	Zheng Zhang, Qiao Lian and Yu Chen
Microsoft Research Asia
{zzhang, i-qiaol, ychen}@microsoft.com

XRing: Achieving High-Performance Routing Adaptively in Structured P2P
Abstract—P2P DHT has emerged as a scalable way to pool together potentially an unlimited amount of resources in a complete self-organizing manner. Many of the current proposals, however, are dominated by the minimalist principle, i.e. achieving O(logN) performance with O(logN) state. These designs, while elegant, undershoot in a number of interesting deployment situations where either the churn rate is low or system size is moderate.

We argue that the amount of state is not an issue, the quality and the associated efforts are. From this perspective, an ideal DHT should reach the optimal performance for a given bandwidth budget. It should also be robust, in the sense that the system should weather storm of events during which the performance degrades gracefully and rapidly return to normal level afterwards.

The research and development of XRing is our attempt to strive towards this goal. XRing embeds an O(logN) finger table that guarantees the worst-case O(logN) performance, much like other approaches. The novelty of XRing is to turn these fingers into a reliable broadcast venue instead and therefore delivers 1-hop routing to any nodes when system size is moderate (e.g. 4K) or churn rate is low (e.g. corporate internal cluster), with a very low bandwidth budget (e.g. 5kb/s). By combining intelligent buffering that prunes away redundant traffic and optimal shaping of routing table, we show how XRing can adaptively yield O(1) performance for very large system size robustly.
I. Introduction
P2P DHT (distributed hash table) [17]

 REF _Ref51841298 \r \h
[19]

 REF _Ref51841313 \r \h
[22][24] has drawn immense attention in the system research community. At its core is the ability to organize potentially unlimited amount of resources, while maintaining a set of straightforward hash-table APIs. Given that a large amount of designs have already been proposed, it would seem to be a rather dry exercise to put forward yet another DHT design.

The problem is that most of the current proposals are dominated with a minimalist approach. That is to say, deliver O(logN) routing hops with O(logN) or even O(1) state (i.e. routing table size). For a number of interesting deployment situations where churn rate is either low or the system is of moderate size, these designs’ theoretical elegance becomes less appealing and relevant. This is certainly the case when DHT is selected as a way to organize machines inside a large corporate, or a wide-area testbed of moderate size. Given the rapidly advancing capacity of end systems, it is entirely reasonable to let each node keep a complete routing table and achieve 1-hop anywhere routing performance.

On the other hand, these deployment situations are the sweet spots of some recent constant-hops designs (see Kelips[9] and [8]). However, on a broad scale, such O(1) proposals do not make sense either: the end performance must be a function of the product of system size N and churn rate (. After all, P2P is about an open system where neither N nor (is controllable and predictable.

In fact, whether O(1) or O(logN) is not the right, or even interesting question. An ideal DHT is the one whose performance is a function of N and (under a given bandwidth quota Q. This is not yet enough; the system should also be robust, in the sense that it can weather storms of events and then bounce back to normal level of performance rapidly. Important design considerations should be devoted to ensuring the quality – rather than quantity of state.

XRing is our attempt to strive towards such an ideal DHT. Although our goal is ambitious, the design is actually rather straightforward. First, we embed an O(logN) routing table which trivially yields the bottom-line performance of O(logN). However, XRing differs from other proposals by using this layer of routing table as a reliable broadcast venue instead and build a soft-state routing table (SSRT). When system churn rate is low and/or system size is small, SSRT comprises entries for every node, ensuring one-hop anywhere. By combining intelligent buffering and optimal shaping of SSRT, we can reach very high performance (e.g. 2 hops for a million nodes) both adaptively and robustly, with small bandwidth budget that we believe is universally acceptable (e.g. 5kb/s).

We start by articulating our motivation in Section-II. XRing’s architecture is introduced in Section-III. Without considering quota limitation, we show how XRing can achieve 1-hop anywhere in Section-IV, emphasizing almost exclusively on how to achieve reliable broadcast in a dynamic environment. XRing’s adaptation schemes are described in Section-V. For any systems using large routing table to be practical, the problem of set-reconciliation, i.e. to pull a returning peer’s state current must be addressed. We introduce our technique in Section-VI. Lessons and open questions are offered in Section-VII. We cover related work in Section-VIII and conclude in Section-IX.
II. Motivation

Since the introduction of the first-generation DHTs such as Pastry[19], Tapestry[24], Chord[22] and CAN[17], there have been a large amount of work that either propose optimizations on top or new designs (for a more complete list, please see Section-VIII). Our research on XRing was motivated by a few key observations.

First, many of the early designs were (probably unconsciously) guided by the minimalist principle: achieving scalable performance (e.g. O(logN)) with O(logN) or even O(1) state, the latter class includes Viceroy[13] and Koorde[11]. These designs, while elegant, underperform in a number of interesting practical settings. For example, even when churn rate is high, there is no reason why lookup should not be resolved in one hop in a system of moderate size (e.g. <4K nodes). The same applies if a DHT is used to organize an ultra-large corporate internal cluster where churn rate can be extremely low.
The problem is that the minimalist approach does not capitalize on the rapidly rising capacity of today’s PC: an entry that would occupy the entire memory (e.g. 32bytes) of a first generation computer is now only a tiny fraction (32/500M(6.4(10-8). If routing table becomes so large that it can not be comfortably fit in the main memory, optimizing it locally is a much easier task.
Clearly, the amount of state is not an issue, its quality is. Let’s assume that there is an oracle that updates all entries in a system with 4K nodes, each arrives/leaves independently with a Poisson distribution averaged at 3 hours. The total bandwidth to update the routing table is 194b/s if each event takes 32 bytes. This is negligible, especially in light of the fact that bandwidth is becoming more available. In a large enterprise or wide-area testbed (e.g. planet-lab[16]) where stability is either a given or a requirement, total bandwidth to cope with routing table updates is likely be even smaller. Achieving one-hop anywhere – that is to say, a full crossbar is both realistic and practical.
Of course, number of hops is not the most relevant metrics, either. In reality, end-to-end latency matters more and the techniques to reduce stretch (total overlay latency over 1-hop IP latency) are well understood[10]. The idea is to allow enough flexibility in the design such that routing entry can be selected with proximity and is termed as PNS (Proximity Neighbor Selection). Less clear is how much overhead will be induced for PNS to be of acceptable quality when all the dynamisms in the system are taken into consideration. Thus, where possible, it is desirable to reduce number of hops to start with.
The above argument also illustrates why the other extreme of existing proposals – those accomplishes O(1) hops always do not work. Systems such as Kelips[9] and [8] typically employ an internal hierarchy to gather and disseminate events. Being a distributed system, the amount of dynamism is uncontrollable; and the same applies for the system size. With a fixed structure, it is unavoidable that the system will collapse at certain point. One certainly can not imagine switching a DHT on the fly when the application it hosts suddenly becomes extremely popular. At the end, the routing performance has to be a function of system size and churn rate, and therefore it is impossible to derive constant number of hops regardless.
Thus, the goal of XRing is to find a DHT with the following characteristics:

· Given a bandwidth budget, at stable time it achieves the best possible performance. That is to say, it should be a 1-hop anywhere DHT (i.e. a crossbar) when either the system is small or the churn rate is low, and gradually degrade to O(logN) otherwise.

