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Abstract
We present a probabilistic framework that uses a bone
sensor and air microphone to perform speech enhance-
ment for robust speech recognition. The system exploits
advantages of both sensors: the noise resistance of the
bone sensor, and the linearity of the air microphone. In
this paper we describe the general properties of the bone
sensor relative to conventional air sensors. We propose
a model capable of adapting to the noise conditions, and
evaluate performance using a commercial speech recog-
nition system. We demonstrate considerable improve-
ments in recognition – from a baseline of 57% up to
nearly 80% word accuracy – for four subjects on a dif-
ficult condition with background speaker interference.

1. Introduction

Automatic speech recognition systems are notoriously
susceptible to error in the context of interfering noise1.
This is especially true when the noise is a background
speaker, and it may be difficult to determine which voice
is intended for the speech recognizer. We have been ex-
ploring methods to address this problem using multiple
sensors.

One promising technology involves the use of a bone
sensor along with a conventional microphone. A bone
sensor is a microphone that directly touches the side of
a person’s face directly in front of the ear. The bone
sensor can easily be incorporated into the standard head-
mounted headset with a close-talk air microphone. A pro-
totype of such a device is illustrated in Figure 1 , and has
been described previously in [2] .

The advantage of the bone sensor is that it is much
more immune to external interfering sounds than a reg-
ular microphone. However, the response to higher fre-
quencies, as well as to aspects of speech dynamics is
poor. Thus existing speech recognition systems perform
poorly when given the bone signal as input. Unfortu-
nately there is not enough data recorded with such de-

1We use the termnoisein the sense of an interfering signal, without
implying anything about its statistical properties.

vices to create a recognizer especially tuned to bone sig-
nals.

Instead of direct recognition, we focus on enhancing
speech prior to recognition. Due to nonlinearities in the
relationship between air and bone signals, it is a challeng-
ing problem to map from one to the other. In this paper
we discuss the combination of an air microphone and a
bone sensor in a probabilistic framework to do speech
recognition and speech enhancement.

Related work has been presented in [1], and [2], in
which different types of models were used. One impor-
tant difference between the current work and these works
is the principled inclusion of an adaptive noise model.
Another difference is that in the cited words, the relation-
ship between different sensors is captured in a piece-wise
linear model. The model we present below uses a piece-
wise constant relationship, or in other words the sensors
are considered conditionally independent given the states,
which allows for simplified inference in the context of a
noise model.

2. The Relationship Between Air and Bone
Signals

The air and bone microphones are sensitive to differ-
ent aspects of the speech signal, and their spectra differ
as a function of the speaker, the placement of the sen-
sors, and as a function of the articulation of speech itself.
The air sensor receives acoustic signals coupled primarily
through the mouth aperture (and somewhat less through
the nose), whereas the bone sensor receives vibrations
that are conducted from the rear of the vocal tract through
the facial anatomy. We can think about the relationship
between signals in the air and bone sensors in terms of
differences in the log amplitude spectra of the two sig-
nals. For the sake of convenience, we refer to these dif-
ferences in log spectra as transfer functions, although this
may be an abuse of terminology since neither sensor rep-
resents the actual speech source.

A major difference between the two sensors is in
the overall frequency response. The bone microphone



Figure 1: Air and bone sensors mounted on a headset

picks up predominantly low-frequency components of
speech, peaking sharply at around 400Hz, with the re-
sponse falling off dramatically at higher frequencies. The
air microphone is sensitive to the full range of speech fre-
quencies. The average difference in their log amplitude
spectrum can be seen as an overall transfer-function be-
tween the two. Figure 2 illustrates such a transfer funci-
ton calculated during loud speech regions from record-
ings of a single subject.

0 500 1000 1500 2000 2500 3000 3500 4000
−30

−25

−20

−15

−10

−5

0

5

10

15

Frequency Hz

G
ai

n 
in

 d
B

Transfer fuction p(b|x)

Figure 2: The average transfer function between the sig-
nal received at the air and the bone sensors. Error bars
indicate plus or minus one standard deviation. Bone sig-
nals above 4kHz are effectively at the noise floor, even in
clean conditions.

