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ABSTRACT
We document the design and implementation of a “produc-
tion” incremental garbage collector for GHC 6.2. It builds
on our earlier work (Non-stop Haskell) that exploited GHC’s
dynamic dispatch mechanism to hijack object code pointers
so that objects in to-space automatically scavenge them-
selves when the mutator attempts to “enter” them. This
paper details various optimisations based on code speciali-
sation that remove the dynamic space, and associated time,
overheads that accompanied our earlier scheme. We de-
tail important implementation issues and provide a detailed
evaluation of a range of design alternatives in comparison
with Non-stop Haskell and GHC’s current generational col-
lector. We also show how the same code specialisation tech-
niques can be used to eliminate the write barrier in a gen-
erational collector.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages]: Processors—Memory management
(garbage collection)

General Terms: Algorithms, Design, Experimentation,
Measurement, Performance, Languages

Keywords: Incremental garbage collection,
Non-stop Haskell

1. INTRODUCTION
Generational garbage collection [24] is a well-established

technique for reclaiming heap objects no longer required by
a program. Short-lived objects are reclaimed quickly and
efficiently, and long-lived objects are promoted to regions of
the heap which are subject to relatively infrequent collec-
tions. It is therefore able to manage large heap spaces with
generally short pause times, these predominantly reflecting
the time to perform minor collections.
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Eventually, however, the region(s) containing long-lived
objects (the “older” generation(s)) will fill up and it will be
necessary to perform a so-called major collection.

Major collections are typically expensive operations be-
cause the older generations are usually much larger than
the young one. Furthermore, collecting an old generation
requires the collection of all younger generations so, regard-
less of the actual number of generations, the entire heap
will eventually require collection. Thus, although genera-
tional collection ensures a relatively small mean pause time,
the pause time distribution has a “heavy tail” due to the in-
frequent, but expensive, major collections. This renders the
technique unsuitable for applications that have real-time re-
sponse requirements, for example certain interactive or real-
time control systems.

The traditional way to reduce the variance of the pause
times is to perform the garbage collection incrementally:
rather than collect the whole heap at once, a small amount
of collection is performed periodically. In this way the activ-
ities of the executing program (referred to as the mutator)
and garbage collector are interleaved.

One way to achieve incremental collection in the context
of copying garbage collectors [8] is to use a read barrier to
prevent the mutator from accessing live objects that have
yet to be copied. This is the basis of Baker’s algorithm [2]1.

In our earlier paper [7] we described a low-cost mechanism
for supporting the read barrier in the GHC implementa-
tion of Haskell with a single-generation heap. This exploits
the dynamic dispatch mechanism of GHC and works by in-
tercepting calls to object evaluation code (in GHC this is
called the object’s entry code) in the case where the garbage
collector is on and where the object has been copied but
not yet scavenged. This ‘hijacking’ mechanism directs the
call to code that automatically scavenges the object (“self-
scavenging” code) prior to executing its entry code; this
eliminates the need for an explicit read barrier.

In implementing this “barrierless” scheme we had to mod-
ify the behaviour of objects copied during garbage collec-
tion so that an attempt to enter the object lands in the
self-scavenging code. At the same time, we had to devise a
mechanism for invoking the object’s normal entry code after

1An alternative is to use replication [13] which replaces the
read barrier with a write barrier, but at the expense of addi-
tional work in maintaining a log of outstanding writes. This
paper focuses on Baker’s approach, although the replication
approach is the subject of current work.



execution of the self-scavenging code. We chose to do this by
augmenting copied objects with an extra word which retains
a reference to the original object entry code after the entry
code pointer has been hijacked. This extra word comes at
a price: in addition to the overhead of managing it, it also
influences the way memory is used. For example, in a fixed-
size heap a space overhead reduces the amount of memory
available for new object allocation which can reduce the av-
erage time between garbage collections and increase the total
number of collections.

An alternative approach is to build, at compile time, spe-
cialised entry code for each object type that comes in two
flavours: one that executes normal object entry code and
one that first scavenges the object and then executes its en-
try code. This eliminates the need for the extra word as
we can simply flip from one to the other when the object is
copied during garbage collection. The cost is an increase in
the size of the static program code (code bloat).

The main objective of this paper is to detail how this
code specialisation can be made to work in practice and to
evaluate the effect of removing the dynamic space overhead
on both the mutator and garbage collector. Although the
idea is simple in principle it interacts in various subtle ways
with GHC.

Specialisation also facilitates other optimisations, for ex-
ample the elimination of the write barrier associated with
generational collectors. We show how the basic scheme can
be extended to do this, although in the end we chose not to
implement the extension as the average performance gain is
shown to be small in practice. However, for collectors with
a more expensive write barrier, or write-intensive applica-
tions, one might consider the optimisation worthwhile.

Experimental evaluation shows that a modest increase in
static code size (25% over and above stop-and-copy and an
additional 15% over our earlier implementation of Non-stop
Haskell) buys us an incremental generational collector that
increases average execution time by a modest 4.5% and re-
duces it by 3.5% compared with stop-and-copy and Non-stop
Haskell respectively, for our chosen benchmarks. Our solu-
tion is a compromise that exploits specialisation to remove
the expensive read barrier but retains the write barrier to
yield an acceptable overhead in the static code size.

The paper makes the following contributions:

• We describe how to eliminate the read barrier in GHC
using object specialisation and compare it to our previ-
ous scheme which pays a space overhead on all copied
heap objects (Section 3).

• We present performance results for various incremen-
tal generational schemes, focusing in particular on
execution-time overheads, pause time distribution and
mutator progress (Section 4).

• We report and explain unusual pathological behaviour
observed in some benchmarks whilst running an incre-
mental collector and show that execution times can
sometimes be reduced by a substantial factor when
compared with stop-and-copy. We believe this is the
first time such behaviour has been reported in respect
of incremental collection (Section 4.3).

• We describe how to use specialisation to eliminate the
write barrier associated with generational collection

and compare the approach with that proposed by Ro-
jemo in [16] (Section 5).

2. BACKGROUND
We assume that the reader is familiar with Baker’s in-

cremental collection algorithm [2] and the fundamentals of
generational garbage collection [24]. However, we review
some notation.

In this paper we assume that all collection is performed
by copying live objects from a from-space to a to-space. In
Baker’s algorithm copying is synonymous with evacuation.
Evacuated objects are scavenged incrementally and the set
of objects that have been evacuated but not scavenged con-
stitute the collector queue.

A read barrier is required on each object access to ensure
that objects in from-space are copied to to-space before the
mutator is allowed to access them. A significant component
of this barrier code is a test that first determines whether
the garbage collector is on (GC-ON) before applying the
from-space test.