· Its performance is adaptive and robust, and with an optimal utilization of resources. Specifically, if there are no join/leave events, no background traffic should exist other than those that maintain the integrity of the DHT space; when the churn rate temporarily spikes, bandwidth consumption should be capped at the pre-defined budget. Furthermore, after the peak, the performance should return to the right level.
· It should be easy to host other optimizations when 1-hop routing can not be accomplished. These may include, for example, reducing end-to-end stretch by aligning overlay topology with that of underlay; it should explore heterogeneity for load-balance and stability, even in a proactive manner (i.e., if powerful/stable nodes are injected, the system should automatically take advantage of their presences).
We believe these objectives are some of the basic requirements of an ideal DHT. Obviously, they exceed the capacities of existing proposals. XRing is merely a first step. If fact, while our design achieves a good fraction of these goals, we have found more open questions than answers. The ultimate DHT as we so defined, therefore, remains as a challenge.
III. Architecture Overview

The core idea of XRing is actually very simple. It uses three layers of routing table, as shown in Figure 1. The first two are rather conventional: there is the leafset which maintains connectivity to l logical neighbors to each side, and the second layer is a finger table consists of O(logN) entries. The responsibility of leafset is to guarantee the integrity of the DHT logical space and routing termination. On the other hand, the finger table ensures O(logN) worst-case performance using prefix-based routing. Compared with existing systems, the only difference is that the finger table employs an on-demand maintenance protocol, ensuring both rapid response to finger changes as well as zero traffic where there are no events. The details of the leafset and finger table are described in Section-IV.
[image: image1.emf]•logical space

integrity

•routing termination

•baseline O(logN) routing

•

On-demand maintenance

•

Adaptive, high performance

Leafset

Finger table

Soft-state routing table (SSRT)

Figure 1: the 3 layers of routing tables in XRing and their corresponding functionality.
Given these two layers of routing tables, how do we maximize bandwidth utilization to achieve the best possible performance? This additional performance boost comes from the third layer, soft-state routing table, or SSRT in short. SSRT represents a node’s knowledge of all other peers in the system and their state (online or offline).
It follows then that the change of membership (both join and leave) should be broadcasted to every other node. The broadcast starts from the node that is adjacent to the membership change (e.g. the takeover node of a departed node). It needs to be efficiently delivered via existing nodes. These existing nodes, however, are moving targets too: they may leave, and other new nodes can join during the broadcast. Therefore, the question is how to institute a reliable broadcast.

The way XRing solves the reliable broadcast problem is straightforward. Events are aggregated into a report until the next broadcast interval, at which point it is flooded to the finger table and leafset entries. We will prove (see Section-XX) that this mechanism can propagate any events with O(logN/loglogN) average delay with complete coverage, and the broadcast has redundancy of O(logN), ensuring that with high probability all nodes in the system are notified, despite the fact that nodes are under dynamic changes when the events are being propagated. Furthermore, the hit ratio h in SSRT is very high.
In fact, the quality of SSRT should be more strictly defined. More formally, a false-positive entry is one that its SSRT state is “online” but the node is actually offline. A false-negative entry, on the other hand, refers to an online node that SSRT records as “offline.” These concepts and their relationship are depicted in Figure 2. When routing, only entries in SSRT that have state “online” are used, and their union is called the effective SSRT, or eSSRT. As can be seen, the performance of SSRT is contributed by at least two factors: the size of eSSRT and the quality of the entries (false-positive). In general, false-negative increases routing hops, but in practice false-negative is a lot more harmful: they will lead to routing miss that is costly to detect.
[image: image55.bmp]
[image: image2]
Figure 2: the relationship among N(t), effective SSRT, false-positive and false-negative.
Now what happens when the bandwidth budget is not enough to keep up with the churn rate and/or the increase of system size? The idea is to apply a set of simple rules that filter the propagation in such a way that equilibrium is eventually reached. This turns out to be quite easy, and is the main subject of Section-V. The more challenging and interesting question is how to shape SSRT so that the routing performance is maximized. We offer our preliminary results in Section-V as well.

Throughout the rest of this paper, we will use the following notations and terminologies:

· x, y etc. refer to any arbitrary peer.

· N(t) denotes number of peers in the system at time t, and is simply noted as N when the context is clear. Nall and Navg are number of unique nodes and average number of online nodes, respectively.
· (is system churn rate (i.e. leave and join event per seceond). By default we assume a Poisson distribution of event.
· The product of the above two, N(, is the total system dynamism and identifies the rate of events in the whole system.
· Q is bandwidth quota dedicated for maintaining routing table, in number of events sent and received per second.
· E is event size. In SSRT, E=34bytes, which include ID (20), IP (4), port (2), and timestamp (8).
· T is the interval between successive broadcast.

· h is the hit ratio of the soft-state routing table.

Experiment methodology. We use an event-driven simulator derived from the Chord distribution[6]. Whenever possible, we use traces from real world to drive our study. The two employed in this paper are the ones from Gnutella[21] and Farsite[2], representing situation in wide-area and large enterprise, respectively. The Gnutella trace monitors over 17K nodes for about 60 hours; we remove about 2K nodes that were never online. The Farsite trace collects ping status to a large amount of machines in Microsoft over 5 weeks with a granularity of one hour. We modified the trace by adding random shifts to each data point to compensate the synchronized nature of the trace. Some of the basic parameters of these two traces are summarized in Table 1.

Table 1: key parameters of Gnutella and Farsite traces

	Trace
	Nall
	Navg
	Event/s
(join/eave)
	Bandwidth
cost (KB/s)

	Gnutella
	14692
	8042
	0.76/0.75
	1.332

	Farsite
	51663
	41880
	0.17/0.16
	0.344

In XRing, broadcasting via fingers will take 4((E(N(logN total bandwidth per node, where the constant “4” takes into account of consumption at both sending and receiving end as well as the join and leave event of one session. These costs are shown at the last column of the table. We can also calculate that if the bandwidth budget is only 5kb/s, then with an average churn rate of 1/(3hours) we can sustain a crossbar of size 4K.
Average event rate is however often misleading. In Figure 3 and Figure 4, we plot the membership and event rate change over time, for Gnutella and Farsite respectively. We note that they have markedly different characteristics. Nodes in Gnutella trace have lifetime that are fairly uniformly distributed in the time domain, with average online time about 3 hours. Farsite trace exhibits an entirely different characteristic: there are clear patterns that corresponding to people’s working schedule. Also, when looking at a finer scale, there is burstiness in both traces.
	[image: image3.emf]0.5 1 1.5 2

x 10

5

6000

6500

7000

7500

8000

8500

9000

9500

time(seconds)

nodes number

(a) Membership
	[image: image4.emf]0.5 1 1.5 2

x 10

5

0

1

2

3

4

5

time(seconds)

events per second

(b) Event rate

Figure 3: Membership and event rate of Gnutella trace

	[image: image5.emf]0.5 1 1.5 2 2.5 3

x 10

6

3.4

3.6

3.8

4

4.2

4.4

4.6

x 10

4

time(seconds)

nodes number

(a) Membership
	[image: image6.emf]0.5 1 1.5 2 2.5 3

x 10

6

0

0.5

1

1.5

time(seconds)

number of events per second

(b) Event rate

Figure 4: Membership and event rate of Farsite trace
IV. 1-Hop Routing

As described earlier, XRing uses three components:

· Leafset maintains the integrity of the logical space and also ensures that routing will terminate.
· Finger table gives the baseline O(logN) performance.

· SSRT (soft-state routing table) yields high performance adaptively for a given bandwidth quota.

The dependencies are such that a given module depends on the lower layer(s) only. For instance, the construction and maintenance of finger table rely on the routing termination guarantee and integrity property provided by the leafset; SSRT uses broadcast made up by outgoing links formed by the finger table and leafset.

