

A Logical Account of NGSCB

Martín Abadi1 and Ted Wobber2

1University of California at Santa Cruz
2Microsoft Research, Silicon Valley

Abstract. As its name indicates, NGSCB aims to be the “Next-Generation Se-
cure Computing Base”. As envisioned in the context of Trusted Computing ini-
tiatives, NGSCB provides protection against software attacks. This paper
describes NGSCB using a logic for authentication and access control. Its goal is
to document and explain the principals and primary APIs employed in NGSCB.

1. Introduction

NGSCB (“Next-Generation Secure Computing Base”, formerly known as “Palla-
dium”) integrates hardware and software components that aim to help in protecting
data and processes against software attacks [8,9,14,15]. The hardware includes a
cryptographic co-processor that contains keys and offers basic cryptographic ser-
vices. The software includes new, trusted operating system components.

While the architecture and the implementation of NGSCB continue to evolve,
quite a few of its features have been discussed in public. We believe that it is worth-
while to elucidate them further. Many of these features seem likely to remain impor-
tant as NGSCB matures, and also appear in other projects and research efforts in the
area of Trusted Computing [1,10,12,13,16].

In this paper, we present an attempt to understand the fundamentals of NGSCB in
terms of a logic for authentication and access control. This formalism had its origins
in the context of the Taos operating system and of the Digital Distributed System
Security Architecture [11,12,18]. In this application to NGSCB, we use the logic for
describing relationships between principals while abstracting away most of the details
of the underlying cryptographic protocols. Although it may be feasible and perhaps
attractive, we do not relate the logic to concrete implementations, nor base new im-
plementations on the logic. Our goal is to document the components and primary
APIs employed in NGSCB, and to provide concise and principled explanations for
them.

At present, one may view all work on NGSCB as “work in progress”. This paper is
no exception. Because the specifics of NGSCB remain subject to change, we are less
concerned with giving a detailed and up-to-the-minute account than with providing a
consistent explanation of important concepts and techniques.

The next section reviews the logic. Section 3 reviews the basics of NGSCB. Sec-
tions 4, 5, and 6 describe principals, derived authorities, and the certification infra-

structure (which is external to NGSCB but necessary for its applications). Section 7
deals with the main system services in logical terms. Section 8 briefly addresses pri-
vacy. Section 9 discusses an example. Section 10 concludes.

2. A Brief Logic Review

The logic enables us to describe a system in terms of principals and their statements.
The logical formula P says s means that principal P makes or supports statement s.
The principal may for example be a user, a piece of hardware, the combination of
some hardware and some software, or a cryptographic key.

We also allow compound principals, particularly of the form P | C. The meaning
of P | C is “P quoting C”; we have that P | C says s when P says that C says s. For
instance, P may represent a piece of hardware, and C a piece of code or a user.

In addition, the logical formula P ⇒ Q means that P speaks for Q, so if P says s
then Q says s, for every s. We generally assume the hand-off axiom which says that if
Q says P ⇒ Q then indeed P ⇒ Q. We use the “speaks for” relation for many pur-
poses. For instance, we often write that a key K speaks for a principal P when K is
P’s public signature key. Typically only P knows the corresponding signing key (K’s
inverse) and can produce signatures that can be checked with K. We may also write
that a principal speaks for any group of which it is a member; thus, when we write
that P speaks for a group we typically mean that P is or speaks for some member of
the group, not necessarily all members of the group. (It would be easy to extend the
logic with a membership relation, and to replace “speaks for” with membership in
these uses; whether this extension is worth the trouble remains open to debate.) We
may represent an access control list (ACL) as the group of the principals authorized
by the list. If GX is the ACL for accessing an object X, then P speaks for GX when P is
authorized to access X.

Although the logic does not lead to correctness proofs of the kind expected in
high-assurance systems, this logic and its relatives have been useful in several ways
in the past. Much as in this paper, the logic has served for describing and document-
ing the workings of a system, what the system achieves, and on what assumptions it
relies, after the fact or in the course of development. In this respect, formal notations
do not accomplish anything beyond the reach of careful, precise prose, but they are
helpful. The logic has also served in validating particular techniques for authoriza-
tion, reducing them to logical reasoning, and also as a basis for new techniques; re-
search on stack inspection and proof-carrying authorization exemplify this line of
work [3,6,17,18]. Finally, the logic has served as a foundation for languages for writ-
ing general security policies [7].