The broad characteristics of this transfer function
largely reflect the bone structure and facial tissue through
which the signal propagates to reach the bone sensor.
These physical characteristics can vary from speaker to
speaker, altering the quality of the signals. This effect

can be termedspeaker dependence. In addition, different
placement of the air microphone and bone sensor may in-
troduce further differences in the signals. This effect may
be termedplacement dependence. In our experiments we
assume both speaker and placement dependence effects
are stationary and control them by training speaker de-
pendent models, and ensuring that the sensor placement
in training and test sets is the same.

A particularly strong and non-stationary effect can be
termedarticulation dependence. Different speech phones
entail different distributions of source energy, and differ-
ent patterns of its coupling to the two sensors. These
physical differences result in pronounced differences in
the log spectra between the two sensors. Figure 3 illus-
trates the smoothed log spectrum of examples of the three
phones /A/, /n/, and /t/, taken from a single sentence, for
the air and bone sensors.

One effect of articulation derives from the closing
or stricture of the oral tract during speech. When the
mouth is open as in a vowel sound such as /A/, the acous-
tic energy is well coupled to both the air and bone sen-
sors. However when the mouth is restricted, as in a nasal
stop such as /n/, the acoustic coupling to the air sensor is
greatly diminished. (In this case the coupling to the bone
sensor may actually be increased because less energy es-
capes through the mouth.)

Another effect of articulation has to do with the lo-
cation and manner of the generation of acoustic energy.
Voiced speech sounds originate in the throat with the vo-
cal cords and are well transmitted to the nearby bone sen-
sors. In contrast, fricatives, such as /t/, are generated at
the place of articulation, as turbulent air passes through
an aperture in the mouth and are thus typically much
more readily transmitted to the air sensor than to the bone
sensor.

A third articulation effect is an artifact of the bone
sensor’s frequency response. Because the bone sensor is
effectively at the noise floor for frequencies above 4kHz,
differences in the log spectrum between air and bone sen-
sors will simply reflect the energy in the air sensor for
those frequencies. This energy varies greatly with the
phone, with fricatives such as /t/ having a great deal of
high frequency energy, in contrast to nasal stops such as
/n/.

3. Models

We seek to capture the statistics of the relationship be-
tween air and bone signals in a model, in a way that al-
lows us to efficiently infer the air signal in the presence of
acoustic interference, or noise. The complex relationship
between the two sensors motivates a model that supports
a flexible mapping between the two.

A simple and tractable model that accomplishes this
is a Gaussian mixture model on the high-resolution log
spectra of each sensor, with the frequency components
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Figure 3: Smoothed log spectra received at the air (top)
and bone (bottom) sensors for three phones /A/ (as in
”cake”), /n/ and /t/, showing the differences in the rela-
tive patterns of the spectra in each sensor. In particular,
notice how the /n/ spectrum is dramatically attenuated in
the air sensor relative to the other phones, but not in the
bone sensor.

conditionally independent given the state. In [3] a high-
resolution model was used to exploit the harmonic struc-
ture of speech. Because the bone signal preserves pitch
information well, we hypothesize that a high resolution
model will allow us to extrapolate harmonics from the
bone sensor to the air sensor.

3.1. Speech model

The model we propose is illustrated in Figure 4, and can
be defined as follows. Denote the log amplitude of a win-
dowed short time fourier transform of the clean air signal
and bone signal respectively, for frequencyf asxa

f and

xb
f . Denote the discrete speech state assx. Then define

the model:

p(xa,xb,sx) = p(sx)∏
f

p(xa
f |sx)p(xb

f |sx) (1)

It is convenient to use Gaussian mixture components for
the observation probabilities. LetN(x;µ,σ) denote the
univariate normal distribution defined onx with meanµ
and variancesigma. Then formulate the model as fol-
lows.

p(sx) = πsx

p(xa
f |sx) = N(xa

f ;µ
a
sx, f ,σ

a
sx, f )

p(xb
f |sx) = N(xb

f ;µ
b
sx, f ,σ

b
sx, f )

Note that this model is equivalent to a simple Gaussian
mixture model formulated on the concatenated air and

bone spectrum vectors. The parameterspis, µa
sx, f , µn

sx, f ,

σa
sx, f andσb

sx, f can thus be estimated from bone and air mi-
crophone recordings in quiet conditions, using the stan-
dard expectation maximization (EM) algorithm [4].