In this section, we will assume that bandwidth budget is not a concern (i.e. Q=(), and emphasize on how XRing constructs reliable broadcast to enable 1-hop anywhere.
A. Leafset
In XRing, a node x owns a zone of (p.id, x.id], where p is the node whose ID immediately proceeds that of x. This is the same as consistent hashing as in Chord[22]. Each node records l logical neighbors to each side in its leafset, and this invariant is kept by the leafset protocol which sends periodical heartbeat among neighbors.
Our protocol deals with connectivity jitters (i.e., x(y, y(z, but not x(z) as observed by work from RON[1] and Detour[20] that will result in ambiguity (multiple nodes claim overlapping zone space), and is the subject of another paper[26].
B. Finger Table
The second routing structure in XRing is the finger table which enables O(logN) routing hops. The finger table can use any existing algorithms such as Chord or Pastry which keeps O(logN) entries, or like Koorde[11] that is O(1) at the expense of more routing hops. We use a Pastry variant that works in the prefix-based routing. Assuming that the total space is m bits, then there are m logical fingers:
x.finger[i] = flip(x.id, i)

That is to say, the i-th logical finger flips the i-th bit of x.id. When a node joins, it constructs its finger table by issuing lookup requests to the m logical fingers and materialize them into O(logN) entries. In other words, some logical fingers may share one entry because they all fall onto the same node. In stable state where fingers are all correctly configured, routing takes maximum O(logN) steps. The procedure is similar to Pastry: the next hop is the finger whose prefix shares with the target the longest, and repeat that until termination.
The task of finger maintenance protocol is to keep these routing entries current. Our overarching goal is to ensure maintenance traffic be strictly a function of total system dynamism. Therefore when there are no events, the only traffic in the system corresponds to those in the leafset, which is the absolute requirement to maintain system integrity. In order to do that, instead of using periodical probing and refreshing, XRing employs an on-demand protocol when maintenance is triggered only when a finger needs to be updated. The saving is obvious: node online time is typically much longer (e.g. 3 hours) than typical probing interval (e.g. 30 seconds). The added benefit is rapid respond to system change.
The idea first appeared in an earlier version of Chord[22] which fixes fingers at the time of node join. It does not handle leave; nor is it applicable to other finger algorithms that we would like to experiment with. The XRing finger maintenance protocol achieves on-demand maintenance with a small (O(logN)) amount of per node state.

A finger f can be expressed as a triplet <source, k, target>, where source and target refers to the node that originates the finger and the node upon which the finger falls, respectively; k is the key in logical space the finger points to. On-demand maintenance requires that this triplet be kept as a state. This triplet is keyed using source.id and k when stored in the source and target end, respectively and further replicated in their corresponding leafsets. In XRing, such replicated state is kept consistent lazily by piggybacking on top of leafset protocol.
We now enumerate the cases:

· On node join. Part of the replicated finger triplets stored locally may move to the new node. For any triplets that the new node is now hosting, the source nodes are notified to update their fingers to point to the new node. The target fields of the triplets are modified accordingly.
· On node leave. We assume uninformed leave; informed leave is a special case. The takeover node has a copy of the finger triplets registered in the departed node. With such information the source nodes of the fingers are notified and their finger tables updated accordingly.
A departed node also leaves stale finger triplets at the targets of its fingers. Also, the above protocol is best-effort and as a result it is possible that not all fingers maybe maintained correctly. Thus, a background finger refreshing procedure is invoked at a very slow pace (e.g. 30 minutes). This fixes any remaining inconsistency, and allows stale finger triplets to be pruned away over time.
This protocol, though conceptually more complex than periodical refresh, is worthwhile: it ties maintenance traffic directly with system dynamisms, instead of using heuristics to adjust probing frequencies [12]. We also note that the methodology is generic and is applicable to all other O(logN) systems.
C. Soft-State Routing Table (SSRT)
An entry in the soft-state routing table (SSRT) contains the following fields: the node (ID and IP address), its state which can be either “online” or “offline,” a Boolean flag has-sent which is set to false if the node has not propagated an event that changed the state, and a timestamp that records the latest time an observation (from the source node of the event) is made. The source node of an event is the one whose zone is being split with the new node, or the takeover node of the departed node.

[image: image7]
Figure 5: pseudo-code of XRing broadcast protocol. A peer that is newly learned is inserted into SSRT (not shown)
We maintain XRing’s SSRT with a simple flooding algorithm, as depicted in Figure 5
. As a side-effect, newly learned peers are added to SSRT, which is persisted to storage at background. A source node starts the broadcast by calling the OnReceiveMessage locally with a message containing its observation (neighbor join or leave) and a timestamp. Events are batched up until the next broadcast interval, and are flooded to all the entries in the finger table and the leafset. When there are no events, therefore, there is also no traffic. A received event is first checked to see if it is stale and is simply discarded if that is the case, or otherwise its corresponding entry in SSRT is set appropriately along with the associated timestamp. This is a typical flooding algorithm that avoids loop. Figure 6 illustrates an in-flight broadcast.
[image: image8.emf]Event

Leafset

Fingers

Figure 6: broadcast to fingers and leafset entries
Including the leafset in the flooding allows higher robustness, but is not essential. We now prove the following theorem:

Theorem 1: the union of all the fingers at all the nodes in the system form a broadcast network with O(logN) redundancy and O(logN/loglogN) average latency.
Proof: the fingers of XRing allows prefix-based routing and guarantees that, when they are correct, it can resolve a lookup from a node x to any key in the space in O(logN) steps using fingers only. It follows then x can reach any node y via fingers of O(logN) interim nodes.

The broadcast protocol exercises all the fingers in the system, and as a result a given event will be flooded to all the nodes in the system.

Since each node has O(logN) outgoing fingers, it follows that any node also has O(logN) incoming fingers pointing to it. Thus, a node will receive an event O(logN) times. Hence, the redundancy of the broadcast is O(logN).
The broadcast network can be visualized as a tree rooted at the source node with a fan-out of O(logN). We know that a balanced tree of degree d will have average height
[image: image9.wmf]]

)

1

[(

log

N

d

h

d

-

=

. Substituting d with logN, the average delay of broadcast is thus O(logN/loglogN). ■
The robustness of a broadcast scheme depends largely on its inherent redundancy. A message maybe lost over the communication channel (XRing’s broadcast uses UDP); it can reach a node that leaves before the scheduled broadcast time and thus also fail to propagate. For the duration of the event propagation, all the above cases that cause the event to drop have the net effect of randomly breaking the arcs in the broadcast network. If partition occurs, then nodes in any islands other than the one that includes the source node will miss the update. With high redundancy and the rapid propagation speed, such probability is small. We have verified this extensively with experiments and are working on a quantitative proof.
The XRing broadcast mechanism ensures very high hit ratio, as the following theorem demonstrates.

Theorem 2: the broadcast protocol ensures SSRT to have very high hit ratio.

Proof: we provide a crude analysis for the worst-case bound. Assuming events are exponentially distributed and the churn rate is (, a perfect SSRT will see its content decay with the rate of
[image: image10.wmf]t

e

m

-

-

1

. The broadcast will deliver an event with the worst-case delay Δt=T·logN, where T is the broadcast interval. Thus, we have
[image: image11.wmf]N

T

e

h

log

1

m

-

-

>

■

[image: image12]
Figure 7: false-positive, false-negative and their impact on the effective size of SSRT as well as hit ratio.
In fact, the hit ratio is much higher than the worst-case because the broadcast tree has O(logN/loglogN) average delay. The more important question is about its quality, i.e. the amount of false-positive and false-negative entries in SSRT. To understand this we will use three curves as shown in Figure 7. The curve in the middle is N(t). The difference between the top and the middle curve is number of entries that SSRT states as online but are actually offline, i.e. the number of false-positive entries. The bottom curve represents number of online nodes whose SSRT entries having state “online.” The delta between the middle and the bottom curve is the number of false-negative entries (i.e. not included in eSSRT). Their relationship with SSRT hit ratio is also depicted in Figure 7.
	[image: image13.emf]5 5.2 5.4 5.6 5.8 6

x 10

5

4

4.1

4.2

4.3

4.4

4.5

x 10

4

time(seconds)

nodes number

live nodes+FP nodes

live nodes

live nodes-FN nodes

(a) SSRT vs N(t) (complete)
	[image: image14.emf]5.2 5.22 5.24 5.26 5.28 5.3

x 10

5

4.06

4.08

4.1

4.12

4.14

4.16

x 10

4

time(seconds)

nodes number

live nodes+FP nodes

live nodes

live nodes-FN nodes

(b) SSRT vs N(t) (partial)

	[image: image15.emf]5 5.2 5.4 5.6 5.8 6

x 10

5

0

5

10

15

20

time(seconds)

event/second

outband event rate

source event rate

(c) per node flood rate vs event rate
	[image: image16.emf]5 5.2 5.4 5.6 5.8 6

x 10

5

0.99

0.992

0.994

0.996

0.998

1

time(seconds)

hit ratio

(d) hit ratio

Figure 8: Result of Farsite trace
We run experiments for both traces. The broadcast interval (when there are any events to send) is 30s and 3minutes for Gnutella and Farsite, respectively. This is because Farsite as an enterprise internal trace is known to be less dynamic. Gnutella is simulated for the entire duration, whereas for Farsite we took a 24hour period at the first day of a week.

