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Abstract

Many pitch trackers based on dynamic programming re-
quire meticulous design of local cost and transition cost func-
tions. The forms of these functions are often empirically de-
termined and their parameters are tuned accordingly. Parame-
ter tuning usually requires great effort without a guarantee of
optimal performance. This work presents a graphical model
framework to automatically optimize pitch tracking parameters
in the maximum likelihood sense. Therein, probabilistic de-
pendencies between pitch, pitch transition and acoustical obser-
vations are expressed using the language of graphical models,
and probabilistic inference is accomplished using the Graphi-
cal Model Toolkit (GMTK). Experiments show that this frame-
work not only expedites the design of a pitch tracker, but also
yields remarkably good performance for both pitch estimation
and voicing decision.

1. Introduction
Pitch tracking has drawn increased attention in speech coding,
synthesis and recognition and in prosody modeling. In the “Vo-
cal Joystick” project recently funded by NSF and carried out
at the University of Washington, pitch (along with formants,
power and other features) is intended to be utilized as an acous-
tic feature for human-machine interaction. For example, the
pitch trajectory can serve as one coordinate for 3-D continuous
motion control. Therefore, a robust pitch tracking system is of
significant importance and interest.

Many state-of-the-art pitch trackers resemble the method-
ology proposed by [1], which consists of three steps: pre-
processing, pitch candidate generation, and post-processing by
dynamic programming (DP). The first step involves signal con-
ditioning techniques, and the second step selects pitch candi-
dates and computes their “scores” by applying certain pitch de-
tection algorithms (PDA) to the local frame acoustics. In the
post-processing step, the cost Ct,j of proposing pitch candidate
j at frame t is computed as follows,

Ct,j = f
local
t (j) + min

i
{Ct−1,i + f

tran
t−1,t(i, j)} (1)

where the local cost function f local takes into account the
scores obtained from the second step, and the transition cost
function f tran models the penalty of transitioning from candi-
date i of the previous frame to candidate j of the current frame.

The forms of these cost functions are usually empirically
determined and their parameters are often tuned by algorithms
such as gradient descent [1]. This process, however, remains a
difficult problem and a time-consuming task. First, f local has to
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be optimized each time a different PDA is applied. For example,
PDAs can be designed in several domains including time, spec-
tral, cepstral and their combinations [2]. While classic PDAs
like the normalized cross-correlation function (NCCF) [3] are
popularly used, new algorithms such as ACOLS [4], JTFA [5]
and YIN [6], are increasingly coming into play. In order to
evaluate, compare and eventually implement these techniques, a
large amount of time has to be spent deciding the form of f local

and tuning its parameters. Second, ideally f tran should be
adapted when the pitch tracker is exposed to another language,
or applied to another application. This is because different lan-
guages and applications may follow very different pitch transi-
tion patterns. For example, in the Vocal Joystick project, pitch
is allowed to change arbitrarily, unlike the “gradually chang-
ing” assumptions made by most pitch tracking systems adapted
to natural speech. Therefore, the local and transition cost func-
tions optimized for certain PDAs and applications may not be
the most appropriate for others.

The goal of this work is to expedite the design of new pitch
trackers customized for specific applications. Extending the ba-
sic idea of [7], this work provides a graphical model framework
to learn a pitch tracker from data. Therein, a PDA or a pitch
transition pattern can be easily incorporated into the system
with parameters automatically estimated using statistical meth-
ods. Furthermore, since the parameters are optimized in the
maximum likelihood sense, both pitch estimation and voicing
decision give better performance. The Graphical Model Toolkit
(GMTK) [8] was utilized to implement our framework (GMTK
is a publically available toolkit for developing graphical model
and dynamic Bayesian network based speech, language, and
time-series analysis systems).

The rest of the paper is organized as follows: Section 2
describes our graphical models for learning and decoding and
discusses practical issues associated with parameter estimation.
Section 3 presents experiments and results, followed by discus-
sion in the last section.

2. Graphical Model Framework

2.1. Graph structure and local probability models

Graphical models are a flexible, concise, and expressive proba-
bilistic modeling framework with which one may rapidly spec-
ify a vast collection of statistical models. Our graphical model
framework for pitch tracking (decoding) is depicted in Figure 1.
The shaded nodes represent variables observed at decode time,
whereas the unshaded nodes are hidden.

1. The random variable Qt is discrete with cardinality N ,
corresponding to N − 1 possible pitch periods (voiced states)
plus one unvoiced state (with index N ) at frame t. Qt has no
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Figure 1: Decoding graph

parents, but has a prior distribution π
q
i

∆
= P (Qt = i).