In generational collection we shall assume in the discus-
sions that follow that there are just two generations: the
young generation and the old generation, although our im-
plementations can be configured to handle an arbitrary num-
ber of generations. We assume that objects are aged in ac-
cordance with the number of collections they survive. We
distinguish object tenuring, the process of ageing an object
within a generation, from object promotion, whereby an ob-
ject is deemed sufficiently old for it to be relocated to the
next oldest generation.

The remainder of this section focuses on the implementa-
tion platform that is the subject of this paper.

2.1 GHC and the STG-machine
GHC (the Glasgow Haskell Compiler) implements the

Spineless Tagless G-machine (STG) [21, 18, 19], which is
a model for the compilation of lazy functional languages.

In the STG-machine every program object is represented
as a closure. The first field of each closure is a pointer to
statically-allocated entry code, above which sits an info ta-
ble that contains static information relating to the object’s
type, notably its layout. An example is shown in Figure 1
for an object with four fields, the first two of which are
pointers (pointers always precede non-pointers). The layout
information is used by the collector when evacuating and
scavenging the closure.

2:1:0: 3: Imm. 4: Imm.

Heap pointers

Entry code
Other fields
4, 2

...

...

Figure 1: Closure layout of four fields – two pointers
followed by two immediate values.

Some closures represent functions; their entry code is sim-
ply the code to execute when the function is called. Others
represent constructors, such as list cells. Their entry code re-
turns immediately with the returned value being the original



closure (the closure and the list cell are one and the same).
Some closures represent unevaluated expressions; these are
known as thunks (or in some parlances as “suspensions” or
“futures”) and are the principal mechanism by which lazy
evaluation is supported. When the value of a thunk is re-
quired, the mutator simply enters the thunk by jumping to
its entry-code without testing whether it has already been
evaluated. When the thunk has been evaluated it is over-
written with an indirection to its value. If the mutator tries
to re-evaluate the thunk, the indirection is entered, landing
the mutator in code that returns the value immediately.

Note that there is an inherent delay between a closure be-
ing entered for the first time and the closure being updated
with its value. In a single-thread model, an attempt to enter
a closure that has already been entered but not yet updated
results in an infinite loop. To trap this, objects are marked
as black holes when they are entered.

In GHC 6.2 closures representing function applications ac-
tually work in a slightly different way to thunks. Instead of
blindly entering the function’s entry code an explicit “apply”
function first evaluates the function (recall that Haskell is
higher-order) and then inspects the result to determine the
function’s arity. At this point it determines whether an ex-
act call to the function can be made or whether a partial
application must be constructed.

This mechanism is different to previous implementations
of GHC and has important implications for the garbage
collector, as we discuss in Section 3.3. Full details of the
“eval/apply” mechanism can be found in [11].

The most important feature of the STG-machine for our
purposes is that a closure has some control over its own op-
erational behaviour, via its entry code pointer. We remark
that this type of representation of heap objects is quite typ-
ical in object-oriented systems, except that the header word
of an object typically points to a method table rather than
to a single, distinguished method (our “entry code”).

2.1.1 Stacks and Update Frames
In describing the various implementations it is important

to understand the way GHC stacks operate. Each stack
frame adopts the same layout convention as a closure, with
its own info table pointer and entry code. The most fre-
quently occurring frame is the activation record of a func-
tion and its associated return address. However, the stack
also contains update frames which are pushed onto the stack
when a closure is entered. The update frame contains a
pointer to the closure. When the closure has been evalu-
ated its corresponding update frame will be at the top of
the stack. This is popped and the closure is updated with
an indirection to its value. Control then passes to the stack
frame underneath the update frame on the stack by entering
it. All updateable thunks push an update frame as a result
of executing their entry code – something we shall exploit
later on.

2.1.2 Generational Collection in GHC
Generational garbage collectors have been studied exten-

sively in the context of lazy functional languages [17, 22, 16];
the most recent releases of GHC use a generational garbage
collector. The key point is that new references from the
old to young generation (by ‘new’ we mean references that
appear after an object is promoted) can come about only
when a thunk is updated with its value – recall that there is

no explicit assignment in Haskell! Thus, the write barrier is
implemented in software by planting test code around each
update.

There have been numerous studies on tenuring/promotion
strategies, generation sizing and number [1, 10, 23, 9, 26,
27, 17, 16]. The conclusion is that in practice only a few
generations and distinct tenure ages (steps) are necessary.
GHC defaults to two generations and two tenuring steps,
although these can be changed.

2.2 Non-stop Haskell
We presented in [7] an incremental collector for Haskell

that cheaply implements the read-barrier invariant: all
pointers accessible by the mutator point to to-space. It works
by arranging for a closure to be scavenged if it is entered
while it is on the collector queue by “hijacking” its info
pointer: when a closure is evacuated, its info pointer is re-
placed by a pointer to code that first scavenges the closure
before entering it. We referred to this as “self-scavenging”
code. In our prototype implementation the original info
pointer is remembered in an extra header word, Word –1,
in the evacuated copy of the closure itself, as illustrated in
Figure 2.

Enter, Scavenge
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entry code
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(Word −1)
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entry code
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Restore, Enter

Standard Closure

Info Pointer (Word 0)

Figure 2: An evacuated closure in Non-stop Haskell.

After evacuation, the closure will either be entered by the
mutator or scavenged by the garbage collector. If the closure
is entered by the mutator first, the mutator executes the self-
scavenging code. This code uses the layout info accessed via
Word –1 to scavenge the closure, restores the original info
pointer to Word 0, and then enters the closure as it originally
expected. The garbage collector will eventually reach the
closure, but as Word 0 no longer points to self-scavenging
code, it knows that the closure has already been scavenged
and so does nothing. If the closure is reached by the garbage
collector first, the garbage collector scavenges the closure,
again using the layout information accessed via Word –1. It
also copies the original info pointer back to Word 0, so that
if the closure is eventually entered, entry code is executed in
the normal way. In effect, the two segments of scavenging
code co-operate to guarantee that the closure is scavenged
exactly once before it is entered.

The key benefit of modifying the object’s behaviour de-
pending on its status, rather than explicitly querying the
object’s status, is that execution proceeds normally, i.e. with
no overhead, when the garbage collector is off.