Figure 8 and Figure 9 demonstrates the change of SSRT (in the style of Figure 7), flood event rate versus the source event rate as well as hit ratio, averaged over all nodes.

 It can be seen that both false-positive and false-negative are sufficiently low, and as a result the hit ratio is very high: h is 99.8.% and 99.94% on average for Gnutella and Farsite, respectively. The ratio of per node flood event rate over the actual source event rate is a constant equal to number of fingers. On average, total outbound events are 23.67/s and 6.87/s, for Gnutella and Farsite, respectively. This translates to a total bandwidth consumption (including both directions) of 6.43kb/s and 1.87kb/s.
	[image: image17.emf]0 0.5 1 1.5 2

x 10

5

4000

5000

6000

7000

8000

9000

10000

time(seconds)

nodes number

live nodes+FP nodes

live nodes

live nodes-FN nodes

(a) SSRT vs N(t) (complete)
	[image: image18.emf]7.5 7.6 7.7 7.8 7.9 8

x 10

4

7100

7200

7300

7400

7500

7600

time(seconds)

nodes number

live nodes+FP nodes

live nodes

live nodes-FN nodes

(b) SSRT vs N(t) (partial)

	[image: image19.emf]0 0.5 1 1.5 2

x 10

5

0

20

40

60

80

100

time(seconds)

event/second

outband event rate

source event rate

(c) per node flood rate vs event rate
	[image: image20.emf]0 0.5 1 1.5 2

x 10

5

0.97

0.975

0.98

0.985

0.99

0.995

1

time(seconds)

hit ratio

(d) hit ratio

Figure 9: Result of Gnutella trace
V. Adaptation

The proceeding section establishes the basic mechanism of XRing. From the experiment data, although we can conclude that on average the bandwidth consumption is tolerable, it still exceed what we believe to be universally acceptable (i.e. <5kb/s). Furthermore, there are peaks that will exceed our budget by large margin and the storm of broadcast message may cause congestions in the network. One obvious solution is to buffer the events internally until bandwidth becomes more available – which is practical to do in situations such as Farsite. However, this is only a temporary fix: in reality one can control neither the churn rate, nor the system size (imagine the P2P system suddenly becomes extremely popular).
How to achieve best possible performance in an adaptive and robust fashion is the subject of this section. Specifically, our goal is to control the quality of SSRT under a given system total dynamism, as well as to gracefully degrade the performance under stress and return to normal afterwards.
We introduce several techniques. The first works the most effectively for high churn rate and will stabilize the system into equilibrium under steady condition. We accomplish this by pruning away redundant events and therefore control the broadcast traffic adaptively. The net result is a well-maintained, high quality eSSRT set whose entries are uniformly spread in the whole space. Built upon the first, we describe another optimization where eSSRT becomes crossbar covering portion of the total space instead. Finally, we describe how to shape eSSRT such that it encapsulates a two-level structure by combining the two optimizations: the first spans across the whole space and the second a regional crossbar. With this hybrid approach, we can reach O(1) for very large system size, and yet without exceeding our bandwidth budget.
The experiments in this section are conducted using synthetic traces instead. To emulate large system, we either increase (or reduce Q.
D. Basic Filtering

Recall that eSSRT is the subset of SSRT entries whose state is “online.” The primary idea of the basic filtering is to ensure that the state is as accurate as possible at the expense of smaller eSSRT size. That is to say, we want to achieve very low false-positive with larger number of false-negative entries. The rational is that a miss is a lot more costly than a hit.
To accomplish this goal, basic filtering uses very intuitive rules, as the followings:
1. Leave events are sent with higher priority. This ensures low false-positive rate.
2. If the event is not going to change any state, it is not propagated.
The last rule is implemented by a very simple state machine, as shown in Table 2. Basically, if the event type is consistent with the current state, we only need to update the timestamp; and the state is negated otherwise. In the latter case, the has-sent field is also negated. For instance, an entry whose state is “online” and has-sent is false, upon receiving a “leave” event the state is changed to “offline,” and has-sent is set to true. In other words, this particular event does not need to be propagated any more. This is how redundant messages are pruned away with the help of buffering the events.

Table 2: state machine to prune redundant traffic
	x.state
	x.has-sent
	On receiving event

	
	
	Type = Join
	Type = Leave

	online
	has-sent = true
	Update x.timestamp
	x.state = offline
x.has-sent = false

	
	has-sent = false
	
	x.state = offline
x.has-sent = true

	offline
	has-sent = true
	x.state = online
x.has-sent = false
	Update x.timestamp

	
	has-sent = false
	x.state = online
x.has-sent = true
	

The third rule prioritizes events of the same class:
3. When sending events of a class, always send the earlier ones first. Also, events that have left the source nodes take higher priority.
It is intuitive why an event that has started propagation should be given more green lights, since it has affected eSSRT of some nodes already. An event is called a home-event if this node is its source node. In addition, this rule establishes a global order among the events to be seen throughout the system, and has a profound effect of making eSSRT consistent across the whole system and consequently improves its quality. We will explain in more detail later.

[image: image21]10Figure : pseudo-code of adaptive pruning
The pseudo-code is shown in Figure 10, there is only minor modification in the routine that processes the receiving event. The broadcast procedure floods to a node’s outgoing links (union of the fingers and leafset entries) by sending leave events first, and is capped the quota. The selection priority abides to the 3rd rule mentioned above.

The first interesting aspect of this algorithm is that under steady churn rate, the system will eventually reach equilibrium automatically. The reason lies in the fact that the buffered events will help prune those received in the future. When churn rate is high, leave events will occupy most of the bandwidth quota at the beginning of the adaptation and join events are buffered. Later on, these buffered joins will cancel newly arrived leaves, giving share to release join events. When churn rate becomes steady, the share to send join and leave events will eventually be roughly equal. Obviously, the higher the churn rate, the more effective this approach will be. Secondly, the buffered events will be released when quota becomes available again, allowing the system to smoothly weather event storms and rapidly returns its performance the normal level afterwards. This is how we achieve the goal of robustness,
What is the expected performance, then? For a given quota Q, in stable condition the size of eSSRT M can be found with the following equation:

