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Abstract

Hand-drawn diagrams present a complex recognition
problem. Fragments of the drawing are often individually
ambiguous, and require context to be interpreted.

We present a recognizer based on conditional random
fields (CRFs) that jointly analyze all drawing fragments in
order to incorporate contextual cues. The classification of
each fragment influences the classification of its neighbors.
CRFs allow flexible and correlated features, and take tem-
poral information into account. Training is done via con-
ditional MAP estimation that is guaranteed to reach the
global optimum. During recognition we propagate informa-
tion globally to find the joint MAP or maximum marginal
solution for each fragment. We demonstrate the framework
on a container versus connector recognition task.

1. Introduction

Hand-drawn diagrams consist of parts whose function
depends heavily on context. For example, a single line frag-
ment could constitute the side of a container, or the stem
of a connector, and its role could only be disambiguated by
looking at neighboring fragments. In this paper we cleanly
incorporate context into recognition of parts by treating the
problem as a joint classification task. In other words, in-
stead of recognizing parts individually, we will recognize
them together by making interdependent classifications.

The recognition of parts in complex scenes is tightly in-
tertwined with the problem of segmentation. Good segmen-
tation is often crucial for achieving accurate recognition.
Traditionally these two problems have been treated sepa-
rately, by first segmenting a drawing or image into indi-
vidual shapes or objects, and then recognizing each seg-
ment. The problem is that it is difficult to segment the
scene into objects before recognizing them. We postpone
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the segmentation task and initially only divide the input into
small generic fragments of objects (short stroke fragments).
We then perform joint classification to identify what object
classes all the fragments are parts of. This step results in
an implicit segmentation, except that fragments in the same
class must still be grouped, which is typically a much eas-
ier task. Thus, our joint classifier combines recognition with
partial segmentation.

Combined segmentation and recognition has been done
previously using generative probabilistic models. Cough-
lan and Ferreira [1] found objects in images using de-
formable templates which were fit with dynamic program-
ming and loopy belief propagation. However, the technique
depends heavily on templates, which limits its applicabil-
ity. For complicated or free-form objects such as connec-
tors, it is difficult to construct templates or generative mod-
els for the observed drawingP (x). Recently, Tu et al. [6]
proposed a Markov Chain Monte Carlo approach for im-
age parsing, which combines segmentation, detection, and
recognition. They also used a generative approach to model
objects.

Unlike the above generative approaches, we advocate a
discriminative classification scheme, where we only model
the conditional distribution of the labelsy, i.e., P (y|x).
This conditional distribution is what we ultimately need
for the classification task. We avoid modeling the drawing
data distributionP (x), which can be complicated and is not
needed.

Many traditional discriminative classification ap-
proaches such as logistic regression, neural networks and
support vector machines can only model labeled points in-
dependently of one another. In contrast, conditional random
fields (CRFs) [4] model dependencies not only between in-
put data and its labels, but also model dependencies be-
tween labels. Specifically, they provide a joint distribution
over the labels conditioned on the data. They are an in-
stance of undirected graphical models [2].

Kumar and Hebert [3] applied conditional random fields
and achieved good results on an image region classification
problem. They employed a crude pseudo-likelihood approx-
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Figure 1. An organization chart. Stroke frag-
ments are numbered and their endpoints
marked.

imation for maximum-likelihood learning of model param-
eters, which tends to overestimate parameter values. They
used other approximations (iterated conditional modes) for
inference.

This paper describes how to apply conditional random
fields to two-dimensional recognition problems exactly,
without resorting to the pseudo-likelihood or other approx-
imations. Conditional random fields show great promise
in classifying sequence data (such as text or speech), and
we now demonstrate their power in a two-dimensional set-
ting, without the previously crippling assumptions.

Our application is recognition of hand-drawn organiza-
tion charts (Figure 1). We focus on classifying which frag-
ments of ink are parts of containers versus parts of connec-
tors. This is an inherently ambiguous problem, as both con-
tainers and connectors consist of similar stroke fragments,
and only the context of a fragment can resolve its true class.

In the following sections, we first introduce conditional
random fields, and then derive training and inference pro-
cedures. We then describe the ink parsing task and experi-
mental results.

2. Conditional Random Fields

A conditional random field can be seen as a network of
interacting classifiers: the decision made by one classifier
influences the decisions of its neighbors. We thus need to
describe the individual classifiers, their inputs and outputs,
as well as the structure of the network.

2.1. Formal Definition

Let x be an input random vector for the observed data,
andy be an output random vector over labels of the cor-
responding data. The inputx might range over the ink and

the outputy range over the labels of shapes to be recog-
nized. All componentsyi of y are assumed to range over a
set of labelsT . In this paper, we focus on the binary case
T = {−1, 1}.