2.2.1 Invoking the Scavenger
GHC has a block-allocated memory system with a default

block size of 4KB. We explored two levels of granularity



at which to perform incremental scavenging during garbage
collection. The first invokes the scavenger at each object
allocation – the object allocation code is inlined with addi-
tional code which first tests whether the collector is on and
then, if it is, invokes the scavenger before allocating space
for the object. The second plants the same code in the run-
time system at the point where a new memory block is allo-
cated. By scavenging at each block allocation the mutator
does more work between pauses at the expense of increased
mean pause times (the scavenger also has to do more work
to keep up). In this paper we again evaluate both options.

2.2.2 Incremental Stack Scavenging
At the start of a garbage collection cycle all objects in the

root set are evacuated so that all immediately accessible ob-
jects are in to-space (the read-barrier or to-space invariant).
The simplest mechanism that enforces this invariant is to
scavenge the entire stack at the start of the collection cycle,
but this leads to an unbounded pause. The alternative, is
to place a read barrier on stack pop operations, which adds
further significant overhead. We devised a cheap means of
scavenging the stack incrementally, this time hijacking the
return addresses in update frames which are interspersed
among the regular frames on the stack. These update frames
have a fixed return address. We scavenge all the stack frames
between one update frame and the one below, replacing the
return address in the latter with a self-scavenging return ad-
dress. This self-scavenging code scavenges the next group of
frames, before jumping to the normal, generic, update code.

Since update frames could, in principle, be far apart,
pause times could be long, although this case is rare in prac-
tice. Later, we show how moving to the eval/apply model of
function application in GHC 6.2 enables the same hijacking
trick to be applied between adjacent stack frames, rather
than between arbitrarily-spaced update frames.

3. OBJECT SPECIALISATION
The principal disadvantage of our Non-stop Haskell col-

lector is that there is a one-word overhead on all objects
that survive at least one garbage collection (all objects are
either copied to the young generation to-space or are pro-
moted). This extra word must be allocated and managed
during garbage collection which carries an overhead in its
own right. Furthermore, it can have an indirect effect on
the behaviour of the collector. For instance, in a fixed-size
heap the overhead reduces the amount of space available for
new allocations which can reduce the mean time between
garbage collections and hence increase the total number of
garbage collections. On the other hand, with a variable heap
sizing policy, where the amount of free space is a function of
the space occupied by live data, the overhead can work the
other way. We discuss the various trade-offs on garbage col-
lection in detail in Section 4. For now we focus on removing
the extra word to eliminate the management costs.

3.1 Removing Dynamic Overhead
We now show how the dynamic space overhead can be

eliminated by object specialisation. This gives us the oppor-
tunity to evaluate the effect that dynamic space overheads
have on program execution time in general.

The idea is simple: instead of employing generic code to
perform actions like self-scavenging, and using additional
space in the heap to remember the object’s original entry

code, we instead modify the compiler so that for each clo-
sure type, in addition to generating its usual info table and
entry code, we build one or more “specialised” versions that
modify the object’s usual behaviour when entered.

For each closure type we generate one additional variant.
This inlines generic “self-scavenging” code with a duplicate
copy of the standard entry code (but see Section 3.2 below).
Info tables are extended with an extra field to contain a ref-
erence to their partner, i.e. the standard info table contains
a reference to the self-scavenging info table and vice versa.
The scheme is identical to the original, but now instead of
copying the standard info pointer to Word –1 on evacuation,
we simply replace it with its partner’s (i.e. self-scavenging)
info pointer. This obviates the need for Word –1. On scav-
enging, we do the reverse, thus restoring the standard info
pointer. Notice that the static data that sits above the ob-
ject’s entry code must carry a pointer to the object’s partner
in order to facilitate this flipping of code pointers.

This new scheme is pictured in Figure 3. This scheme has
replaced the runtime space overhead with a slight increase in
compilation time and code space; both info table and entry
code are stored in the text segment.
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Figure 3: Object Specialisation

3.2 Entry Code Duplication vs Inlining
Note that in the diagram, each partner is shown with an

identical inlined copy of the object’s original entry code. Of
course, we could replace one of these by a direct jump to the
other, thus reducing the space overhead at the expense of
additional instruction execution (JUMP). Although we do
not expect much difference in execution time we evaluate
both variants of this mechanism in Section 4.

3.3 Implications of Eval/Apply
Recall from Section 2.1 that GHC 6.2 uses an eval/apply

model of function application. Because “apply” is a generic
operation, it must explicitly inspect the type tag of the clo-
sure and its arity. From the point of view of the garbage col-
lector it is at this point that we must ensure the closure has
been scavenged, in order to maintain the to-space invariant.
The key difference between GHC’s previous “push/enter”
model, and eval/apply is that in the latter functions are
not actually “self”-scavenging in the above sense since the
scavenging is performed by the apply function based on the
object’s type tag. For sure, we could make them so and sim-
ply arrange for the apply function to enter self-scavenging
code, but there is nothing to be gained.



3.4 Stack Scavenging
One of the consequences of the eval/apply model is that

the stack now consists solely of stack frames. In the
push/enter model the stack is also littered with pending
argument sections (arguments pushed in preparation for a
function call). Using eval/apply it is therefore possible to
“walk” the stack cheaply one frame at a time, something
that is not possible in the push/enter scheme.

In our implementation of Non-stop Haskell we could not
scavenge the stack one frame at a time; the only stack ob-
ject whose return address we could safely hijack was the next
update frame on the stack (refer back to Section 2.2.2). Al-
though updates in GHC are quite common, the amount of
work required to scavenge between adjacent update frames
(a “unit” of stack scavenging work) was impossible to bound.
In the eval/apply scheme the maximum amount of work is
determined by the largest allowable stack frame, which is
fixed in GHC at 1KB. This provides a hard bound on the
time taken to perform one “unit” of stack scavenging work.

Given that the stack really is just like a collection of clo-
sures do we need to specialise the entry code for these stack
frames in order to make the stack scavenging incremental?
No, because the stack is accessed linearly from the top down.
To hijack the return address of the frame below we just need
a single extra word (e.g. a register) to remember the original
info pointer of the frame that is the latest to be hijacked.
We cannot do the same in the heap as the heap objects are
subject to random access.

3.5 Slop Objects
When a closure is updated it is (always) replaced by an

indirection to the closure’s value. Because the indirection
may be smaller than the original closure, the scavenger has
to be able to cope with the remaining “slop”, i.e. the now
unused memory within the original closure. In short, the
scavenger must know how to skip this dead space in order
to arrive at the next valid object in the collector queue.

Note, that for the stop-and-copy collector this issue of
slop does not exist – the scavenger does not scavenge from-
space where slop exists. Furthermore, the collection cycle is
instantaneous with respect to mutator execution, and so it
is not possible for an evacuated object to be updated before
it is processed by the scavenger.