Q=4((E(M(logN
This is so because, effectively, all the nodes collectively maintain M entries with their fingers. Thus, M=Q/(4((ElogN). Recall that a leave event is pruned when SSRT either has the state of offline or online but has-sent is false, therefore the view of eSSRT of different nodes must be consistent in order for a leave event to get through and thus maintain the eSSRT quality. This is guaranteed with our propagation rule, which dictates a total ordering of propagated events using timestamps. One can envision that eSSRTs consist of a moving window of width M, picking up online nodes ordered by their joining sequence.
If N0 is the size of a system where a crossbar covering every node is maintained, then M=N0logN0/logN. Thus, the size of eSSRT decreases slowly. Furthermore, if nodes enter system randomly, eSSRT entries will spread uniformly in the whole space, giving a log(N/M)+1 worst-case performance. This is so because eSSRT effectively shrinks the distance M times with 1 hop, and the remaining distance is routed using the fingers. Since M is inversely proportional to(, lower churn rate naturally leads to larger M. Consequently, we achieve the other adaptation goal: namely the system delivers high performance for a given total dynamism.
	[image: image22.png]live nodes+FP nodes
= live nodes

= 2600 - “
H H =+= live nodes-FN nodes
W 2400 - -
@ [}
3 \
27 Phasel A\ Phase Il Phase lll
H A,
2000 H -
: ey
1800 L H L L L L L L L L |
5000 6000 7000 8000 5000 10000 11000 12000 13000 14000 15000

timelseconds)

(a) effective SSRT, false-positive/negative entries

	[image: image23.png]events number
N - -

[Phase |

Nt
K

Phase Il

L.
SN s v,
]

— outhound event rate
—+= outhound leave event rate
quota

Phase IlI

et A

L
05000

6000

L
7000

L
8000

. . | | | | ,
9000 10000 11000 12000 13000 14000 15000
time(seconds)

(b) outbound event breakdown

	[image: image24.png]average hops

05

Phase |

Phase Il

Phase Il

L
05000

L
600

0

L
7000

L
8000

. | |
9000 10000 11000
timelceconde)

I
12000

I
13000

I
14000

|
15000

(c) routing performance

Figure 11: SSRT, outbound event breakdown and routing performance over time. Churn rate of phase II is 10 times of that in phase I and III .
We designed an experiment composed of 3 phases. In Phase I and Phase III, the churn rate for single peer is 1/(3hours), for which the average event rate 2uN=1.6/s. In Phase II, the churn rate increases ten-folds to 1/(0.3hour), resulting an event rate 16/s. In the experiment, Nall=4K, Navg/Nall=75%. The broadcast interval T=30s. Q=8.3 events/s (about half of what is required).

As can be seen from Figure 11, in Phase I, both the false positive and false negative is very low, implying SSRT is representative of the current live node set. Consequently, average routing hops is 1, i.e. SSRT maintains a full crossbar. When the churn rate jumps in Phase II, false positive is kept low at the cost of larger false negative number. As a result, the size of eSSRT decreases, and the routing hops increase accordingly. It is worth pointing out that Figure 11(b) confirms our prediction of reaching equilibrium. The amount of outbound leave events increases at the beginning of this phase, and then decreases as a result of filtering. After about 500 seconds, the broadcasted join events and leave events become equal, indicating the system reaches equilibrium. When the experiment enters Phase III, the buffered join events are released, making the SSRT size and routing performance bounce back quickly to 1-hop.
To verify that all nodes in the system maintains the same set of eSSRT entries and the size of eSSRT slowly decreases with 1/logN, we set Q(1kb/s so that it is just enough to sustain a full crossbar in a system where Navg/Nall=60% with (=1/(3hours), and scale Nall from 1K to 4K. The variation of eSSRT size and hit ratio are shown in Figure 12. Indeed, as we expected, the size decreases slowly, but is slower than the prediction. This also explains the slight quality drop in hit ratio. We have optimizations that will improve the eSSRT quality but will omit in this paper in the interest of space.
	[image: image25.wmf]
(a) eSSRT size over system scale
	[image: image26.wmf]
(b) hit ratio over system size

Figure 12: eSSRT size and hit ratio over system size
Ideally, the eSSRT entries will be spread uniformly in the whole space. To understand the shape, the entire space is divided into 128 regions. The routing table density in the i-th region is number of online peers recorded divided by average peers that should fall in this region. This is a statistic measure so sometime the “density” will exceed 1. However, the overall curve reflects the shape quite well. Figure 13 shows the eSSRT from one of the node and indeed the distribution is even, and the density decreases proportionally to system size.
	[image: image27.wmf]
(a) system size=1K
	[image: image28.wmf]
(b) system size=2K

	[image: image29.wmf]
(c) system size=3K
	[image: image30.wmf]
(b) system size=4K

Figure 13: shape of eSSRT from a random node as a function of system scale with a fixed Q that is just enough to sustain a 1K crossbar
We have claimed earlier that, eSSRT should be consistent among nodes in order to maintain its quality. Figure 14, we plot the CDF of a node’s popularity of being an eSSRT entry, for 1K and 4K system where Navg/Nall=60%. The curves are generated by sampling at time domain and tally how many times a node appears as an eSSRT entry across the whole system. The curves rise sharply at the very start, towards the level of (1-M/Nall), meaning that this much fraction of nodes is not known to any nodes. It then continues till the point of Nav and shoots to one, indicating that M entries are known to everyone. This demonstrates that eSSRT is indeed consistent across board.
[image: image31.wmf]
Figure 14: CDF of node popularity as eSSRT entry
E. Cluster Shaping
The above procedure may not work so well for very large system with low churn rate. An alternative is to establish crossbar(s) in only part of the space. For instance, the traffic can be cut by half if, instead of trying to propagate events to everywhere, we maintain two crossbars, one for each half of the space. The worst-case routing hops will be two: the longest finger is used to travel to the other half of the space, and the rest of the fingers are used to help construct a crossbar within each half.
Figure 15 illustrates the goal of shaping. When bandwidth budget is reached and a full crossbar including all the nodes in the system can not be maintained, system can be split into multiple clusters, and the size of the clusters will depends on bandwidth quota. Figure 15 gives an example of 4 clusters, each cluster is a crossbar internally, and inter-cluster routing still uses fingers. Therefore, if each cluster is of size M, the worst-case routing will take log(N/M)+1 hops, where the first log(N/M) hops are inter-cluster routing and the last one hop is intra-cluster. With 5kb/s bandwidth, we should be able to maintain a crossbar of 4K nodes for u=1/(3hours). Comparing with routing using fingers only, a significant saving of 12 hops can be accomplished.

[image: image32.emf]single cluster example

4 clusters example

LogN routing

finger

full connected

cluster

Legend:

Figure 15: advanced shaping goal and result demo
A cluster is identified by nodes sharing a common prefix. For example, if there are 4 clusters, then peers with ID 00XXX will have their eSSRTs closely track the state of peers residing in the first cluster. And the same applies for nodes fall in region 01, 10 and 11. The challenge is that there should be no global coordination: each node must compute the cluster boundary using its interactions with others only.

There are a couple of options, as depicted in Figure 16. When the product of fingers and number of join events exceeds Q·T, we can truncate either along the dimension of fingers, or that of the messages. We choose the first option because it allows each node to calculate the cluster boundary all by itself. In this option, if a join event is to be sent, then it will be sent to all fingers within the boundary.

[image: image33.emf]events #

fingers #

required total quota

events #

fingers #

avai-

lable

quota

pruned

events

events #

fingers #

available quota

pruned fingers

no quota limit

prune events, and send

others to all fingers

prune fingers, and send

to others all events

Figure 16: options to shape into clusters in XRing
In the following experiments, we use Nall=4K and Navg/Nall=60%. Churn rate for single peer is 1/(3hours), and T=120s. To emulate large system, we vary QT from 40KB to 1.25KB and look at discrete points where the bandwidth is enough to sustain 2k clusters.

[image: image34]
17Figure : shaping multiple clusters by pruning along the finger dimension.
The pseudo-code is shown in Figure 17. As before, it sends out all leave events first. For any remaining quota, it packs all join events and sends to outgoing links (leafset plus fingers) from near to far, and stops at the first finger f where there is no sufficient bandwidth left. This finger is, in effect, the crossbar boundary that the node estimates.