Whereas the high-resolution model has the advantage
that it can focus on high signal-to-noise ratio peaks in the
spectrum (such as at the harmonics), it also has the draw-
back that it requires many states to represent the detail in
the spectrum. A high resolution model has to represent all
combinations of pitches and formant information (akin to
the excitation and filter states in a source-filter model),
and thus requires hundreds of states. To avoid wasting
representational resources on the high-frequency compo-
nents of the bone signal, which are essentially at the noise
floor and can have negligible impact on the results, we
simply discard bone sensor frequency components above
2kHz from consideration in the model.
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Figure 4: Generative model for air and bone sensors.
sx is the discrete state,xa

f andxb
f are the log spectra at

frequency f of air and bone signals respectively. The
plate labeledF indicates that the series of frequency com-
ponents indexed byf are all conditionally independent
given the statesx.

3.2. Noise Model

A similar model is posited for the noise.

p(sn) = πsn

p(na
f |sn) = N(na

f ;µ
a
sn, f ,σ

a
sn, f )

p(nb
f |sn) = N(nb

f ;µ
b
sn, f ,σ

b
sn, f )

Because the noise is usually unknown, we are interested
in adapting the parameters to the noise at test time. We
therefore use a small number of states to avoid over-
fitting. Section 5 describes the noise adaptation.

3.3. Sensor Model

To complete the model we have to specify how the speech
and noise combine in the air and bone sensors. Be-
cause the speech and noise models are defined in the log
spectrum, their combination is nonlinear and results in
a distribution for the observed sensor signalsya

f andyb
f .

For simplicity we shall describe the model in terms of a



generic sensor signal model,yf , xf andnf , since the same
model applies to both air and bone sensors.

The model for a given frame of noisy speech in the
frequency domain is

Yf = Xf +Nf (2)

whereXf , Nf , andYf denote the complex Fourier trans-
form at frequencyf of the the clean signal, the noise,
and the noisy sensor signal respectively. This can also be
written in terms of the magnitude and the phase of each
component:

|Yf |∠Yf = |Xf |∠Xf + |Nf |∠Nf (3)

where|Yf | is the magnitude ofYf and∠Yf is the phase.
We model only the magnitude components and do not

explicitly model the phase components. The relationship
between the magnitudes is

|Yf |2 = |Xf |2 + |Nf |2 +2|Xf ||Nf |cos(θ) (4)

whereθ is the angle betweenX andN. Next we take the
logarithm, definingxf , ln |Xf |2, and likewise foryf and
nf . We arrive at the relationship in the high resolution
log-power-spectrum domain.

yf = xf + ln(1+exp(nf −xf ))+ ε (5)

where

ε = ln(1+
2|Xf ||Nf |cos(θ)
|Xf |2 + |Nf |2 ) (6)

The formulation in terms ofxf plus a correction term will
be convenient for taking derivatives later. We approxi-
mateε as Gaussian noise, as in [5], and write this rela-
tionship in terms of a distribution over the noisy speech
featuresyf as

p(yf |xf ,nf ) = N(yf ;xf + ln(1+exp(nf −xf )),ψ) (7)

whereψ is the variance ofε. Duplicating this model for
both the air and bone sensors, and we can combine it with
the speech and noise models introduced above as illus-
trated in Figure 5.

4. Inference

For the purpose of signal reconstruction, we are interested
in the expected value of the clean speech given the noisy
speech in both the air and bone sensors, orE(xa|ya,yb),
where we write the components in vector form withxa ,
[xa

1...x
a
Fa]T ,and similarly withxb, na, andnb. To do so

we have to estimate the posteriorp(xa|ya,yb). The true
posterior is a mixture of individual posteriors:

p(xa|ya,yb) = ∑
sx,sn

p(sx,sn|ya,yb)p(xa|ya,yb,sx,sn) (8)
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Figure 5: Model of air and bone speech signals (xa
f ,x

b
f ),

noise (na
f ,n

b
f ), and their interaction in bone and air sen-

sors (ya
f ,y

b
f ). Note that as indicated by the plate labeled

F , all the frequencies in both sensors are conditionally
independent given a combination of speech statesx and
noise statesn.