If we use the extra word, the scavenger can always deter-
mine the size of the original closure since its info table will
be accessible from the object’s original info pointer at Word
–1. With object specialisation, this information is lost:
when the scavenger has processed the updated version of
the object it has no idea whether there is any dead space
following the object, let alone how much. We solve this prob-
lem by creating a special “dummy” object – a slop object –
which looks to the scavenger like a normal object whose size
is that of the dead space created by the update and whose
payload contains no pointer fields. When the scavenger en-
counters a slop object the effect is to skip immediately to
the next object in the collector queue. This is illustrated in
Figure 4.

We do not want to build slop objects on the fly, so to
make “slopping” fast for the vast majority of cases we pre-
define eight special slop objects, one for each slop size from
1 to 8. A generic slop object is constructed dynamically for
all other cases whose payload contains the slop size. This
is more expensive but it very rarely required (we did not
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Figure 4: Slopping in to-space.

observe it at all in the benchmarks we used for evaluation).
Note that slop objects will never be entered – only the layout
information is ever used – so the entry code for each is null.
Figure 4 shows the situation after the object’s update code
has overwritten the original object with an indirection and
the remaining dead space with a pointer to one of the eight
predefined slop objects – the seventh in this case as the dead
space comprises seven words.

Note also, that indirections contain a third word that is
used to chain indirections into a list in each old generation.
This forms a generation’s remembered set – a list of old to
younger generation references. This spare slot is also present
in indirections in the new generation, but is never used. In
short, we do not have to arrange for special indirections in
the young and old generations.

Recall that slop objects are only required in to-space, since
this is the only place the scavenger visits. We can therefore
avoid slopping altogether in from-space by suitably special-
ising the entry code for objects after they have been evac-
uated. However, because slopping in our implementation is
very fast – a single word assignment in almost all cases –
the performance benefits of such specialisation turns out to
be negligible (see Section 4).

3.6 Fast Entry
The crucial property on which our scheme depends is that

every object is entered before it is used. However, GHC
sometimes short-circuits this behaviour. Consider this func-
tion:

f x = let { g y = x+y } in (g 3, g 4)

The function g will be represented by a dynamically-
allocated function closure, capturing its free variable x. At
the call sites, GHC knows statically what code will be ex-
ecuted, so instead of entering the closure for g, it simply
loads a pointer to g into a register, and the argument (3 or
4) into another, and jumps directly to g’s code.

Notice that this only applies for dynamically-allocated
function closures. For example, the function f also has a
closure, but it is allocated statically, and captures no free
variables. Hence it does not need to be scavenged, so calls
to f can still be optimised into direct jumps.

In non-stop Haskell, the optimisation fails, because we
must be sure to scavenge g’s closure before using it. The
simple solution, which we adopt, is to turn off the optimisa-
tion. It turns out (as we show in Section 4 below) that this
has a performance cost of less than 2%.

4. EVALUATION
To evaluate the various schemes we have implemented

each of them in the current version of GHC (6.2). We se-
lected 36 benchmark applications from the “nofib” suite [14]



– see below for an explanation of the ones selected – and con-
ducted a series of experiments using both the complete set
and, for more detailed analysis, a selection of eight of the
applications that exhibit a range of behaviours. Benchmarks
for the incremental collectors were executed on a 400MHz
Celeron with 1GB RAM, a 128K level-2 cache, a 16KB in-
struction cache and a 16KB, 4-way set-associative level-1
data cache with 32-byte lines. The write barrier experi-
ments were run on a 500MHz Pentium III processor with a
512K level-2 cache and identical level-1 cache, associtivity
and line size specifications. The systems ran SUSE Linux
9.0 with 2.6.4 kernels in single-user mode. We deliberately
chose slow machines in order to increase the execution times
and reduce their variance. All results reported are averages
taken over five runs and are expressed as overheads with
respect to reference data. At the bottom of each table we
show the minimum, maximum and (geometric) mean over-
head taken over all 36 benchmarks.

In evaluating the various schemes we focus particular at-
tention on the following questions:

1. What is the overhead on the mutator execution time
(Section 4.1) and code bloat (Section 4.1.1) of each of
the various schemes?

2. How do the various collectors perform in a single-
generation heap? In particular, how does the dynamic
one-word overhead on each copied object in our orig-
inal Non-stop Haskell scheme affect the behaviour of
the mutator and garbage collector (Section 4.2)?

3. In moving to a generational scheme how much can be
gained by the various optimisations that accrue from
specialisation (Section 4.4)? Supplementary to this,
is it worth trying to eliminate the write barrier (Sec-
tion 4.6)?

4. How does incremental collection change the distribu-
tion of the pause times in a generational collector (Sec-
tion 4.5)? In answering this question we also wish
to consider minimum mutator utilisation [5] which is
a measure of the amount of useful work the mutator
performs in a given “window” of time.

4.1 Baseline Overheads
We begin by analysing the overheads imposed on the mu-

tator by the various schemes. To do this we ran each of
the benchmarks in the nofib suite and selected a subset of
36 that, appropriately parameterised, satisfied the follow-
ing two conditions: 1. They terminated without garbage
collection using a 1GB fixed-size heap on the reference plat-
form, 2. They executed for a sufficiently long time (at least
5 seconds, the majority much longer) to enable reasonably
consistent and accurate timings to be made.

The results are shown in Table 1 for GHC’s single-
generation stop-and-copy collector (REF), the same with
fast entry points turned off (REF*) (see Section 3.6), the
traditional Baker algorithm with an explicit read barrier
(BAK), our previous ‘Non-stop Haskell’ collector (NSH), the
new variant of NSH with object specialisation and shared
entry code (SPS) and the same but with inlined entry code
(SPI). For the last four, we report results where incremen-
tal scavenging takes place on every mutator object alloca-
tion (-A) and every new memory block allocation (-B) –
see Section 2.2.1. We list individual results for the eight

benchmarks selected, in addition to averages taken over the
whole benchmark suite. We report average overheads, but
not average execution time. A positive overhead represents
a slow-down.

For the two variants of Baker’s read barrier scheme, the
overheads come from:

• The need to test whether the collector is on (GC-ON)
at each allocation and at each object reference (Sec-
tion 2).

• The test to see whether an object has been evacuated
and/or scavenged at each object reference (Section 2).

• The fact that fast entry code must be turned off (Sec-
tion 3.6)

Clearly, the overhead of the second of these will be higher
if incremental scavenging occurs at each object allocation,
rather than at each allocation of a new memory block (4K
words in the current implementation). For the remaining
collectors the overhead comes from the GC-ON test at each
allocation and from turning off fast-entry points.