	[image: image35.wmf]
(a) Bandwidth quota=100%
	[image: image36.wmf]
(b) Bandwidth quota=50%

	[image: image37.wmf]
(a) Bandwidth quota=25%
	[image: image38.wmf]
(b) Cluster prefix-bits estimated by one certain peer

Figure 18: routing table shape for peer locate at position 0.55

It turns out that simply using f as the boundary estimation is not robust enough. There is a need to smooth the estimation with respect to both temporal as well as spatial dimension. This is captured by the variable B in the protocol, which either increases gradually with a rolling average over the past estimation when f>B, or resets to f otherwise. Peers also exchange their B piggybacked on broadcast interactions, allowing a consistent view to be built within cluster. Our results verified that these two simple optimizations allow the boundary estimation to become progressively more consistent.

Figure 18 shows results of this protocol for various QT. It depicts the eSSRT shape of a random node, it can be seen that multiple 1/2n cluster of the entire system are formed.
	[image: image39.wmf]
(a) Routing table size on bandwidth limit
	[image: image40.wmf]
(b) Hit ratio on routing table size

Figure 19: eSSRT size and hit ratio as a function of quota
Figure 19 summarizes the results from another angle. It shows that the size of the eSSRT is proportional to maintenance bandwidth quota as we expected, and the hit ratio stays above 99%.
F. The Hybrid Protocol

If the size of eSSRT is M, then the proceeding two techniques achieve the same log(N/M)+1 performance. While both are generic techniques, each of them works the best in a different scenario: the first works most effectively for high (whereas the second for large N. Obviously, there are both needs and rooms to improve further.
If we can split the bandwidth such that we shape eSSRT into a two-level structure, with M1 and M2 for a set of entries that span across the whole space and a local cluster, respectively, then the worst-case performance can be boosted to log(N/(M1M2))+2 instead. A Q of 2.5kb/s is more than sufficient to maintain an eSSRT with 1K entries that are either spread uniformly across the space, or a regional crossbar. Thus, if total quota Q is 5kb/s, we can get M1=M2=1K, yielding worst-case 2-hop routing for 1 million nodes, assuming a churn rate of 1/(3hours).
Shaping this two-level structure is a straightforward, mechanical combination of the two previous protocols. We divide total quota by half and let each protocol take equal share. In the experiment results shown in Figure 20, Q is set as 1kb/s which is sufficient to maintain a 1K crossbar, we vary N from 1K to 4K, churn rate is 1/(3hours) and T=120seconds.
	[image: image41.wmf]
(a) spread shaping for 4K peers
	[image: image42.wmf]
(b) cluster shaping for 4K peers

	[image: image43.wmf]
(c) final shape of 4K peers
	[image: image44.wmf]
(d) final shape of 1K peers

Figure 20: (a) use 0.5kb/s to shape a 1K eSSRT that spans the whole space; (b) use 0.5kb/s to shape a 1K eSSRT cluster; (c) use 1kb/s to shape a two-level structure; (d) use 1kb/s reach a full crossbar in a 1K system.
Figure 20 (a) and (b) shows what happens if only half of the total quota is used just to shape a uniformly spread and cluster eSSRT, respectively. Figure 20(c) demonstrated the final shape when both are taking effect with the total quota. Because the two shapes have overlapping regions, the cluster part of the final shape is wider. It is also important that when total bandwidth is enough to sustain a full crossbar, then this hybrid protocol should shape an eSSRT into a full crossbar. Figure 20(d) demonstrates that this is indeed achieved for a 1K system. We have also verified that for the system that we simulated (1K till 4K), the hit ratio of the routing table stays above 99%.
We are confined with small system size primarily because the large simulation time, and we will include results of larger system size when they are ready. However, we believe that our general conclusion, i.e. shaping a 2-level structured eSSRT with small quota and high hit ratio will generally hold. This is so because each component of the hybrid protocol has been extensively verified earlier, and there is no interference between the two protocols that will cause the combined version to drop its quality.
VI. Set-Reconciliation in XRing
This section is completely orthogonal to the rest of XRing design but focuses on one practical issue for any DHT designs that utilize large routing table. The question, which has been completely ignored so far, is how to pull a returning peer’s routing table(s) current. We call this the problem of set-reconciliation.

In XRing, the issue is how to get an up-to-date SSRT, since both the leafset and finger table of the returning node are constructed afresh. SSRT is persisted to stable storage at the background, and its membership list (the <ID, IP> pair of all other nodes) includes whatever a peer has learned throughout its past history. A node that is completely new to the system will copy a SSRT at the time it first joins. Therefore, when the system has been up for a long enough time, the membership list set in SSRT are mostly consistent across the entire system.

When a departed peer returns, it has very little idea of the state of peers recorded in its SSRT. Therefore, it has to conservatively reset all entries to the state of offline, and then try to learn from one of the existing node. If SSRTs of the two nodes are completely in sync with each other, the existing node can send a vector with each bit representing the state of other peers from its SSRT. However, this condition is not guaranteed. When churn rate is high, number of online entries is small it is practical to copy the eSSRT: it takes roughly 8 seconds to transfer 4K entries each of 32 bytes over a 128kb/s link. However this is not a robust solution, especially when churn rate is low: average number of online nodes is more than 40K in Farsite.
The way we deal with this problem is to compact the information with bloom filter [4]

 REF _Ref51862259 \n \h
[5], which works the most effectively when space/bandwidth is an issue and small error can be tolerated. In bloom filter, a list of n items is compressed into m bits, i.e. b=m/n per item. We call b the filter parameter. For each item, a set of hash functions whose range fall into [0..m] are applied and set the corresponding bit in the m-bit vector. The side-effect is that false-positive may occur, i.e. the receiving end will faultily include some elements that lie outside the original list. Such probability is shown to be (0.6185) b, and if m=8n then it is just over 0.02. If the size of an item is E bytes, then instead of sending a list of nE bytes, with b=8 the size of the filter is 8n bits (i.e. n bytes), resulting a 1/E compression ratio. For XRing, E is 32 bytes (we only transfer node ID, IP but not the timestamp), and the resulting 1/32 compression rate is a very big saving.
To be on the conservative side, our first protocol applies bloom filter over the entries that are not online. The false-positive of the bloom filter would then mean that 2% of the online nodes are recorded as offline at the receiving end. We believe this is acceptable. This approach works the most effectively for cases where offline nodes are proportionally less, such as Farsite where Navg/Nall>80%.
 We can however improve further with a technique called iterative bloom filter. The sender first computes a filter of online nodes P (PRESENT) with a smaller filter parameter a. It then identifies the set of false positive nodes
[image: image45.wmf]P

A

Ì

, and applies a supplement filter with filter parameter b. Both filters are then sent to the requester. Qualitatively speaking, this will result in a conservative approach as well since some of the online nodes will be missed. Statistically speaking, the number of such entries is the same as the single-level bloom filter because the error rate of bloom filter depends on the filter parameter only. The iterative bloom filter is depicted in Figure 21.

[image: image46.emf]PRESENT set

ABSENT set

false-positive of P = A

false-positive of A

i.e. false-negative of the

PRESENT set

P

A

Figure 21: iterative bloom filter. P and A are set of false-positive entries of each filter.
The question is whether the iterative approach will always give a saving. We compute this as below. We will let Na and Np be number of offline and online nodes, respectively. For single-level b bits bloom filter, total message size is bNa bits.

The first filter of the iterative method has message size aNp. The size of A, i.e. the number of false-positive entries is Na(0.6185)a. Therefore the supplement filter has size Nab(0.6185)a, resulting a total message size S as:

 S=Nab(0.6185) a+ aNp
To get the minimal message size, we have:

[image: image47.wmf]0

)

6185

.

0

(

4805

.