2. The random variable Dt is also discrete with cardinal-
ity M , corresponding to M transition patterns coarsely quan-
tized from N2 possible (Qt−1, Qt) pairs. The dependency be-
tween Qt−1, Qt and Dt is represented by a deterministic table.
Specifically, the set {1..N}×{1..N} is partitioned into M non-
overlapping subsets Sm, m = 1..M , and P (Dt = m|Qt−1 =
i, Qt = j) = 1 iff (i, j) ∈ Sm. In this work, we initially use a
simple partition scheme:

S1 = {(i, j) : i = N, j 6= N};
S2 = {(i, j) : i 6= N, j = N};
Sm = {(i, j) : Lm ≤ j − i < Um}; m = 3..M,

(2)

where Lm and Um are (respectively) lower and upper bounds
evenly spaced at integers between −N + 2 and N − 2. In
other words, S1 corresponds to unvoiced-to-voiced transitions;
S2 corresponds to voiced-to-unvoiced transitions; voiced pitch
transitions are clustered into M − 2 patterns based on pitch pe-
riod difference; and the unvoiced-to-unvoiced transition belong
to the same subset as the voiced pitch transition where i = j.

3. There is a dummy binary node Rt parented by Dt with
conditional probability

π
d
m

∆
= P (Rt = 1|Dt = m) =

∑

(i,j)∈Sm
C(i, j)

∑M
m=1

∑

(i,j)∈Sm
C(i, j)

,

(3)
where C(i, j) is the count function of the instances of the event
{Qt−1 = i, Qt = j} in the training data. The purpose of this
dummy node is to provide soft evidence for Dt, and this evi-
dence is encoded using the histogram of the M pitch transition
patterns. Note that for the purposes of inference and decoding,
the results would be identical with a πd

m multiplied by any pos-
itive scalar. We keep this expression of soft evidence, as it is
amenable to standard smoothing methods (see Section 2.4).

4. The children of Qt and Dt are continuous observations
O

q
t and Od

t . They are both obtained from acoustic signals,
which will be discussed in the next subsection.

Figure 1 is a valid graph for pitch tracking when considered
in accordance to Bayesian network semantics. It captures de-
pendency between pitch and local acoustics, and that between
pitch transition pattern and acoustical changes. Also, by model-
ing Qt−1 and Qt as parents of Dt and adding dummy nodes Rt,
the prior probabilities of pitch and pitch transition are simulta-
neously modeled in the graph, which would otherwise be hard
to accomplish. Note that in our model, it is not the case that

Qt is independent of Qt+1 due to the evidence Rt = 1, ∀t.
Moreover, Figure 1 is an intuitive and efficient graph compared
to its alternatives. For example, a condensed, HMM-like graph
could be used instead, where Qt−1, Qt and Dt are bundled into
a large single hidden node. However, this hidden node would
have high cardinality, and the local probabilities in their fac-
tored form would not be straightforward either to represent or
to learn.

2.2. Observation features

The observation features are crucial to the success of pitch
tracking. Autocorrelation coefficients or their extended forms
[3, 4, 6] can be directly used as O

q
t , corresponding to time-

domain PDAs. For example, in the case of NCCF, we let
xt = (x1,t, x2,t, . . . , xN,t) where xi,t, i = 1..N − 1, is
the NCCF coefficient of the ith candidate pitch period, and
xN,t = max

i=1..N−1
xi,t. If frame t is voiced and the ith can-

didate is the truth, xi,t is likely to be high (close to one ideally).
On the other hand, if frame t is unvoiced, xN,t is likely to be
low. Therefore, we model the observation distribution as

P (Oq
t = xt|Qt = i) =

{

N (xi,t; 1, β2) i = 1..N − 1
N (xi,t; µ, γ2) i = N

(4)
where µ is fixed at the minimum value of xN,t for all data. Note
that these two means, 1 and µ, are set in advance and are fixed
during the training of the other parameters. Since xi,t < 1,
i = 1..N , a high xi,t will lead to a high observation probability
for state i. Similarly since xN,t > µ, a low xN,t will imply
a high observation probability for state N , meaning frame t is
likely to be unvoiced.

In this work, we choose NCCF based features in order to
compare with [1] which uses NCCF coefficients in the DP. As
we will see later, our graphical model automatically optimizes
the parameters and significantly improves the estimation rate.
We can certainly choose other features (PDAs) such as normal-
ized YIN [6] coefficients for further improvement.

The observation features Od
t is the power change from

frame t − 1 to t. The choice of this feature is based on the em-
pirical observation (justified by our experiments) that there is a
correlation between the change in pitch state and the change in
power. For example, an utterance with decreasing pitch tends
to have decreasing power, and an unvoiced-to-voiced transi-
tion tends to have increasing power. Therefore, computing the
power change may help in deciding the transition patterns of
the pitch and thereby reduce the estimation error rate. The cor-
responding observation distribution is modeled as

P (Od
t = yt|Dt = m) = N (yt; ρm, σ

2), (5)

where yt is the relative power change between two consecutive
frames, ρm is the mean of the Gaussian of the mth transition
pattern, and σ2 is shared by all Gaussians.