We refer to previous papers for more detailed descriptions of the logic and its ap-
plications.

3. Assumptions on NGSCB

We assume that at the root of any NGSCB node there exists a hardware-based secu-
rity facility that implements cryptosystems, random number generation, and key stor-
age. We use the term Security Support Component (SSC) to describe this facility
since it has been previously used in related literature. The Trusted Platform Module
(TPM) from the Trusted Computing Group [16] may be the main current example of
an SSC.

We further assume that the hardware has the capability to load an operating system
that can be reliably identified by taking a hash (or code-id) of the initial operating
system image and data. This operating system, so loaded, will reside in a protected
area of memory that cannot be accessed by untrusted code that the operating system
might load. Therefore, the hardware has reason to believe that the statements made by
the securely loaded operating system can be attributed to the principal identified by
the code-id. In turn, the operating system can load a child process and attribute state-
ments made by that child process to the principal identified by the hash of its code
and data. Following one existing nomenclature for NGSCB, we call the securely
loaded operating system the Nexus, and we call any child process that it loads a Nexus
Computing Agent (NCA). The Nexus may be implemented, for example, by combin-
ing a virtual-machine hypervisor with a trusted guest operating system [10,15]. For
simplicity, we focus on situations with one distinguished Nexus and one distin-
guished NCA; of course, other software may be running on the hardware at the same
time.

Finally, we assume trusted input and output paths for communication with users.
In particular, the hardware may guarantee that only a particular Nexus receives input
from the keyboard and can send output to a display. The Nexus may in turn provide a
similar guarantee to a particular NCA.

These assumptions are consistent with previous, public descriptions of NGSCB,
such as the ones found in papers and on the Web. Those descriptions, like most in-
formal descriptions, are however incomplete and imprecise in some respects. One of
the goals of the present logical account is to complement those descriptions, with
additional details (some of them validated in private conversations with the NGSCB
team, and some of them conjectured rather than based on an official NGSCB design),
and with a partial rationale for the workings of NGSCB.

4. Principals

Next we enumerate principals relevant for NGSCB security.
The following principals are particular to each NGSCB node. Each node will have

different instances of them.

K0 the permanent public key of the SSC
KT a per-boot public key of the SSC

S0 the master symmetric key of the SSC
ST a per-boot symmetric key derived from S0

The inverse of the key K0 and the symmetric key S0 never leave the SSC hardware;
the inverse of the key KT and the symmetric key ST may or may not leave the hard-
ware, as discussed below. We rely on asymmetric cryptography (public-key opera-
tions with K0, KT, and their inverses) primarily for digital signatures, rather than for
public-key encryption. When encryption is needed, we indicate it explicitly. The
symmetric key S0 may be replaced with a pair of keys for asymmetric encryption,
with only minor changes.

The following principals represent software images. There can, of course, be many
different images in which we might be interested. For simplicity of exposition, we
will be concerned with only two:

CNEX the code-id of a particular Nexus
CNCA the code-id of a particular NCA

The following principals complete the cast; they provide the context outside an

NGSCB system:

M a manufacturer of SSC hardware
V a vendor or author of Nexus software
A a vendor or author of NCA software
KM M’s public signature key
KV V’s public signature key
KA A’s public signature key
GM a group of public signature keys for SSCs produced by M
GV a group of code-ids for Nexus software images produced by V
GA a group of code-ids for NCA software images produced by A
CA a trusted certification authority

5. Derived Authorities

It would be possible for an SSC to make statements only with its permanent public
key K0. However, it is desirable to sign as few certificates as possible with this key.
Therefore, we assume that, at boot time, the SSC generates a temporary key pair, con-
sisting of the public key KT and its inverse. Then K0 transfers all of its authority to KT.
This hand-off of authority is captured in the following statement:

K0 says KT ⇒ K0
The certificate described here, and all subsequent certificates mentioned in this pa-

per, should be considered valid only for a limited period of time. The logic does not
directly model time, so we do not represent time formally; one could probably add it
with a modest effort.