Taken over all benchmarks, turning off fast entry points
costs on average just under 2% in execution time. The GC-
ON test in NSH introduces a negligible additional overhead
(less than 0.3%) when performed at each block allocation;
when performed at each object allocation the overhead is
more significant (around 2.6%). With no garbage collec-
tion the only difference between the code executed by the
NSH, SPS and SPI variants is in respect of slop filling (Sec-
tion 3.5). However, this introduces a very small overhead
as the vast majority of useful slop objects (covering object
sizes 1–8) have been predefined (Figure 4).

Interestingly, although the code executed with the collec-
tor off is the same for both SPS and SPI, the measured times
for SPI are slightly larger. We do not have a plausible ex-
planation for this – experiments with Valgrind [25] do not
show any significant change in the cache behaviour.

The individual benchmarks show significant variation in
their behaviour. symalg is particularly unusual: this com-
putes

p

(3) to 65000 significant figures and is almost totally
dominated by the construction of new data representing the
result, none of which is “revisited” by the program. The
execution time is practically identical over all schemes. The
variations in the table are largely attributable to measure-
ment noise.

4.1.1 Code Bloat
The binary sizes are listed in Table 2. In our implemen-

tation of Baker’s algorithm extra code is inlined around all
object accesses to implement the read barrier. Code is also
planted around each object allocation in the case of BAK-A
that invokes the incremental scavenger during garbage col-
lection. The same overhead is paid in NSH-A, SPS-A and
SPI-A. For BAK-B (likewise the other -B variants) this code
is attached to the block allocator in the run-time system so
the additional code overheads are negligible.

For Non-stop Haskell the code bloat comes primarily from
additional static code in the run-time system, including the
code to perform incremental stack scavenging (1.8MB vs
280KB approximately). For larger binaries the overhead is
proportionally smaller. For NSH-A the additional overhead
comes from the additional code around each object alloca-
tion.



Application REF REF* BAK-A BAK-B NSH-A NSH-B SPS-A SPS-B SPI-A SPI-B
(s) (%) (%) (%) (%) (%) (%) (%) (%) (%)

circsim 16.29 +1.04 +38.31 +37.51 +4.85 +1.47 +6.38 +3.19 +11.42 +6.32
constraints 18.33 +3.38 +53.96 +50.52 +5.54 +2.45 +9.98 +7.36 10.69 +7.58
lambda 26.01 +0.88 +36.91 +35.22 +2.61 +1.73 +4.15 +4.27 +5.42 +1.31
lcss 19.40 –1.60 +31.13 +31.34 –0.62 –3.40 +1.34 –1.29 –0.46 –0.82
scs 23.17 +3.88 +32.50 +28.96 +6.34 +4.96 +5.83 +4.88 +8.42 +5.70
symalg 33.86 –0.15 –0.24 –0.03 +0.18 –0.27 +0.41 +0.21 +0.00 –0.15
wave4main 51.95 +1.12 +58.79 +56.13 +2.69 +2.00 +6.16 +2.93 +4.47 +2.16
x2n1 22.56 +0.09 +55.41 +53.86 +4.21 –0.18 +5.76 +1.60 +5.27 +1.73
Min 36 –1.71 –0.24 –0.03 –0.62 –3.40 –3.10 –1.29 –0.46 –1.13
Max 36 +20.45 +84.64 +82.63 +26.10 +21.91 +31.08 +25.17 +43.63 +25.03
ALL 36 +1.99 +39.20 +37.22 +4.61 +2.28 +6.54 +3.84 +7.10 +3.78

Table 1: Mutator overheads reported as a percentage overhead on GHC 6.2 execution
times (REF) with no garbage collection

For the specialised code versions the overheads are pri-
marily due to the additional entry code variants associated
with each object type. Once again, the code bloat in the
-A versions is higher than that in the -B versions because of
the additional object allocation code, as we would expect.

4.2 Dynamic Space Overhead
Having two implementations of the barrierless Baker

scheme, with and without a one-word space overhead on
copied objects, gives us the opportunity to investigate the
effects of dynamic space overheads. Recall that newly-
allocated objects do not carry the overhead. We now explore
the effects in practice.

We work with our original non-stop Haskell (NSH) scheme
with the dynamic space overhead on copied (to-space) ob-
jects. However, we did not want the incremental nature of
the NSH collector to interfere with the experiment – some
extremely subtle effects can be observed when switching
from stop-and-copy to incremental as we shall see shortly.
We therefore removed the “return” instruction from the in-
cremental scavenger so that the garbage collector actually
completes in one go, essentially making the collector non-
incremental. This enables us to focus on the effect of the
space overhead independently of the issue of incrementality.

One further point must be understood before we proceed.
All of GHC’s collectors use a dynamic sizing policy which
allocates free space for newly-allocated objects (the nursery)
in accordance with the amount of live data at the end of the
previous collector cycle. In other words, GHC does not work
with a fixed-size heap. The default is to allocate twice as
much nursery space as there is live data, with a view to
keeping the residency at around 33% on average. However,
the minimum nursery size is 256KB so the average residency
may be smaller for some applications.

If each copied object carries a space overhead we create the
illusion that the residency is larger than it really is, or rather,
otherwise would be. Thus, the collector will allocate more
nursery space than it would otherwise. This increases the
mean time between garbage collections and hence reduces
the average total number of garbage collections. This effect
is countered somewhat by the 256KB minimum nursery size
as we explain below.

Note that the increased memory usage per object can ei-
ther be thought of as increasing the GC overhead per unit
memory, or increasing the memory demand per unit run-
time.

To explore the effect that the overhead has in practice,
we therefore built an adjusted variant of NSH (NSH-1) that

subtracts the overhead from the total amount of live data
before sizing the nursery. The number of garbage collections
performed by this variant should now be the same as that of
a baseline stop-and-copy collector – we were able to verify
this as we had made the NSH-1 variant non-incremental for
the experiment.

What about a fixed-size heap, i.e. where memory is con-
strained? This would essentially reduce the nursery size com-
pared with stop-and-copy. We could rework the GHC run-
time system to do this. However we instead simulate the
effect qualitatively in the context of dynamic nursery sizing
by building a second variant of NSH that subtracts twice the
overhead from the total amount of live data before sizing the
nursery.