2.3. Parameter estimation and decoding

Slightly different from the decoding graph, the training graph
is depicted in Figure 2. In fact, Dt is implicitly observed since
it is deterministic given Qt−1 and Qt. This graph makes the
following conditional independence assumptions: (a) O

q
t is in-

dependent of all other variables given Qt, as is Od
t given Dt;

(b) Qt and Dt are independent of Q1:t−2 and D2:t−1, given
Qt−1. These statements imply that the likelihood can be de-
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Figure 2: Training graph

composed into several factors each of which can be maximized
during training:

ln P (Q1:T , O
q
1:T , Od

2:T )

= ln
∑

d2:T

P (Q1:T , D2:T = d2:T , O
q
1:T , O

d
2:T )

=

T
∑

t=1

ln P (Qt = qt) +

T
∑

t=1

ln P (Oq
t = xt|Qt = qt)

+

T
∑

t=2

ln[
∑

m

P (Od
t = yt|Dt = m)

·P (Dt = m|Qt−1 = qt−1, Qt = qt)]
(6)

Recall that P (Dt = m|Qt−1 = qt−1, Qt = qt) is in fact
an indicator function which equals one when (qt−1, qt) ∈ Sm.
Therefore, only one pitch transition pattern can survive the sum-
mation over m. Plugging Equation (4) and Equation (5) into
Equation (6) and taking derivatives with respect to the parame-
ters, we can get the maximum likelihood estimation of π

q
i , β2,

γ2, ρi and σ2. Furthermore, πd
m in Equation (3) are also easily

estimated during training by computing the histogram of pitch
transition patterns.

For decoding, we use the graph in Figure 1. Let αj(t) =
P (Qt = j, O

q
1:t, O

d
2:t, R2:t). Decoding can then be written as,

αj(1) = π
q
j P (Oq

1 = x1|Q1 = j);
αj(t) = π

q
j P (Oq

t = xt|Qt = j)·

max
i

[
∑

m

π
d
mP (Od

t = yt|Dt = m)·

P (Dt = m|Qt−1 = i, Qt = j)αi(t − 1))]

(7)

Again, P (Dt = m|Qt−1 = i, Qt = j) is an indicator function.
If we let Ct,i = − ln αi(t), Equation (7) is equivalent to the DP

in Equation (1), where K
∆
= 1

2
ln 2π, and

f local
t (j) =







− ln π
q
j + K + ln β +

(1−xj,t)
2

2β2 , j = 1..N − 1

− ln π
q
j + K + ln γ +

(xj,t−µ)2

2γ2 , j = N

f tran
t−1,t(i, j) = − ln πd

m + K + ln σ + (yt−ρm)2

2σ2 , (i, j) ∈ Sm

(8)
The best pitch period sequence can be obtained via backtrack-
ing after the DP terminates. The Gaussian assumption of local
probabilities lead to a quadratic form of these cost functions.
With parameters optimized in the maximum likelihood sense,
these functions give remarkably good performance as we will
see in Section 3. It is worth noting that these cost functions can

take on other forms under a different distribution assumption,
and the parameters can be efficiently estimated as long as good
sufficient statistics exist for that distribution.

2.4. Smoothing

One issue associated with parameter learning using graphical
models is the lack of training data. Certain pitch values or pitch
transitions may not exist in the training set. To compensate for
this problem, we smooth the priors using a method similar to
Laplace smoothing [9]. In the case of the transition values,

π
d
m(new) =

πd
m + λ

1 + Mλ
. (9)

In the case of pitch priors, the unvoiced state is treated sepa-
rately,

π
q
i (new) =

{

N−1
N

π
q
i

/(1−π
q

N
)+λ

1+(N−1)λ
i = 1..N − 1

1
N

i = N
(10)

The choice of λ depends on the amount of training data avail-
able. The transition priors can be well estimated with only a
small amount of data, but the pitch priors are usually biased
due to the limited number of different speakers in the training
set. In practice, we often choose a small λ for πd

m, so that
πd

m(new) ≈ πd
m, and choose a very large λ for π

q
i , so that

π
q
i (new) is close to a uniform distribution.

3. Evaluation
3.1. Setup

Two databases were combined to create train and test sets
for our graphical-model based pitch tracker. One is “Mocha-
TIMIT,” [10] developed at Queen Margaret University College;
the other was developed at the Hong Kong University of Sci-
ence and Technology for tone-estimation research.