0

=

×

×

-

=

a

a

p

N

b

N

da

dS

Because a can only be a non-negative integer, the equation should be broken down into the following two cases:

[image: image48.wmf]ï

î

ï

í

ì

>=

=

<

=

b

N

N

a

b

N

N

b

N

N

a

a

p

a

p

a

p

4805

.

0

0

4805

.

0

4805

.

0

log

6185

.

0

[image: image49.wmf]
Figure 22: single-level and iterative bloom filter compared.
Figure 22 compares the message saving as a ratio of Np/Nall. The interest observation here is that when Np>=0.4805Nab, a must be set to 0, which says that we should default back to the single-level bloom filter anyways when Np is large. With the filter parameter b=8, then we can see that only for cases when Na is smaller than 25% of Np, we should adopt single-level bloom filter. The pseudo-code is shown in Figure 23.

[image: image50]
Figure 23: set reconciliation pseudo-code. b is assumed to be predefined (e.g. 8), and entries of SSRT at the receiving end all start with state offline.
We experimented and compared the above protocols with both the Gnutella and Farsite traces, the average online number of nodes are roughly 8k and 40k, respectively. We study the total transfer size when a number of randomly picked nodes return to the system for both the single and iterative protocols. The results are shown in Figure 24.
	[image: image51.wmf]
(a) Membership in gnutella
	[image: image52.wmf]
(b) reconciliation message size

	[image: image53.wmf]
(c) Membership in Farsite
	[image: image54.wmf]
(d) reconciliation message size

Figure 24: set-reconciliation experiment

We can see that for Gnutella, the iterative method slashed almost half over the single-level filter, giving an average filter size of only 4K bytes. For Farsite, the iterative method defaults back to the single-level filter, and the total size is roughly 10KB.
All the parameters necessary to compute the filters is either a given (e.g. b) or can be computed when state of an entry in SSRT changes (e.g. Na, Nb and a). Therefore, the filters can be computed in the background of normal operation.
In our experiments, we have assumed that SSRT members are consistent across peers. This is of course not entirely true. However, we believe that the error is small enough to be negligible in practice. If a peer believes it has fallen too far behind, it can always try to obtain an up-to-date SSRT copy, possibly in parallel from different peers.
We note that the protocol we introduced here is not restricted to synching up the routing table. It is a generic technique to perform set-reconciliation: as long as the complete membership is of reasonable size, the iterative bloom filter can always save more space.
VII. Open Questions

The design and implementation of XRing leaves many interesting open questions. The following is a possibly incomplete list:
Is O(logN) redundancy overkill? Our experiments have verified that the XRing broadcast mechanism is both simple and effective. The larger question, however, is it efficient? In fact, any finger mechanism that allows O(logN) worst-case routing can be used to fulfill the task of flooding. Koorde[11] and Viceroy[13] have O(1) fingers and that should result in a large reduction of traffic, at the expense of reduced robustness. We have experimented with Koorde-style fingers and validated that this is indeed the case. The primary reason that we did not choose Koorde actually has more to do with our lack of understanding of how to use Koorde-style fingers to shape SSRT.
Are there other orthogonal techniques to reduce the broadcast traffic? The answer is definitely yes. For one thing, when a node has already received an event, receiving logN-1 flooding of the same event is a waste of bandwidth. We are investigating using Bloom filter to compress a representation of events that are recently received, and thus further reducing the traffic.
What is and how to achieve the optimal shape of SSRT? An optimal shape is one that gives the highest routing performance under a given bandwidth budget. We believe a two-level structure is already quite optimal. However, we do not exclude other shapes as long as they are simple to do.
What should we do if 1-hop can not be achieved? Our short answer is: nothing. The most promising technique to reduce stretchy to optimize multi-hop forwarding is PNS (Proximity Neighbor Selection) [10][18] which chooses physically close node as routing entry when flexibility allows. However, it is not clear what bandwidth overhead will incur to ensure the quality of selection when nodes join and leave all the time. When such questions are not well understood, we favor simplicity instead. However, we are open to studies and other options.
How to explore good heterogeneity and avoid bad ones? The premise of XRing is to deliver high performance by universally taxing each peer with low enough bandwidth consumption. The issue of heterogeneity has not been well addressed. In particular, we would like to utilize stable, more powerful machines with high bandwidth as infrastructure nodes to boost the performance. Such infrastructure nodes can be proactively injected into the system, and they ought to play a more significant role not only in broadcasting but also in routing. The reverse is true for weaker nodes. Our crude thought includes letting infrastructure nodes re-broadcast their presence so that they can appear in entries of many nodes. We are actively exploring this front.
VIII. Related work

A possibly incomplete list of O(logN) designs including Pastry[19], Tapestry[24], Chord[22], eCAN[23], Kademlia[15] and Symphony[14]. The parallel thread that uses O(1) state, starting from CAN[17], has seen some interesting progresses recently, most notably Viceroy[13] and Koorde[11]. On the other hand, Kelips[9] and the recent work by Gupta et al. [8] are advocating O(1) routing with large routing table instead.

XRing does not attempt to take side in the “O(1) versus O(logN)” debate but instead start by asking what an ideal DHT should be: it will be a system that achieves the best possible performance – defined as a function of system size and churn rate, for a given bandwidth budget. Furthermore, such design must come with due robustness: the performance should be able to weather storms of events. It is this perspective, rather than design specifics, sets XRing apart from the very beginning.

The core issue that XRing needs to resolve is the problem of reliable broadcast inside the system. The novelty is to use an O(logN) routing table not only as a way of guaranteeing O(logN) performance, but as a reliable broadcast venue. This is something that El-Ansary et al.[7] observed but is expanded in this paper: we prove that any such routing table can be used to work for the purpose of reliable broadcasting. Therefore, XRing is more a philosophy than a hardwired design all by itself. It is conceivable, for instance, to apply the algorithms on top of Chord to accomplish essentially the same goal. We believe that our approach to be more efficient than gossiping used in Kelips, which is known to have a latency of O(log2N), and also more flexible than a fixed broadcasting hierarchy as is used in [8]. Reliable broadcast is a more fundamental issue, as the work of Bimodal multicasting illustrates [3]. In fact, we considered using SOMO [25] as the broadcasting tree which is simple to construct, but abandoned it because there does not appear to be a scalable way to ensure the robustness of broadcasting.

We are not aware of any designs that can achieve high-performance adaptively and in a robust manner. The issue of set-reconciliation, i.e. to pull a returning peer’s routing table current is a practical problem that all proposals using large routing table must consider, and we have introduced iterative bloom filter to deal with it.
IX. Conclusion and Future Work
Despite many pioneer work of structure P2P, we believe an ideal DHT is still beyond our understanding. Among other things, under a given bandwidth constraint, such DHT should achieve the best possible performance as a function of system size and churn rate. Furthermore, it should also deliver the performance with high robustness.
XRing is our attempt towards such a DHT. By turning an O(logN) routing table as reliable broadcast venue, and further combine that with intelligent buffering, pruning and optimal shaping of a soft-state routing table, XRing can achieve very high performance to very large system with a bandwidth budget that we believe to be universally acceptable.