The results are summarised in Table 3. The average ob-
ject size for our benchmarks is around 3.3 words so the space
overhead is around 30% on all copied objects. This suggests
that NSH (NSH-2) should reduce (increase) the number of
garbage collections by around 30% when compared to NHS-
1. However, the 256KB minimum nursery size reduces the
effect somewhat. If there is less than 128KB of live data all
three variants will allocate the same size nursery (256KB).
We would therefore expect the average reduction/increase
in garbage collections to be rather less than 30%, indeed
the observed averages are -13.57% and +19.19%. For ap-
plications whose working set is less than 128KB all three
variants will behave identically; we see this on a number of
the smaller benchmarks.

Application NSH-1 NSH NSH-2

circsim 69 57 (–17.39%) 88 (+27.54%)
constraints 50 40 (–20.00%) 70 (+40.00%)
lambda 94 65 (–30.85%) 145 (+54.25%)
lcss 450 207 (–54.00%) 350 (–22.22%)
scs 561 560 (–0.18%) 648 (+15.51%)
symalg 3764 3764 (+0.00%) 3764 (+0.00%)
wave4main 298 295 (–1.01%) 306 (+2.68%)
x2n1 226 187 (–17.26%) 286 (+26.55%)

Table 3: Number of garbage collections for NSH,
NSH-1 and NSH-2

4.3 Incremental Collector Performance
We now consider raw performance of the various incre-

mental collectors in comparison with the baseline stop-and-
copy collector, for a single generation. Note in particular
that the NSH implementation is the unadjusted version –
we do not correct for the dynamic space overhead when siz-
ing the nursery.



Application REF REF* BAK-A BAK-B NSH-A NSH-B SPS-A SPS-B SPI-A SPI-B
(KB) (%) (%) (%) (%) (%) (%) (%) (%) (%)

circsim 299 +0.00 +12.95 +8.46 +13.56 +9.09 +30.56 +26.06 +43.46 +38.33
lcss 249 +0.03 +12.72 +8.46 +15.16 +10.72 +30.18 +25.92 +41.28 +36.42
symalg 444 +0.00 +12.99 +7.92 +11.10 +6.04 +27.94 +22.82 +40.59 +34.70
wave4main 209 +0.04 +13.11 +9.23 +16.84 +7.10 +29.28 +25.45 +39.20 +34.71
x2n1 328 +0.00 +12.74 +8.21 +12.76 +8.24 +28.30 +23.77 +39.03 +33.95
Min 36 –0.02 +11.82 +7.24 +8.60 +2.77 +27.14 +22.08 +37.85 +32.17
Max 36 +0.14 +14.36 +9.28 +19.16 +15.60 +30.56 +26.79 +47.49 +40.35
ALL 36 +0.02 +12.99 +8.55 +14.21 +9.76 +29.14 +24.68 +40.90 +35.74

Table 2: Code bloat reported as a percentage overhead on the stop-and-copy collector

For the two Baker variants, BAK-A and BAK-B, we re-
port overheads for collectors without incremental stack scav-
engers. The stacks are scavenged in their entirety at the GC
flip (see Section 2.2.2) – the addition of incremental stack
scavengers would further degrade the performance of the
collectors that already incur the highest overhead. All other
collectors employ incremental stack scavengers. The results
are presented in Table 4.

It is clear from the table that something quite unusual is
going on. Averaging over all 36 benchmarks the incremental-
B schemes are actually running faster than stop-and-copy.
Closer inspection of the figures shows that some applica-
tions (bernoulli, gamteb, pic and symalg) exhibit substantial
speed-ups (35-79%) across all incremental variants. There
are also significant outliers in the other direction (paraf-
fins and scs, for example). Curiously, wave4main exhibits
extreme speed-ups across all -B variants and extreme slow-
downs across all -A variants!

Because the effects are seen across the board it suggests
that it is an artefact of the incremental nature of the garbage
collector, rather than the idiosyncrasies of any particular
implementation. Examination of the Valgrind cache traces
reveals no obvious trend that might explain the differences.

It turns out that the extreme behaviours are attributable
to two different aspects of incremental collector behaviour.
The extreme speed-ups are an artefact of long-lived data
and the fact that stop-and-copy collection happens instan-
taneously with respect to mutator execution. During incre-
mental collection, data that must be retained by the stop-
and-copy collector is given the chance to die – specifically if
the mutator updates the root of the data before the scav-
enger evacuates it. The greatest speed-ups are observed
when 1. incremental collection cycles are long, 2. the life-
time of the data is slightly shorter than the incremental
collection cycle, 3. the data is not in the immediately active
portion of the mutator’s working set and 4. death occurs
before the scavenger evacuates it.

The extreme slow-downs are an artefact of incremental
collection cycles that are forced to completion. The stop-
and-copy collector sizes the nursery based on the amount of
live data at the end of the current cycle, while the incre-
mental collector can only use that of the previous cycle. If
the sizing policy does not size the nursery large enough for
the collection of from-space to complete before the nursery
is again exhausted, then the current cycle is forced to com-
pletion and a new cycle is started. This can result in the
incremental collector doing significantly more work than the
stop-and-copy collector.

One way to remedy this is to adjust the amount of work
done at each allocation on the basis of forced completions
in previous collector cycles. However, as GHC has a block-

based allocator, the most reliable solution is to allocate one
or more extra blocks to the nursery as needed. This is a
straightforward modification and has the added benefit that
it enables us to provide hard bounds on the pause times (but
see Section 6.1 below), although we have not had a chance
to evaluate it in practice.

Intriguingly wave4main exhibits both of these traits. The
incremental cycles are long and span 98% of the total exe-
cution time. When scavenging occurs at every block alloca-
tion, the scavenger is invoked much less frequently than at
every allocation and the mutator evacuates objects in refer-
ence order – the immediately active portion of the working
set. A large number of long-lived objects outside this por-
tion die before the scavenger evacuates them. However, the
scavenger that operates at every object allocation evacuates
data in closure layout order and is invoked much more fre-
quently. This results in the scavenger encountering the data
that previously died off in this cycle and its evacuation. A
high rate of allocation and increasing amount of live data
compound the effect, resulting in a significant number of
forced completion cycles. This significantly increases the
amount of data copied during garbage collection.

Note that NSH performs well because the sizing policy
incorporates the extra word in the live data calculations. In
practice, the collector would never be chosen over an SPS
or SPI collector. Instead, the sizing factor, a configurable
parameter to the collector, would be adjusted to provide
equivalent performance.

4.4 Incremental Generational Collectors
We now investigate the raw performance of the various

collectors with two generations and two steps per generation
(GHC’s current default configuration). This is of interest as
it indicates the bottom line on performance that we would
expect to see in a “production” environment. The results
are shown in Table 5. The performance of each variant is
expressed as an overhead on the execution time observed us-
ing GHC’s baseline generational collector. Once again the
results suggest that there is no advantage at all to inlining
entry code in each variant. Indeed the mutator overhead
that accompanies the code bloat often leads to worse per-
formance when compared to SPS that shares a single copy
of each closures’s original entry code.