A total of 1192 continuous English speech utterances from
two male and two female speakers were allocated to the train-
ing set. The test set was comprised of 4 subsets, corresponding
to the same four speakers, amounting to 647 utterances differ-
ent from the train set. Laryngograph waveforms are available
for all data. To obtain the pitch ground truth, we first filtered
out the humming noise (the noise generated by the electronic
devices) in the laryngograph, then applied ESPS pitch tracking
tool “get f0” [1] to these waveforms.

3.2. Experiments and Results

Our front-end for observation feature extraction consisted of a
sequence of signal processing modules. The speech waveforms
were sampled at 8kHz, and a frame was created every 10ms
with a length of 40ms. Center clipping was used to remove
background musical noise. NCCF coefficients of 144 possi-
ble pitch periods (50Hz–500Hz) as well as the relative power
change were computed for each frame, corresponding to the
observation features O

q
t and Od

t respectively. Pitch transitions
were quantized to M = 145 different patterns, which gave the
best performance compared to several other quantization reso-
lutions.

Our training and decoding was implemented using a new
fast version of GMTK. We fully exploited GMTK’s ability to
arbitrarily tie and/or hold fixed portions of Gaussian and other



speaker female 1 female 2 male 1 male 2

get f0 5.83 2.11 3.73 1.51
GM 3.38 1.55 1.17 0.86

Table 1: % Pitch estimation GER

speaker female 1 female 2 male 1 male 2

get f0 13.07 12.92 25.66 12.84
GM 9.12 12.59 24.37 5.94

Table 2: % Voicing decision error rate

parameters, and also its unity-score observation distribution ca-
pabilities. The graph in Figure 2 was used for training and Fig-
ure 1 for decoding. The prior probabilities were smoothed using
Equation (9) and Equation (10).

We ran both get f0 and our graphical-model based pitch
tracker on the speech waveforms of the test set, and compared
the results with the ground truth generated by get f0 from the
laryngograph. The pitch trackers were evaluated in two aspects:
pitch estimation and voicing decision [11]. Pitch estimation er-
ror rate is measured in terms of “gross error rate” (GER), which
is the percentage of pitch estimates that deviate from the ground
truth by a certain amount (20% in our experiments). The voic-
ing decision is measured in terms of the percentage of both
unvoiced-to-voiced and voiced-to-unvoiced errors. As is shown
in Table 1 and Table 2, both pitch estimation GERs and voicing
detection error for rates our pitch tracker were lower than those
of get f0 for all four speakers.

4. Conclusion and Discussion
In this paper, we introduce a new approach to pitch tracking
whereby the pitch extractor mechanism is represented using a
graphical model and is implemented using GMTK [8]. Our ap-
proach has a number of advantages owing to the fact that, given
supervisory pitch extraction information, we can train the dy-
namic programming cost functions in a statistically grounded
fashion, namely maximum likelihood. This current work does
not aim to compete with existing state-of-the-art pitch track-
ing systems, but instead to provide a statistical framework that
can optimize the performance of a pitch tracker for specific ap-
plications. With parameters learned from data, our graphical-
model-based pitch tracker is able to automatically accomodate
to the conditions of the training set, and hence gives very good
estimation and detection rates for pitch estimation and voicing
decisions.

In this work, we chose NCCF coefficients as the observa-
tion features O

q
t in an attempt to compare with “get f0.” With

slight modifications to Equation (4), dozens of other score-
based PDAs can be used as observation features as long as the
maximum score is normalized to one. Similarly, observation
features Od

t are not confined to relative power change; spec-
trum change can also be integrated to help make local voicing
decisions. Also, better quantization and clustering of pitch tran-
sition patterns can be further explored. With a more effective
PDA or more robust pitch transition features, we believe per-
formance will further improve over what has been reported in
Section 3.

Although our approach gives efficient and robust estimation

of model parameters, the decoding time could be a hindrance to
its practical use as N scales up. This is because all N candidates
of Qt are involved in the inference of Equation (7) (also the DP
of Equation (8)), and typically N > 100. One simple solution
to this problem is beam search, where only the paths with suf-
ficiently high likelihoods are kept in inference. Alternatively, a
fixed number of top candidates are selected at each frame based
on local costs, and they are the only ones considered in the DP.
While no beam pruning was employed in this work, and while
running time was perfectly acceptable, both methods above will
lead to significant speedups without loss of performance.

One weakness of this framework is the lack of availability
of enough training data with reliable ground truth. With the
increasing use of laryngographs in speech analysis, however,
more data will become readily available to use. The authors
would like to thank Manhung Siu for providing us the database
from the Hong Kong University of Science and Technology.
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