We have implemented majority of the XRing. Our future work will focus on understanding many of the open questions, including the issue of heterogeneity and load balance.
References

[1] Anderson, D., Balakrishnan, H., Kaashoek, F., and Morris, R. “Resilient Overlay Networks”, SOSP’01.
[2] Adya, A., Bolosky, W.J., Castro, M., et al. “FARSITE: Federated, Available, and Reliable Storage for an Incompletely Trusted Environment”, OSDI 2002.
[3] Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y. “Bimodal Multicast”, on ACM Trans. Comp. Syst., 17:2, pp. 41-88, May 1999
[4] B. Bloom, “Space/time Tradeoff in Hash Coding with Allowable Errors”, CACM, 13(7):422-426, 1970

[5] Broder, A. and Mitzenmatcher, M. “Network Applications of Bloom Filter: A Survey”, http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/BloomFilterSurvey.pdf
[6] Chord Project: http://www.pdos.lcs.mit.edu/chord/
[7] El-Ansary, S., Alima, L.O., Brand, P. and Haridi, S. “Efficient Broadcast in Structured P2P Networks”, IPTPS 2003.
[8] Gupta, A., Liskov, B., and Rodrigues, R. “One Hop Lookups for Peer-to-Peer Overlays”, HotOS IX, 2003
[9] Gupta, I., Birman, K., Linga, P., Demers, A. and Renesse, van R. “Kelips: Building an efficient and stable P2P DHT through increased memory and background overhead”, IPTPS 2003.
[10] Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoioca, I. “The Impact of DHT Routing Geometry on Resilience and Proximity”, in ACM SIGCOMM’03.
[11] Kaashoek, M.F. and Karger, D.R. “Koorde: A simple degree-optimal distributed hash table”, IPTPS 2003.

[12] Mahajan, R., Castro, M., Rowstron, A. “Controlling the Cost of Reliability in Peer-to-Peer Overlays”, IPTPS 2003
[13] Malkhi, D., Naor, M., and Ratajczak, D. “Viceroy: A Scalable and Dynamic Emulation of the Butterfly”, Proc. of the 21st ACM Symposium on Principles of Distributed Computing (PODC '02), August 2002.
[14] Manku, G.S., Bawa, M. and Raghavan, P. “Symphony: Distributed Hashing In A Small World”, USITS 2003
[15] Petar Maymounkov and David Mazieres, “Kademlia: A Peer-to-peer Information System Based on the XOR Metric”, in IPTPS’02

[16] PlanetLab: http://www.planet-lab.org
[17] Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S. “A Scalable Content-Addressable Network”, In ACM SIGCOMM. 2001. San Diego, CA, USA.
[18] Ratnasamy S., Shenker S. and Stoica I. “Routing Algorithms for DHTs: Some Open Questions”, Proc. of IPTPS 2002
[19] Rowstron, A., and Druschel, P. “Pastry: Scalable, distributed object location and routing for large scale peer to peer systems”, Proc. of IFIP/ACM Middleware (Nov. 2001).
[20] Savage, S. et al. “Detour: a Case for Informed Internet Routing and Transport”, In IEEE Micro, pp. 50-59, v 19, no 1, January 1999.
[21] Saroiu, S., Gummadi, P.K., and Gribble, S.D. “A Measurement Study of Peer-to-Peer File Sharing Systems”, In MMCN, January 2002.

[22] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., and Balakrishnan, H. “Chord: A scalable peer to peer lookup service for internet applications”, In Proc. ACM SIGCOMM (San Diego, 2001).
[23] Xu, Z. and Zhang, Z. “Building Low-maintenance Expressways for P2P Systems”, Hewlett-PackardLabs: Palo Alto 2001.
[24] Zhao, B., Kubiatowicz, J.D., and Josep, A.D. “Tapestry: An infrastructure for fault-tolerant wide-area location and routing”, Tech. Rep. UCB/CSD-01-1141, UC Berkeley, EECS, 2001.

[25] Zhang Z., Shi S., and Zhu J. “SOMO: Self-Organized Metadata Overlay for Resource Management in P2P DHT”, In IPTPS’03.
[26] Authors. “Leafset Protocol in Structured P2P Systems and its Application in Peer Selection”, Submission to Infocom, 2004.
N(t)

SSRT(Nall

Effective SSRT:

x(SSRT && x.state=online

False-negative

False-positive

OnReceiveMessage(msg)

foreach(event e in msg)

 if SSRT[e.target].timestamp < e.timestamp

 SSRT[e.target].status = e.type

 SSRT[e.target].timestamp = e.timestamp

 SSRT[e.target].has-sent = false

OnPropagationTriggered()

 NeighborSet = FingerTable∪LeafSet

 report = {x|SSRT[x].has-sent = false}

foreach(p(NeighborSet)

 SendMessage(p, report)

foreach(e(report)

 SSRT[e.target].has-sent = true

of nodes

x.state=offline && x(N(t). False-negative

N(t)

x.state=online && x(N(t). False-positive

time

number of x s.t x.state==online && x(N(t)

number of x s.t. x.state=online

Hit ratio =

x.state=online && x(N(t)

OnReceiveMessage(msg)

foreach(event e in msg)

 if SSRT[e.target].timestamp < e.timestamp

if SSRT[e.target].status != e.type

SSRT[e.target].has-sent

 =!SSRT[e.target].has-sent

SSRT[e.target].timestamp = e.timestamp

SSRT[e.target].status = e.type

OnPropagationTriggered()

 NeighborSet = FingerTable ∪ LeafSet

q = Q / NeighborSet.size()

leave_events = {x|SSRT[x].status==offline &&

 		SSRT[x].has-sent==false}

join_events = {x|SSRT[x].status==online &&

 		SSRT[x].has-sent==false}

sort both with timestamp and let home-event

	be at later part of the queues

report += top q of leave_events

s = q - report.size()

if (s > 0)

 report += top s of join_events

foreach(p(NeighborSet)

 SendMessage(p, report)

foreach(e(report)

 SSRT[e.target].has-sent = true

OnPropagationTriggered()

 NeighborSet = FingerTable ∪ LeafSet

q = Q / NeighborSet.size()

leave_events = {x|SSRT[x].status==offline &&

 			SSRT[x].has-sent==false}

join_events = {x|SSRT[x].status==online &&

 			SSRT[x].has-sent==false}

report += top earliest q of leave_events

foreach(p(NeighborSet)

 SendMessage(p, report)

foreach(e(report)

 SSRT[e.target].has-sent = true

s = Q - report.size()*NeighborSet.size()

if (s > 0)

 f = s / join_events.size()

	\\ smooth in temporal dimension

 if (f > B)

B += 0.1*f + 0.9*B

 else

 B = f

 f = round(B)

foreach(p (top nearest f of NeighborSet)

 SendMessage(p, join_events)

	\\ smooth in spatial dimension

 B = (B + p.B)/2

foreach(e(join_events)

 SSRT[e.target].has-sent = true

OnSetReconcileRequest()

Np = SSRT.OnlineSet.Size

 Na = SSRT.OfflineSet.Size

 if (Np < 0.4805*Na*b)

 a = log(Np/(0.4805*Na*b))/log(0.6185)

F1 = BloomFilterPack(SSRT.OnlineSet, a)

P = BloomFilterUnpack(SSRT,F1)

A = P-SSRT.OnlineSet

F2 = BloomFilterPack(A, b)

 Send(F1, F2);

else

 F1 = BloomFilterPack(SSRT.OfflineSet, b)

 Send(F1, 0)

OnSetReconcileAck(F1, F2)

foreach(entry (SSRT)

if InBloomFilter(entry, F1)

 if F2==0 or not InBloomFilter(entry, F2)

 entry.status = online

� All pseudo-codes are written for presentation clarity; our implementation is heavily optimized.

_1123790470.unknown

_1124558876.vsd
�

�

�

single cluster example�

4 clusters example�

LogN routing finger�

full connected cluster�

Legend:�

_1125497286.vsd
PRESENT set

ABSENT set

false-positive of P = A

P

false-positive of A
i.e. false-negative of the PRESENT set

A

_1125580793.vsd
events #

fingers #

required total quota

events #

fingers #

avai-lable quota

pruned events

events #

fingers #

available quota

pruned fingers

no quota limit

prune events, and send others to all fingers

prune fingers, and send to others all events

_1124634344.unknown

_1124036439.unknown

_1124447049.unknown

_1123791740.unknown

_1123789238.unknown