An interesting observation is that the extreme behaviour
we observed in the single-generation collectors is much di-
minished. This is because the nursery in the generational
collector is of fixed size (256KB) so that the collection cy-
cles are relatively small (point 1. above). This all but elim-
inates the pathological speed-ups. Furthermore, the long-
lived data is promoted to the older generation more quickly
where garbage collection is less frequent; the extreme effects
we saw earlier are altogether much less apparent.



Application REF REF* BAK-A BAK-B NSH-A NSH-B SPS-A SPS-B SPI-A SPI-B
(s) (%) (%) (%) (%) (%) (%) (%) (%) (%)

circsim 45.42 –1.25 +65.06 +57.24 +13.25 +6.80 +22.04 +13.67 +22.85 +14.70
constraints 50.09 +3.29 +82.87 +63.19 +8.17 +3.09 +22.80 +10.32 +23.12 +11.08
lambda 52.03 +3.50 +93.47 +57.89 +15.47 +2.08 +20.51 +4.36 +21.72 +3.77
lcss 51.41 –1.24 +53.69 +38.16 +11.26 +7.62 +11.79 +9.04 +11.57 +8.69
scs 43.44 +3.15 +99.88 +93.62 +86.26 +69.66 +58.40 +50.41 +63.61 +57.14
symalg 76.19 +0.67 –65.99 –65.99 –66.23 –66.06 –66.32 –66.22 –66.09 –66.20
wave4main 509.24 –0.14 +92.85 –36.53 +75.18 –64.73 +49.43 –60.84 +50.57 –61.20
x2n1 45.56 –0.81 +48.9 +31.74 +8.58 –9.20 +6.01 +0.88 +6.19 –1.25
Min 36 –1.25 –71.73 –72.96 –78.29 –74.73 –77.55 –78.57 –77.90 –78.82
Max 36 +11.05 +248.48 +177.00 +86.26 +69.66 +62.01 +54.83 +68.51 +52.72
ALL 36 +1.53 +41.98 +26.37 +3.45 –5.58 +4.73 –6.03 +4.65 –7.68

Table 4: Single-generation incremental collector performance as an overhead on base-
line stop-and-copy (REF)

Application REF REF* BAK-A BAK-B NSH-A NSH-B SPS-A SPS-B SPI-A SPI-B
(s) (%) (%) (%) (%) (%) (%) (%) (%) (%)

circsim 40.15 –2.19 +24.46 +22.76 +16.06 +13.05 +7.95 +4.48 +9.94 +7.10
constraints 58.56 +1.42 +19.02 +16.96 +10.86 +9.90 +6.11 +3.48 +7.67 +4.80
lambda 46.92 +2.39 +30.18 +25.47 +10.40 +7.10 +9.10 +3.30 +11.15 +0.79
lcss 56.28 +3.86 +42.36 +33.26 +20.84 +16.12 +14.23 +7.11 +15.05 +7.43
scs 31.75 +1.98 +30.27 +26.65 +10.16 +8.85 +8.15 +5.01 +9.34 +6.46
symalg 26.28 +0.08 +7.08 +0.46 +9.13 +0.76 +8.30 +0.61 +8.53 +1.56
wave4main 286.45 –0.76 +10.56 +10.88 +4.53 +5.55 +4.50 +5.85 +4.41 +6.04
x2n1 210.01 –2.87 +6.33 +4.96 +10.59 +7.63 +8.82 +9.76 +8.99 +10.66
Min 36 –3.33 –0.11 –0.08 –4.04 –3.40 –3.10 –2.54 –3.21 –2.31
Max 36 +8.33 +79.14 +76.57 +26.02 +27.76 +23.49 +20.45 +17.88 +16.06
ALL 36 +0.44 +24.62 +22.59 +9.18 +7.70 +6.78 +4.42 +8.27 +4.76

Table 5: The Bottom Line: Incremental generational collector performance as an
overhead on execution time compared to GHC’s current generational collector (REF)

4.5 Pause Times and Mutator Progress
Our previous paper showed the mean pause times for both

per-object and per-block (-A and -B) schemes to be very
favourable over a range of benchmarks. In this paper we
focus on the pause time distribution and mutator progress
for a small subset of the benchmarks. To gather these we
used PAPI [15] to get access to the hardware performance
counters and produced a trace of the wall clock time for each
pause. It is important to understand the measurements are
wall-clock timings; in some rare cases the pause times in-
clude context switches. Also, some very small pauses are
subject to measurement granularity. We are forced to use
wall clock time, as the time quantum PAPI is able to multi-
plex for per-process “user” time is generally larger than the
incremental collector pause times.

We show here results for circsim, x2n1 and wave4main.
The pause time distribution graphs for GHC’s generational
collector and that of SPS-A and SPS-B are included. In the
stop-and-copy generational collector the mean pause time
was 6.4ms; for SPS-A this was around 7µs. The longest
pauses were 2.04 seconds (a major collection), and 738ms
respectively. The figure for SPS-A is unusually large con-
sidering the granularity of incremental scavenging – this is
an artefact of a forced completion. This highlights the need
to eliminate forced completions in order to bound the pause
times. The results for x2n1 and wave4main can be seen to
be similar.

The minimum mutator utilisation (MMU) graphs for circ-
sim, x2n1 and wave4main are included and overlay the base-
line (stop-copy) generational collector and both the SPS-A
and SPS-B schemes. These MMU graphs show the lowest
average mutator utilisation seen over the entire program run,
for varying intervals of time. Notice that the utilisation is
greatest in SPS-A and least for the baseline collector. How-
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ever, recall that whilst pause times are shorter, the execution
time is extended – this is as we would expect.

4.6 The Write Barrier
Each of the collectors above avoids the explicit write bar-

rier using the techniques described in Section 5. Historically,
the write barrier has been found to have a small overhead
on execution time – see for example [17]. The issue is po-
tentially more interesting in the current GHC because of its
block-allocated memory. To implement the write barrier the
object’s address must first be mapped to a block identifier
and the block header then examined to determine in which
generation it sits. The cost of the write barrier is 15 instruc-
tions on a Pentium III, compared with just two instructions
for a contiguous heap. Does this significantly affect overall
execution time?

