -> a)

As with cast before, gcast is best regarded as a built-in primitive,
but in fact gcast replaces cast. Our implementation of cast, dis-
cussed at length in [16], can be adopted directly for gcast. The
only difference is that gcast neglects the type constructor c in the
test for type equivalence [17].

This generalisation, from cast to gcast, is not a new idea. Weirich
[22] uses the same generalisation, from cast to cast’ in her case,
albeit using structural rather than nominal type equality. We used
a very similar pattern in our earlier paper, when we generalised
gmapQ, gmapT and gmapM to produce the function gfoldl [16].

7.3 Polymorphic function extension

The function extQ allows us to extend a generic function at
a particular monomorphic type, but not at a polymorphic type.
For example, as it stands gshow will print lists in prefix form
"(: 1 (: 2 : []))". How could we print lists in distfix nota-
tion, thus "[1,2]"?

Our raw material must be a list-specific, but still element-generic
function that prints lists in distfix notation:

gshowList :: Data b => [b] -> String

gshowList xs

= "[" ++ concat (intersperse "," (map gshow xs)) ++ "]"

Now we need to extend gshow_help with gshowList — but extQ
has the wrong type. Instead, we need a higher-kinded version of
extQ, which we call ext1Q:

ext1Q :: (Typeable a, Typeable1 t)

=> (a -> r)

-> (forall b. Data b => t b -> r)

-> (a -> r)

gshow :: Data a => a -> String

gshow = gshow_help ‘ext1Q‘ gshowList

‘extQ‘ showString

Here, ext1Q is quantified over a type constructor t of kind *->*,
and hence we need a new type class Typeable1: Haskell sadly
lacks kind polymorphism! (This would require a non-trivial lan-
guage extension.) We discuss Typeable1 in Section 7.4.

To define ext1Q we can follow exactly the same pattern as for extQ,
above, but using a different cast operator:

ext1Q fn spec_fn arg

= case dataCast1 (Q spec_fn) of

Just (Q spec_fn’) -> spec_fn’ arg

Nothing -> fn arg

newtype Q r a = Q (a -> r)

Here, we need (another) new cast operator, dataCast1. Its type is
practically forced by the definition of ext1Q:

dataCast1 :: (Typeable1 s, Data a)

=> (forall b. Data b => c (s b))

-> Maybe (c a)

It is absolutely necessary to have the Data constraint in the argu-
ment to dataCast1. For example, this will not work at all:

bogusDataCast1 :: (Typeable1 s, Typeable a)

=> (forall b. c (s b))

-> Maybe (c a)

It will not work because the argument is required to be completely
polymorphic in b, and our desired arguments, such as showList are
not; they need the Data constraint. That is why the “Data” appears
in the name dataCast1.

How, then are we to implement dataCast1? We split the imple-
mentation into two parts. The first part performs the type test (Sec-
tion 7.4), while the second instantiates the argument to dataCast1

(Section 7.5).

7.4 Generalising cast again

First, the type test. We need a primitive cast operator, gcast1, that
matches the type constructor of the argument, rather than the type.
Here is its type along with that of gcast for comparison:

gcast1 :: (Typeable1 s, Typeable1 t) -- New

=> c (s a) -> Maybe (c (t a))

gcast :: (Typeable a, Typeable b) -- For comparison

=> c a -> Maybe (c b)

The role of c is unchanged. The difference is that gcast1 com-
pares the type constructors s and t, instead of the types a and

b. As with our previous generalisation, from cast to gcast, the
Typeable constraints concern only the differences between the two
types whose common shape is (c (• a)). The implementation of
gcast1 follows the same trivial scheme as before [16, 17].