The individual mixture components decouple due
to conditional independence given the state, so
p(xa|ya,yb,sx,sn) = p(xa|ya,sx,sn), and we have:

p(xa|ya,sx,sn) =
1
z

p(xa|sx)
∫

p(ya|xa,na)p(na|sn)dna,

(9)
wherez is a normalizing constant. This posterior is non-
Gaussian and analytically intractable, due to the non-
linearity of p(ya|xa,na) in Equation 7. The state pos-
teriors, p(sx,sn|ya,yb) in Equation 8 are analyticaly in-
tractable for the same reason.

To solve this problem we iterate a Laplace method
to approximate the posteriors in a framework known as
Algonquin [5].

For notational convenience, we define

x ,
[

xa

xb

]
,n ,

[
na

nb

]
, andz,

[
x
n

]
,

so that we can write the mean of Equation. (7) in vector
form:

g(z) , x+ ln(1+exp(n−x)). (10)

If we linearize this function using a first order Taylor se-
ries expansion at the pointz0, we can write the linearized
version of the likelihood,

pl (y|x,n) = pl (y|z) = N(y;g(z0)+G(z0)(z−z0),Ψ)
(11)



wherez0 is the linearization point and

G(z0) =
[
diag

(
∂g(z)

∂x

)
,diag

(
∂g(z)

∂n

)]

z0

(12)

is a matrix of the derivatives ofg(z), evaluated atz0. We
can now write a Gaussian approximation to the posterior
for a particular speech and noise combination as

pl (x,n,y|sx,sn) = pl (y|x,n)p(x|sx)p(n|sn) (13)

For notational convenience we abbreviates ,
{sx,sn}, and defineσa

sx , [σa
sx,1, ...,σ

a
sx,Fa]T , and similarly

with σb
sx,σa

sn,andσb
sn and

σsx ,
[

σa
sx

σb
sx

]
,σsn ,

[
σa

sn

σb
sn

]
, andΣs , diag

[
σsx

σsn

]

as well as definingΨ as a diagonal matrix of the vari-
ances of Equation 7, which we set to a constant, (i.e,
Ψ = (.01)IFa+Fb). It can then be shown[5] that the
p(x,n|y,sx,sn) is jointly Gaussian with mean

ηs = Φs
[
Σ−1

s µs+G(z0)TΨ−1(y−g(z0)−G(z0)z0)
]

(14)
and covariance matrix

Φs =
[
Σ−1

s +G(z0)TΨ−1G(z0)
]−1

(15)

and the posterior mixture probabilityp(y|sx,sn) can be
shown to be

γs = |Σs|−1/2|Ψ|−1/2|Φs|1/2 ·exp

[
− 1

2
(µT

s Σ−1
s µs+

(yobs−g(z0)+G(z0)z0)TΨ−1(yobs−g(z0)+G(z0)z0)−

ηT
s Φ−1

s ηs)
]
. (16)

In the Algonquin algorithm, we attempt to iteratively
move the linearization points towards the mode of the true
posterior. In each iteration the mode of the approximate
posterior in the previous iteration is used as a lineariza-
tion point of the likelihood. The algorithm converges in
three to four iterations.

It is then a simple matter to find the marginal expected
value of the speech given the noise. In particular we use

x̂a = E(xa|ya,yb) (17)

= ∑sγsηa
s

∑sγs
. (18)

Once the log spectral energies are inferred, we com-
pute magnitudes and combine them the phases from the
air sensor, to resynthesize the enhanced waveform for a
given frame. The waveforms are overlapped and added
together across frames using a synthesis window derived
from the analysis window, such that the product of the
two windows overlapped and added across frames sums
to unity everywhere.