To find out we ran the benchmarks with a 1GB heap so
that no garbage collection, and hence no promotion, takes
place. We used the baseline generational collector (i.e. with
a write barrier) and compared it with our barrierless col-
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lector with specialised thunk code, but running in a non-
incremental mode (SPI-SC). Actually, only the young gen-
eration variant of the thunk code will be executed as no ob-
jects are ever promoted. Since neither collector executes, the
difference is in the mutator code to implement the barrier.
We then re-ran the benchmarks with the same collectors,
but using the standard heap sizing policy – two generations
and two tenuring steps – so that garbage collection and ob-
ject promotion now occur. The results are shown in Table 6.
Note, the REF times differ to those of Table 4 because differ-
ent machines were used for the execution of the benchmarks
(see Section 4).

Running in a 1GB heap the SPI-SC figures indicate the
maximum benefit that can be expected from removing the
write barrier – if all objects sit in the young generation then
the write barrier is wholly superfluous. The figures show
that removing the barrier altogether would only gain around
1.7% in performance averaged over all benchmarks. The fig-
ures for the standard configuration show the benefit in more
typical situations. The conclusion is that, despite the rela-
tively expensive write barrier in GHC, the barrier overheads
are actually very small.

5. BRIDGING THE GENERATION GAP
Although for many applications removal of the write bar-

rier doesn’t pay, it is possible in principle to eliminate it us-
ing the same specialisation trick that we used to optimise our
Non-stop Haskell collector. For the generational collector of
“Eager Haskell” [12], or some write-intensive applications,
the optimisation may be worthwhile, and so we outline here
how it can be done.

1GB Heap Standard Heap
Application REF SPI-SC REF SPI-SC

(s) (%) (s) (%)

circsim 14.06 –0.07 38.68 +0.34
constraints 13.79 +1.96 53.96 +4.78
lambda 22.26 +0.04 44.27 +5.35
lcss 17.77 –4.11 53.95 +1.72
scs 18.86 +2.01 27.19 –0.59
symalg 35.31 –0.04 28.04 +0.11
x2n1 11.90 –3.87 71.70 –3.38
ALL 36 -1.67 -0.51

Table 6: Costing the write barrier

We want to achieve two effects:

1. We would like there to be no write barrier when updat-
ing thunks in the young generation as these updates
cannot generate inter-generational pointers.

2. When updating an object in the old generation we
would like the thunk to be added to the remembered
set automatically either when it is entered or when it
is eventually updated.

The bottom line is that we want the update code to be
different for the young and old generations. The trick is
to hijack the info table pointer associated with a thunk at
the point where the garbage collector promotes it so that it
behaves differently depending on the generation in which it
sits.

The simplest modification requires one additional variant
of the thunk entry code (each thunk is specialised) that will
be used only when the object has been promoted (desig-
nated a thunk barrier). The thunk barrier code adds the
thunk to the remembered set immediately after it has been
black-holed. Note that we cannot do this before black hol-
ing because the act of adding to the remembered set would
corrupt the payload (recall that the remembered set is a list
formed by chaining objects together – Section 3.5).
Technical detail: Note that this requires eager black holing.
The alternative is to wait until the next garbage collection
and do the black holing whilst scanning the update frames
on the stack. This is called lazy black holing and is shown
in [19] to be cheaper than black holing thunks at the point
where they are entered. Note also that promoting a black
hole requires the object to be added to the remembered set.

This add-on-entry scheme is actually not a new idea.
Niklas Rojemo proposed the idea in [16] to enable tenuring
policies to be modified with low overhead. The disadvan-
tage is that the list will contain many objects in the “black
hole” state for which no inter-generational pointers yet exist:
these (may) appear when the object is eventually updated.
This adds an overhead to minor collections because the re-
membered set that is scanned as part of the root set for the
young generation can now be significantly longer.

A better approach is to arrange for the object to be added
to the remembered set when it is updated – this may hap-
pen some time after the object has been entered, as ex-
plained earlier. This add-on-update scheme requires a sec-
ond (generic) variant of the update frame for the old gener-
ation which additionally adds the updated thunk to the re-
membered set. The entry code for the old generation is the
same as for the young generation except that it pushes the
modified update frame. The code bloat for thunk and (sin-
gle) update frame specialisation is on average 14.5% across
all the benchmarks before combination with the incremental
collector variants.

To complete the picture, self-scavenging variants of both
the original entry code and thunk barrier entry code are
needed as before: a total of four specialised thunk variants.
Figure 5 shows a thunk and its four specialised variants.
The example shows the info pointer set as it would be after
promotion, before the thunk has been updated and after it
has been scavenged during garbage collection. The picture
would be the same for a promoted thunk when the garbage
collector is off.

Although the code bloat as described would be substan-
tial we can again choose to share the entry code that is
common to each. Our previous evaluation shows that this
gives almost identical performance whilst reducing the code
bloat.
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Figure 5: An evacuated closure in the specialised
self-scavenging thunk barrier scheme.

6. CONCLUSIONS AND FUTURE WORK
Our experiments have shown that closure code specialisa-

tion can buy performance when it is used to remove dynamic
space overheads. A 25% code bloat over stop-and-copy (an
additional 15% over our previous Non-stop Haskell collec-
tor) buys us an incremental generational collector that runs
only 4.5% slower than stop-and-copy when averaged over
our chosen benchmarks and around 3.5% faster than our
previous “Non-stop Haskell” collector (of course the bene-
fits are greater when operating with limited memory, i.e. in
the confines of a fixed-size heap).

Although specialisation opens up a number of additional
optimisation opportunities, for example write barrier elimi-
nation, they appear to buy very little in practice. With re-
spect to building a “production” garbage collector for GHC
our preferred option is therefore to use specialisation to re-
move the dynamic space overheads and provide a fast imple-
mentation of Baker’s algorithm that avoids the read barrier,
and to pay the small additional cost of the write barrier to
limit the code bloat.

6.1 Bounded Pause Times
Provided a program does not make use of large objects

(mostly occurring as arrays allocated in separate blocks to
the rest of the objects in the heap), we can, in theory, pro-
vide hard bounds on the pause time in keeping with the
work of [4], for example. We did not have a handle on this
in our previous work because we had no way of bounding the
unit of work required by the stack scavenger – this has now
been fixed. We would have to prevent forced completions,
of course, which lead to an unbounded pause at the end of
those collection cycles where the collector can’t keep up with
the mutator. We have suggested a way to do this that ex-
ploits GHC’s block-allocated memory system, although we
have not yet implemented it.

Large objects still present a problem. As it stands these
have to be scavenged in one go although we could break
these up into smaller fixed-sized structures [3] accessed by
more expensive primitives with explicit read barriers. Al-
ternatively a scheme which employs dynamic dispatch and
our self-scavenging techniques could be used.
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