The structure of the network of classifiers specifies
which classifiers can directly influence each other. The in-
teractions are specified by a graphG = (V,E) where the
nodesV are fragments to be classified and the edgesE in-
dicate possible dependencies. Formally, a CRF speci-
fies Markov independence properties between the inputs
and outputs as follows [4]:

Definition 2.1 Random variables(x,y) are a conditional
random field (CRF)if, when conditioned onx, all yi obey
the Markov property with respect to the graph: namely
P (yi|x,yV−i) = P (yi|x,yNi), whereyV−i is the set of
all nodes inG except the nodei, andNi is the set of neigh-
bors of the nodei linked with edges inE.

Unlike traditional Markov random fields (MRFs)
which are generative models, CRFs only model the condi-
tional distributionP (y|x) and do not explicitly model the
marginalP (x). Note that the individual labelsyi are glob-
ally conditioned on the whole observationx in CRFs.
This global conditioning allows very flexible features that
can capture long-distance dependencies, arbitrary correla-
tion, and practically any aspect of a drawing. In contrast,
traditional generative models require features to be condi-
tionally independent given the labels.

2.2. Individual Classification

At each node in the graph there is a classification to be
made. In a CRF with no interactions (E = ∅), we can ap-
ply a classifier independently to each nodei and assign (a
two-class) label probability

Pi(yi|x,w) =
1

Z(w)
Ψ(yiwTgi(x)). (1)

Here,gi(x) are features associated at sitei, usually based
on observations in a local neighborhood, but potentially also
dependent on global properties ofx. The features are lin-
early weighted byw, and then fed through a nonlinearity
Ψ and normalized to sum to 1 byZ(w). Common choices
for the nonlinearity areΨ = exp, in which case we ob-
tain a logistic classifier. Alternatively, we will use the pro-
bit function, which is the cumulative distribution of a Gaus-
sian:Ψ(a) =

∫ a
−∞N(x; 0, 1) dx.

2.3. Joint Modeling

When we want to model node interactions indicated by
edgesE in G, we must look at the joint distributionP (y|x).



The Hammersley-Clifford theorem shows that the CRF con-
ditional distributionP (y|x) can be written as a normal-
ized product of potential functions on cliques of the graph
(i.e., complete subgraphs of the graph). We will employ two
types of potentials. Firstly, for each node we introduce a site
potentialΦi(yi,x;w), which measures the compatibility of
one label with its associated ink, as a function of model pa-
rametersw. Secondly, for each edge there is an interaction
potentialΩi,j(yi, yj ,x;v), which measures the compatibil-
ity between two neighboring labels, depending on their as-
sociated ink and parametersv. We collect all parameters in
θ = [w v]. Now, the CRF defines the joint label probabil-
ity as

P (y|x,θ) =
1

Z(θ)

∏
i∈V

Φi(yi,x;θ)
∏

(i,j)∈E

Ωi,j(yi, yj ,x;θ)
(2)

andZ(θ) =
∑
y

(∏
i∈V

Φi(yi,x;θ)
∏

(i,j)∈E

Ωi,j(yi, yj ,x;θ)
)

Z(θ) is a normalizing constant known as the partition func-
tion.

Both types of potentials use a linearly weighted combi-
nation of ink features passed through a nonlinearityΨ:

Site Φi(yi,x;θ) = Ψ(yiwTgi(x)) (3)

Interaction Ωi,j(yi, yj ,x;θ) = Ψ(yiyjvTfij(x)), (4)

Note that the strength of interaction potentials may depend
on the observationx through the featurefij(x). In tradi-
tional random fields the interaction potentials do not de-
pend on observationsx. One can view the interaction po-
tential (4) as a classifier of pairs of neighboring labels.

Importantly, we make no restrictions on the relations be-
tween featuresgi(x) andgj(x), nor onfij(x) for different
sitesi andj. For example, features can overlap, be strongly
correlated, and extend over long distances.

We consider two nonlinearities. Firstly, the exponential
functionΨ = exp, which is convenient for maximizing log-
likelihood and MAP, because after simplification only the
linear argument remains. Secondly, we useΨ = probit func-
tion. In both cases we can also include a label noise proba-
bility ε, which increases robustness by considering label er-
rors in two-class problems. Specifically,

Φi(yi,x;θ) = (1− ε)Ψ(yiwTgi(x))+ εΨ(−yiwTgi(x)),
(5)

and similarly for the interaction potential.
By combining site and interaction potentials, the CRF is

effectively a network of coupled classifiers. Each site po-
tential acts like a classifier predicting the label at one site
in the graph. These predictions are then coupled by classi-
fiers based on interaction potentials.

We have illustrated CRFs for two classes, however, the
multiple class case can be reduced to two classes by ab-

sorbing the labels into the feature functionsgi(x, yi) and
fij(x, yi, yj) with little change.