The new class Typeable1 is parameterised over type constructors,
and allows us to extract a representation of the type constructor:

class Typeable1 s where

typeOf1 :: s a -> TypeRep

instance Typeable1 [] where

typeOf1 _ = mkTyConApp (mkTyCon "Prelude.List") []

instance Typeable1 Maybe where

typeOf1 _ = mkTyConApp (mkTyCon "Prelude.Maybe") []

The operation mkTyCon constructs type-constructor representations.
The operation mkTyConApp turns the latter into potentially in-
complete type representations subject to further type applications.
There is a single Typeable instance for all types with an outermost
type constructors of kind *->*:

instance (Typeable1 s, Typeable a)

=> Typeable (s a) where

typeOf x = typeOf1 x ‘mkAppTy‘ typeOf (undefined :: a)

(Notice the use of a scoped type variable here. Also, generic in-
stances are not Haskell 98 compliant. One could instead use one
instance per type constructor of kind *->*.) The function mkAppTy

applies a type-constructor representation to an argument-type rep-
resentation. In the absence of kind polymorphism, we sadly need
a distinct Typeable class for each kind of type constructor. For
example, for binary type constructors we have:

class Typeable2 s where

typeOf2 :: s a b -> TypeRep

instance (Typeable2 s, Typeable a)

=> Typeable1 (s a) where

typeOf1 x = typeOf2 x ‘mkAppTy‘ typeOf (undefined :: a)

One might worry about the proliferation of Typeable classes, but
in practice this is not a problem. First, we are primarily interested
in type constructors whose arguments are themselves of kind *, be-
cause the Data class only makes sense for types. Second, the arity
of type constructors is seldom large.

7.5 Implementing dataCast1

Our goal is to implement dataCast1 using gcast1:

dataCast1 :: (Typeable1 s, Data a)

=> (forall b. Data b => c (s b))

-> Maybe (c a)

gcast1 :: (Typeable1 s, Typeable1 t)

=> c (s a) -> Maybe (c (t a))

There appear to be two difficulties. First, dataCast1 must work
over any type (c a), whereas gcast1 is restricted to types of
form (c (t a)). Second, dataCast1 is given a polymorphic ar-
gument which it must instantiate by applying it to a dictionary for
Data a. Both these difficulties can, indeed must, be met by making
dataCast1 into a member of the Data class itself:

class Typeable a => Data a where

...

dataCast1 :: Typeable1 s

=> (forall a. Data a => c (s b))

-> Maybe (c a)

Now in each instance declaration we have available precisely
the necessary Data dictionary to instantiate the argument. All
dataCast1 has to do is to instantiate f, and pass the instantiated
version on to gcast1 to perform the type test, yielding the follow-
ing, mysteriously simple implementation:

instance Data a => Data [a] where

...

dataCast1 f = gcast1 f

The instances of dataCast1 for type constructors of kind other than
-> returns Nothing, because the type is not of the required form.

instance Data Int where

...

dataCast1 f = Nothing

Just as we need a family of Typeable classes, so we need a family
of dataCast operators with an annoying but unavoidable limit.

7.6 Generic function extension — summary

Although this section has been long and rather abstract, the con-
crete results are simple to use. We have been able to generalise
extQ, extT, extM (and any other variants you care to think of) so
that they handle polymorphic as well as monomorphic cases. The
new operators are easy to use — see the definition of gshow in Sec-
tion 7.3 — and are built on an interesting and independently-useful
generalisation of the Typeable class. All the instances for Data and
Typeable are generated automatically by the compiler, and need
never be seen by the user.

8 Related work

The position of the Scrap your boilerplate approach within the
generic programming field was described in the original paper.
Hence, we will focus on related work regarding the new contribu-
tions of the present paper: type reflection (Section 5), zipping com-
binators (Section 6), and generic function extension (Section 7).

Our type reflection is a form of introspection, i.e., the structure of
types can be observed, including names of constructors, fields, and
types. In addition, terms can be constructed. This is similar to the
reflection API of a language like Java, where attributes and method
signatures can be observed, and objects can be constructed from
class names. The sum-of-products approach to generic program-
ming abstracts from everything except type structure. In the pure
sum-of-products setup, one cannot define generic read and show
functions. There are non-trivial refinements, which enrich induc-
tion on type structure with cases for constructor applications and
labelled components [7, 4, 8]. In our approach, reflective infor-
mation travels silently with the Data dictionaries that go with any
data value. This is consistent with the aspiration of our approach
to define generic functions without reference to a universal repre-
sentation, and without compile-time specialisation. Altenkirch and
McBride’s generic programming with dependent types [1] suggests
that reflective data can also be represented as types, which is more
typeful than our approach.