In this formulation, we assume that the SSC holds the temporary secret key (the
inverse of KT) in hardware and uses the key for signing statements on behalf of other
principals on the local machine. This key could instead reside in the Nexus and be
accessed through a similar interface. In this case, the key would no longer be pro-
tected within the SSC, so the two arrangements entail different security properties.

Because of the secure loading steps described above, a successfully loaded Nexus
will have the authority of the compound principal KT | CNEX. An SSC can run any
Nexus software, but the rights of a specific Nexus instance are exactly those of the
SSC parameterized by the code-id of the Nexus. Similarly, an NCA loaded on top of
a Nexus would speak as KT | CNEX | CNCA.

6. Certification Infrastructure

In order to deduce anything useful about statements made by the software running on
an NGSCB node, we must have trust assumptions. We hypothesize the presence of a
certification authority CA that makes statements that are globally trusted. In particu-
lar, we trust CA to specify the set of acceptable NGSCB nodes and the set of trusted
Nexus and NCA software images; we express this trust as follows:

CA ⇒ GM

CA ⇒ GV

CA ⇒ GA

We simplify a bit here: in practice, CA will almost always be implemented by a hier-
archy of certification authorities and there will be multiple subgroups of GM, GV, and
GA, according to the intended applications and trust relationships.

Next, we must give some key (or set of keys) the authority to certify membership
in the groups GM, GV, and GA. We represent such statements in the following certifi-
cates:

CA says KM ⇒ GM
CA says KV ⇒ GV
CA says KA ⇒ GA

Finally, we use the signing keys that correspond to KM, KV,, and KA for making
membership certificates for the specific hardware/software stack that we intend to
construct:

KM says K0 ⇒ GM
KV says CNEX ⇒ GV
KA says CNCA ⇒ GA

Combining the certificates and trust assumptions, we can derive:

K0 ⇒ GM

CNEX ⇒ GV

CNCA ⇒ GA

Note that if K0 is a member of GM (so K0 ⇒ GM in our model) then K0 can also de-
fine new group members of GM. In particular, K0 ⇒ GM and K0 says KT ⇒ K0 imply
that KT ⇒ GM. Using a primitive membership relation rather than “speaks for” would
remove this possibility.

7. Programmatic Interface

The programmatic interface of NGSCB supports the sealing of information and hard-
ware-based attestation. Next we explain those functions in terms of the logic and of
the definitions of the previous sections.

7.1. Sealing

Seal(X,C). The Seal function stores the data X in such a way that it can be retrieved
later by the same SSC, and only by that SSC. Furthermore, a code-id C is bound into
the result so that the SSC can restrict subsequent access to that code-id. For example,
an NCA might seal data under its own code-id for later retrieval, or the Nexus might
seal data under the code-id of a subsequent Nexus version as part of a version
migration strategy. The sealed data might be private user information, and the goal of
the sealing might be to protect this information from viruses on the same machine.

Sealing amounts to setting up an access control rule, which we model with the fol-
lowing statement:

S0 says C ⇒ GX
This means that the hardware asserts that C is a member of the group GX of principals
that can access an object with the data X. Nothing here precludes the possibility that
other objects also contain the data X and that code other than C may access those ob-
jects.

In practice, the SSC does not store the data, but rather encrypts it with its private
key and returns the sealed data item. Here we can use the symmetric key S0 instead of
K0 since the statement is always evaluated in the context of the local machine. So this
kind of sealing can be accomplished through authenticated encryption using symmet-
ric ciphers and message authentication codes (MACs).

In order to limit the exposure of S0, the use of a per-boot symmetric secret, ST,
might be desirable. (Indeed, the TPM design goes further in permitting chains of in-
termediate keys.) Suppose that we generate a per-boot nonce, N, and derive ST as a
function of S0 and N for example by setting ST = HMAC(S0,N). This definition im-
plies that N must be stored in plaintext with the sealed content in order to allow the
recovery of ST. In the logic, the access control rule for the sealed object can be ex-
pressed with the following statements:

S0 says ST ⇒ S0
ST says C ⇒ GX

The Seal function might be offered to NCAs by the Nexus, or NCAs might be
given direct access to the SSC’s Seal function. In the former case, a symmetric key
held by the Nexus would be used for sealing instead of ST. This design has the advan-
tage of allowing more straightforward migration to different hardware, but the disad-
vantage of exposing temporary keys within the memory system.