5. Adaptation

Noise conditions vary from one environment to the next.
We therefore wish to adapt the noise model to the cur-
rent noise conditions. Since the algorithm above provides
posteriors over the noise as well as the signal, we can per-
form an extra adaptation step in which we adjust the pa-
rameters of the noise model, as in [6]. A caveat is that for
each noise state, the noise posterior is a mixture model
with one component per speech states. Therefore in com-
puting the sufficient statistics of the noise states we have
to take the mean and variance of this mixture model. The
adaptation is interleaved with the inference step above in
an approximate EM algorithm. The noise is adapted in a
batch for the whole sentence, however we are currently
working on an online version that could adapt over time.

6. Results

We trained speaker-dependent speech models on a
database of four subjects, two males, two females, read-
ing 41 sentences from the Wall Street Journal. In the
training set, speakers were recorded in a quiet office en-
vironment with the air and bone sensors, and in the test
set they were recorded in the same environment with an
interfering male speaker talking loudly a short distance
away. The sound was 16-bit 16 kHz, and was processed
in 50ms windows in 256 frequency bands, and with a
frame shift of 20ms. We trained speech models using 512
mixture components, although 256 components worked
nearly as well. Noise models had 2 states.

Prior to processing we smoothed the log spectro-
grams temporally by applying a smoothing kernel,[121]

4
across time frames in each frequency bin. This reduces
variance in the spectrum and stabilizes the inference. In
order to speed up testing we eliminated extremely un-
likely states by approximating the likelihood ofya andyb

given the states by matching moments to the log-normal
sum (see [7] for a derivation) to estimate the state poste-
riors for each frame. We then retained only the four most
likely speech states for each frame.

We hypothesized that the air and bone sensor com-
bination would be especially suited for noise adaptation,
because the bone sensor would be a more reliable indi-
cator of the presence of speech, which would provide the
adaptation with more reliable statistics of the noise.

We therefore explored two independent variables,
sensor conditionand noise mode. In order to compare
enhancement with just the air sensor (A sensor condition)
to enhancement with both the air and bone sensors (AB
sensor condition), we trained both air sensors models and
air plus bone sensor models. After looking at preliminary
results, we wondered if perhaps the fact the bone sensor
wasn’t having enough influence on the inferred air sig-
nal. So we added a third condition in which the speech
state posterior was determined solely on the basis of the



bone sensor observation, rather than using both the air
and bone sensors (AB* sensor condition). Aside from the
computation of the state posteriors, the rest of the infer-
ence in this condition is the same as in the AB condition.

The noise model was always initialized using speech
detection on the bone microphone to determine how
much of the beginning segment of the file was free of
speech, with a minimum of 300ms being used. The
model was initialized by training on this detected noise
segment. We then compared performance without adap-
tation (Detectnoise mode) to performance with the adap-
tation (Adaptnoise mode) described in Section 5.

The enhanced results were tested using a commercial
speech recognition system, and are shown in Figure 6
averaged across the four subjects. Baseline percent ac-
curacy2 in the air microphone was 57.2% for the noisy
condition, and 92.66% for the clean. As we had hoped,
performance appears to be better with the bone sensor
than without and better with adaptation than without. In
the AB* condition where we relied more heavily on bone
signals to do inference, performance was better still. The
best condition, AB* with adaptation yield accuracies of
around 79%, or a relative improvement in word error rate
of about 51%. Although we cannot make a strict compar-
ison for lack of a standardized dataset, this results com-
pare favorably with prior art in [1], and [2].

7. Conclusion

We have demonstrated a model that exploits a bone sen-
sor combined with air microphone to produce noise adap-
tation speech enhancement results that are much better
than could be achieved with an air microphone alone. The
model we proposed posits conditional independence of
the bone and air signals given the state. We are currently
working on several improvements, including a model
with a direct state-dependent correlation between the air
and bone sensor. In informal analysis it seemed that
this correlation could help to distinguish the right speech
state. In the same context we are working on online noise
adaptation as well as adaptation to varying channel char-
acteristics, which may be important for the development
of a speaker independent system. In general, although re-
sults are preliminary, the bone sensor technology and the
proposed models appear very promising.
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