Zipping is a well-known generic operation [12, 4, 13]. Our de-
velopment shows that zippers can be defined generically as cur-
ried folds, while taking advantage of higher-order generic func-
tions. Defining zippers by pattern matching on two parameters in-
stead, would require a non-trivial language extension. In the sum-
of-product approach, zippers perform polymorphic pattern match-
ing on the two incoming data structures simultaneously. To this
end, the generic function is driven by the type structure of a shared
type constructor, which implies dependently polymorphic argument
types [12, 4]. Altenkirch and McBride’s generic programming with
dependent types [1] indicates that argument type dependencies as
in zipping can be captured accordingly with dependent types if
this is intended. Their approach also employs a highly paramet-
ric fold operator that is readily general for multi-parameter traver-
sal. The pattern calculus (formerly called constructor calculus) by
Barry Jay [13], defines zipping-like operations by simultaneous pat-
tern matching on two arbitrary constructor applications. Like in our

zippers, the argument types are independently polymorphic.

Customisation of generic functions for specific types is an obvious
desideratum. In Generic Haskell, generic function definitions can
involve some sort of ad-hoc or default cases [7, 5, 4, 19]. Our ap-
proach narrows down generic function extension to the very simple
construct of a nominal type cast [16]. However, our original paper
facilitated generic function extension with only monomorphic cases
as a heritage of our focus on term traversal. The new development
of Section 7 generalised from monomorphic to polymorphic cases
in generic function extension. This generality of generic function
extension is also accommodated by Generic Haskell, but rather at
a static level relying on a dedicated top-level declaration form for
generic functions. By contrast, our generic function extension fa-
cilitates higher-order generic functions.

In a very recent paper [8], Hinze captures essential idioms of
Generic Haskell in a Haskell 98-based model, which requires ab-
solutely no extensions. Nevertheless, the approach is quite gen-
eral. For instance, it allows one to define generic functions that are
indexed by type constructors. This work shares our aspiration of
lightweightness as opposed to the substantial language extension of
Generic Haskell [7, 5, 4, 19]. Hinze’s lightweight approach does
not support some aspects of our system. Notably, Hinze’s generic
functions are not higher-order; and generic functions operate on a
representation type. Furthermore, the approach exhibits a limita-
tion related to generic function extension: the class for generics
would need to be adapted for each new type or type constructor that
requires a specific case.

9 Conclusion

We have completed the Scrap your boilerplate approach to generic
programming in Haskell, which combines the following attributes:

Lightweight: the approach requires two independently-useful lan-
guage extensions to Haskell 98 (higher-rank types and type-
safe cast), after which everything can be implemented as a
library. A third extension, extending the deriving clause to
handle Data and Typeable is more specific to our approach,
but this code-generation feature is very non-invasive.

General: the approach handles regular data types, nested data
types, mutually-recursive data types, type constructor param-
eterised in additional types; and it handles single and multi-
parameter term traversal, as well as term building.

Versatile: the approach supports higher-order generic program-
ming, reusable definitions of traversal strategies, and over-
riding of generic functions at specified types. There is no
closed world assumption regarding user-defined data types.

Direct: generic functions are directly defined on Haskell data
types without detouring to a uniform representation type such
as sums-of-products. Also, Haskell’s nominal type equiva-
lence is faithfully supported, as opposed to more structurally-
defined generic functions.

Well integrated and supported: everything we describe is imple-
mented in GHC and supported by a Haskell generics library.

Acknowledgements. We gratefully acknowledge very helpful com-
ments and suggestions by four anonymous ICFP 2004 referees as
well as by Olaf Chitil, Andres Löh, and Simon Marlow.

10 References
[1] T. Altenkirch and C. McBride. Generic programming within depen-

dently typed programming. In Generic Programming, 2003. Proceed-
ings of the IFIP TC2 Working Conference on Generic Programming,
Schloss Dagstuhl, July 2002.