Unseal(X,C). The Unseal function retrieves data held under seal. Conceptually,
access to the sealed data is granted on the basis of the result of evaluating the
corresponding ACL using the code-id of the caller. When Seal relies on encryption,
the SSC implements Unseal by decrypting data that it previously sealed under its own
secret.

PKSeal(X,K). The PKSeal function is similar to Seal except that a target key K is
used instead of a code-id. In this case the unsealer is not assumed to be the same SSC
as the sealer. Therefore, PKSeal can be used to seal data for retrieval on another
machine.

We can describe PKSeal by an access control rule, much as we did for Seal:

KT says K ⇒ GX

If PKSeal is implemented by placing X on a storage server operated by a trusted third
party, then the certificate KT says K ⇒ GX can be directly useful as input to the refer-
ence monitor on that server: when K requests access to X, the reference monitor
grants it.

Alternatively, as its name suggests, the implementation PKSeal can perform pub-
lic-key encryption on X. For this purpose, the public key K should be an encryption
key (and not just a key for checking signatures).

PKUnseal(X,K). Much like Unseal, PKUnseal implements the corresponding
access control rule. When PKUnseal relies on encryption, the implementation of
PKUnseal relies on decryption. In this case, whoever holds the inverse of the public
key used for sealing will have de facto access to X.

7.2. Attestation

Quote(ST). The Quote function allows the SSC to attest to statements made by
principals under its control. For example, the SSC may attest that a particular, trusted
application (not a virus) is making a request to write a file.

Suppose that an NCA wishes to utter the statement ST and have the SSC attest to
this statement over a network. As described in Section 5, the NCA speaks with the
authority:

KT | CNEX | CNCA

Since only cryptographic keys can securely make statements over an otherwise un-
protected network, the SSC encodes the uttered statement as:

KT says (CNEX | CNCA says ST)
According to the definition of quoting in the logic, this formula can be written more
straightforwardly:

KT | CNEX | CNCA says ST
In particular, Quote can be used to attest that a key speaks for a principal. For ex-

ample, suppose that an NCA wishes to indicate that a key K is authorized to make
statements on its behalf. In this case, the quoted statement ST is:

K ⇒ KT | CNEX | CNCA
and the certificate that the SSC would form in order to attest to this hand-off of au-
thority would be:

KT says (CNEX | CNCA says (K ⇒ KT | CNEX | CNCA))
which reduces to:

KT | CNEX | CNCA says K ⇒ KT | CNEX | CNCA
Here the key K may be a public key, but it may also be a symmetric key that underlies
an authenticated communication channel from the NCA.

This kind of quoting might be used by the Nexus directly as well. In this case, the
SSC would produce:

KT says (CNEX says K ⇒ KT | CNEX)
which implies:

KT | CNEX says K ⇒ KT | CNEX

Verify(ST). The Verify function must decode a statement generated by Quote and
check the consistency of its cryptographic evidence. Furthermore, the results of
Verify should enable reasoning about the principal that made the statement in
question.

Often, the receiver of a statement interprets the statement in a different trust envi-
ronment (and in a different machine) than the sender. The receiver must come to con-
clusions based on its own trust assumptions. For example, if the receiver sees:

KT says (CNEX | CNCA says ST)
and believes:

K0 says KT ⇒ K0
then the receiver can conclude:

K0 | CNEX | CNCA says ST
Suppose that the receiver has the certificates and trust assumptions introduced in

Section 6. Then the receiver can deduce:
GM | GV | GA says ST

The receiver may trust GM | GV | GA on ST. For example, when ST represents a re-
quest for access to an object X, the ACL for X may include GM | GV | GA, granting
access to a member of GM quoting a member of GV quoting a member of GA. (In other
words, the receiver may have that GM | GV | GA ⇒ GX.) Thus, the receiver can reason
about the principal that said ST and use the identity of that principal as the basis for
access control decisions.

8. Privacy

It may be undesirable for all certification chains associated with the statements from a
given SSC to be rooted at a single key K0. If this were the case, then an observer
might be able to track the activity of specific machines and use this information to
compromise user privacy. In light of such concerns, several privacy-enhancing
mechanisms have been developed.

Upon boot, the Nexus might communicate with an anonymization service that
would be trusted to issue semi-permanent key pairs to trusted system components,
and also trusted to respect privacy. In this case, the Nexus carries out a secure trans-
action with the anonymization service, using the authority KT | CNEX. After establish-
ing that KT | CNEX ⇒ GM | GV, the service returns a collection of public keys Ki, their
inverses, and certificates of the following form:

KANON says Ki ⇒ GM | GV
CA says KANON ⇒ GM | GV

where KANON is the public key of the anonymization service. The inverse of any key
Ki can be used by the Nexus to sign subsequent statements. Since neither Ki nor
KANON are linked to any single user, SSC, or Nexus, this indirection provides some
anonymity for the holder of the inverse of Ki.

Variants of this scheme can provide keys Ki that speak for GM or for GM | GV | GA
(rather than for GM | GV). The inverse of a key that speaks for GM should not be under
the control of the Nexus; therefore, the anonymization service should return the key
sealed in such a way that only the SSC itself can access it.

More sophisticated schemes rely on group cryptography [2,4,5]. Using group cryp-
tography, an SSC may issue signatures that cannot be distinguished from signatures
generated by some set of other SSCs. Instead of K0, each SSC has a share of the
group key KNODE-GROUP. The manufacturer M makes KM says KNODE-GROUP ⇒ GM. Then
the SSC can produce a certificate for a temporary key KT:

KNODE-GROUP says KT ⇒ KNODE-GROUP

Although this certificate does not identify a particular SSC, shares of the group key
can be revoked; the specifics of revocation vary across schemes.

9. An Example

In this section we exercise the logic on a practical example of an application of
NGSCB, due to Butler Lampson and Paul Leach. In this application, an NCA pre-
sents an image (perhaps of a sales order or an online-banking transfer) to the user of a
machine, and attests to the fact that the user clicked “OK” to accept the consequences
implied by the image. For this application, we have to assume that there is a trusted
path between the NCA and the keyboard and display in front of the user. We also
assume that an untrusted banking or purchasing application is running (perhaps in a
web browser) on the user’s machine outside the context of NGSCB. This untrusted
application uses the trusted NCA to carry out security-critical aspects of online trans-
actions directly with the merchant or bank.

There are many different protocols that could support this sort of scenario. We will
assume a simple model in which the NCA establishes an authenticated channel to a
bank, and uses that channel to assert that a specific user has confirmed the contents of
a specific image. For these purposes, we assume that the user can present a password
known to the bank.

Although the Nexus and NCA might depend on an untrusted operating system to
communicate with the network, the cryptography used to establish and maintain a
secure channel can be implemented within a trusted NCA. Let us say that the NCA
establishes an SSL channel to the bank and authenticates the bank using a certificate
chain in the usual style. The NCA can also authenticate itself to the bank in that SSL
exchange. In the logic, this authentication can be written as:

KT | CNEX | CNCA says Channel ⇒ KT | CNEX | CNCA
where

K0 says KT ⇒ K0
Much as in Section 7.2, the bank can now deduce that Channel speaks for a trusted

NGSCB node running a trusted NCA. Using Channel or by other means, the bank
can transmit an appropriate image for the user to accept. The image is received by the
NCA and shown on the user’s display via the trusted path to the hardware. Perhaps
the target window is distinguished with a specialized border that indicates secured
images of this form. If the image is acceptable to the user, then the user is asked to
provide a password and click “OK”. Gathering this input on the trusted path from the
keyboard, the NCA can now make the following statement on the trusted channel to
the bank:

Password says OK-Image
Here, the image might be represented by its hash. If all is in order, the bank can de-
duce:

Channel | User says OK-Image
then

K0 | CNEX | CNCA | User says OK-Image

and hence
GM | GV | GA | User says OK-Image

Now the bank may conclude that the user (or at least an NCA holding the user’s pass-
word) authorized the consequences represented by Image. Furthermore, the bank may
also conclude that the transaction took place over a channel from a trusted NGSCB
node and a trusted NCA.