[2] F. Atanassow, D. Clarke, and J. Jeuring. UUXML: A Type-Preserving
XML Schema-Haskell Data Binding. In B. Jayaraman, editor, Practi-
cal Aspects of Declarative Languages: 6th International Symposium,
PADL 2004, Dallas, TX, USA, June 18-19, 2004. Proceedings, volume
3057 of LNCS, pages 71–85. Springer-Verlag, May 2004.

[3] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for ran-
dom testing of Haskell programs. In ICFP00 [11], pages 268–279.

[4] D. Clarke, J. Jeuring, and A. Löh. The Generic Haskell User’s Guide,
2002. Version 1.23 — Beryl release.

[5] D. Clarke and A. Löh. Generic Haskell, Specifically. In J. Gibbons
and J. Jeuring, editors, Proc. of the IFIP TC2 Working Conference on
Generic Programming. Kluwer Academic Publishers, 2003.

[6] J. Harm and R. Lämmel. Two-dimensional Approximation Coverage.
Informatica, 24(3):355–369, 2000.

[7] R. Hinze. A generic programming extension for Haskell. In Proc. 3rd
Haskell Workshop, Paris, France, 1999. Technical report of Univer-
siteit Utrecht, UU-CS-1999-28.

[8] R. Hinze. Generics for the masses. In these proceedings, 2004.

[9] R. Hughes. A novel representation of lists and its application to the
function reverse. Information Processing Letters, 22, 1986.

[10] G. Hutton and E. Meijer. Functional pearl: Monadic parsing in
Haskell. Journal of Functional Programming, 8(4):437–444, July
1998.

[11] ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’00), Montreal, Sept. 2000. ACM.

[12] P. Jansson and J. Jeuring. PolyLib—A library of polytypic functions.
In R. Backhouse and T. Sheard, editors, Proc. of Workshop on Generic
Programming, WGP’98, Marstrand, Sweden. Dept. of Comp. Science,
Chalmers Univ. of Techn. and Göteborg Univ., June 1998.

[13] C. B. Jay. The pattern calculus. http://www-staff.it.uts.edu.

au/˜cbj/Publications/pattern_calculus.ps, 2003. (accepted
for publication by ACM TOPLAS.).

[14] P. W. M. Koopman, A. Alimarine, J. Tretmans, and M. J. Plasmei-
jer. Gast: Generic Automated Software Testing. In R. Pena and
T. Arts, editors, Implementation of Functional Languages, 14th In-
ternational Workshop, IFL 2002, Madrid, Spain, September 16-18,
2002, Revised Selected Papers, volume 2670 of LNCS, pages 84–100.
Springer-Verlag, 2003.

[15] R. Lämmel and J. Harm. Test case characterisation by regular path
expressions. In E. Brinksma and J. Tretmans, editors, Proc. Formal
Approaches to Testing of Software (FATES’01), Notes Series NS-01-
4, pages 109–124. BRICS, Aug. 2001.

[16] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practi-
cal design pattern for generic programming. ACM SIGPLAN Notices,
38(3):26–37, Mar. 2003. Proceedings of the ACM SIGPLAN Work-
shop on Types in Language Design and Implementation (TLDI 2003).

[17] The “Scrap your boilerplate” web site: examples, browsable li-
brary, papers, background, 2003–2004. http://www.cs.vu.nl/

boilerplate/.

[18] D. Lelewer and D. Hirschberg. Data compression. ACM Computing
Surveys, 19(3):261–296, Sept. 1987.

[19] A. Löh, D. Clarke, and J. Jeuring. Dependency-style Generic Haskell.
In C. Norris and J. J. B. Fenwick, editors, Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP-03), volume 38, 9 of ACM SIGPLAN Notices, pages 141–
152, New York, Aug. 25–29 2003. ACM Press.

[20] S. Peyton Jones and M. Shields. Practical type inference for higher-
rank types. Unpublished manuscript, 2004.

[21] M. Wallace and C. Runciman. Haskell and XML: Generic combi-
nators or type-based translation. In ACM SIGPLAN International
Conference on Functional Programming (ICFP’99), pages 148–159,
Paris, Sept. 1999. ACM.

[22] S. Weirich. Type-safe cast. In ICFP00 [11], pages 58–67.

[23] I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compres-
sion. CACM, 30(6):520–540, June 1987.