The bank may impose restrictions on the set of machines and software that can
serve as origin of the channel. These restrictions may thwart certain types of attacks.
For example, even if the password is compromised, it cannot be used directly by just
any application.

10. Conclusion

This paper describes NGSCB in terms of a logic for authentication and access con-
trol. Its goal is to document and explain NGSCB’s principals and primary APIs. It
aims to complement previous descriptions of NGSCB, with additional design ele-
ments, and with a (partial) formal rationale for the workings of NGSCB.

As discussed in the introduction, NGSCB is still “work in progress”. We will not
venture predictions on its future evolution or applications. It is possible that some or
all of the features of NGSCB described in this paper will change. That represents a
risk, but an inevitable one whenever one applies formal techniques in the course of
the development process. We believe that, in any case, those features and their prin-
ciples will be valuable beyond the context of NGSCB.

Acknowledgements

We wish to thank Butler Lampson, John Manferdelli, Fred Schneider, and Jeannette
Wing for discussions on this work and encouragement, and Marcus Peinado for in-
formation on NGSCB. Martín Abadi’s work was done at Microsoft Research, Silicon
Valley.

References
1. Abadi, M.: Trusted computing, trusted third parties, and verified communica-

tions. To appear in Proceedings of the 19th IFIP International Security Confer-
ence (SEC 2004), Kluwer, 2004.

2. Ateniese, G., Camenisch, J., Joye, M., and Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In Proceedings of Crypto
2000, pages 255–270, Springer-Verlag, 2000.

3. Appel, A., and Felten, E.: Proof-carrying authentication. In Proceedings of the
5th ACM Conference on Computer and Communications Security, pages 52–62,
1999.

4. Boneh, D., Boyen, X., and Shacham, H.: Short group signatures. To appear in
Proceedings of Crypto 2004, Springer-Verlag, 2004.

5. Brickell, E.: An efficient protocol for anonymously providing assurance of the
container of a private key. Submitted to the Trusted Computing Group, 2003.

6. Bauer, L., Schneider, M., and Felten, E.: A general and flexible access control
system for the Web. In Proceedings of the 11th USENIX Security Symposium
2002, pages 93–108, 2002.

7. DeTreville, J.: Binder, a logic-based security language. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 105–113, 2002.

8. England, P., Lampson, B., Manferdelli, J., Peinado, M., and Willman, B.: A
trusted open platform. IEEE Computer, 36(7):55–62, 2003.

9. England, P., and Peinado, M.: Authenticated operation of open computing de-
vices. In Proceedings of the 7th Australasian Conference on Information Secu-
rity and Privacy, pages 346–361, Springer-Verlag, 2002.

10. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D.: Terra: A vir-
tual machine-based platform for trusted computing. In Proceedings of the 19th
Symposium on Operating System Principles (SOSP 2003), pages 193–206, 2003.

11. Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The Digital distributed
system security architecture. In Proceedings of 12th National Computer Security
Conference, pages 305–319, NIST/NCSC, 1989.

12. Lampson, B., Abadi, B., Burrows, M., and Wobber, E.: Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265–310, 1992.

13. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., and
Horowitz, D.: Architectural support for copy and tamper resistant software. In
Ninth International ACM Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pages 168–177, 2000.

14. Microsoft Corporation: Next-generation secure computing base. Archive Prod-
uct Information, http://www.microsoft.com/resources/ngscb/archive.mspx.

15. Peinado, M., Chen, Y., England, P., and Manferdelli, J.: NGSCB: A trusted open
system. To appear in Proceedings of the 9th Australasian Conference on Infor-
mation Security and Privacy (ACISP 2004), Springer-Verlag, 2004.

16. Trusted Computing Group: Home page, http://www.trustedcomputinggroup.org.
17. Wallach, D., Appel, A., and Felten, E.: SAFKASI: a security mechanism for lan-

guage-based systems. ACM Transactions on Software Engineering and Method-
ology, 9(4):341–378, 2000.

18. Wobber, E., Abadi, M., Burrows, M., and Lampson, B.: Authentication in the
Taos operating system. ACM Transactions on Computer Systems, 12(1):3–32,
1994.