3. Training CRFs

We train the CRFs in a discriminative way. Given a set of
training data, we find the parametersθ = [w v] that maxi-
mize conditional MAP

θ̂ = argmaxθ log P (θ|x,y) = argmaxθ log P (y|x,θ)P (θ)
(6)

We assign independent Gaussian priors to the parame-
ters,P (θ) = N(θ; 0, σ2I). For exponential nonlinearities
andε=0, thelog P (y|x,θ)P (θ) simplifies toL =∑
i∈V

yiwTgi(x) +
∑

(i,j)∈E

yiyjvTfij(x)− log Z(θ)− ‖θ‖2

2σ2

(7)

(plus a constant), and its gradients w.r.t.w andv are respec-
tively

dL
dw

:
∑
i∈V

yigi(x)−

〈∑
i∈V

yigi(x)

〉
P (y|x,θ)

− w
σ2

,

dL
dv

:
∑

(i,j)∈E

yiyjfij(x)−

〈 ∑
(i,j)∈E

yiyjfij(x)

〉
P (y|x,θ)

− v
σ2

,

The angle brackets denote expectations with respect to the
current model distribution. Since only sums of singleyi
or pairs yiyj occur in the expectations, only individual
marginalsP (yi|x,θ) and pairwise marginalsP (yi, yj |x,θ)
are required.

For probitΨ nonlinearities with the label noise model,
the gradient has a similar form

dLψ
dw

:
∑
i∈V

qiyigi(x)−
〈 ∑
i∈V

qiyigi(x)
〉
P (y|x,θ)

− w
σ2

,

whereqi =
N(yiwTgi(x))

Ψ(yiwTgi(x)) + ε
1−2ε

and likewise for the gradient for the interaction parameters
v.

For both exponential and probit nonlinearities, the log-
likelihood is concave when the label noiseε = 0. Thus, gra-
dient ascent is guaranteed to find a global maximum. The
quasi-Newton technique BFGS [5] converges in 50-100 it-
erations in our application.

The computational cost is dominated by calculating the
partition functionZ(θ) and the marginalsP (yi|x,θ) and
P (yi, yj |x,θ). In general, an exact calculation is exponen-
tial in the number of nodes in the graph, but fortunately
our graphs are sparsely connected. In this case, the junc-
tion tree algorithm is feasible on the triangulated graph [2].



Our ink graphs have a tree width typically less than 5, and
require around 5000 FLOPS to calculate a complete set of
marginals and the partition function. For more densely con-
nected graphs, approximate inference such as loopy belief
propagation may be necessary.

4. Inference on CRFs

Unlike traditional classification problems, where we find
the probability of a single label given an input, a CRF as-
signs a joint probability to a configuration of labels given
an inputx and parametersθ. We are typically interested to
find either the maximum a posteriori (MAP) or maximum
marginal (MM) solution:

yMAP = argmaxyP (y|x,θ) (8)

yMM
i = argmaxyi

P (yi|x,θ), ∀i ∈ V. (9)

The MAP solution finds a globally compatible label as-
signment, whereas the max marginal solution will greed-
ily choose the most likely individual labels, which may dis-
agree with each other (even though they arise from a joint
distribution). However, in a practical recognition scenario
we like to minimize the number of individually mislabeled
segments, hence the MM criterion is appropriate and usu-
ally performs slightly better than MAP.

To find the MM solution we require individual
marginals, which we calculate exactly, as done during train-
ing. The MAP solution can also be calculated exactly
using the max-product algorithm applied to the junc-
tion tree. Again, approximate techniques may be necessary
for dense graphs with loops [7].

5. Application to Ink Classification

Here we apply CRFs to online ink classification, specif-
ically to discriminating between containers and connectors
in drawings of organization charts. Context is exploited by
joint classification where the labeling of one ink fragment
influences the labels of the others.

We break the task into three steps:

1. Subdivision of pen strokes into fragments,

2. Construction of a CRF on the fragments,

3. Training and inference on the random field.

The input is electronic ink recorded as sampled locations
of the pen, and collected intostrokesseparated by pen-down
and pen-up events. In the first step, strokes are divided into
simpler components calledfragments. Fragments should be
small enough to belong to a single container or connector.
In contrast, strokes can occasionally span more than one
shape, for example when a user draws a container and a
connector without lifting the pen. We choose fragments to

Figure 2. The conditional random field su-
perimposed on part of the chart from Fig-
ure 1. There is one node (circled) per frag-
ment, and edges indicate interaction poten-
tials between neighboring fragments.

be groups of ink dots within a stroke that form straight line
segments (within some tolerance) (Figure 1).

In the second step, we construct a conditional random
field on the fragments. Each ink fragment is represented by
a node in the graph (Figure 2). The node has an associated
label variableyi, which takes on the values -1 (container)
or 1 (connector). CRF potential functionsΦ andΩ quan-
tify how compatible labels are with the underlying ink and
with neighboring labels. Weights in the potential functions
characterize the exact dependence of labels with the ink.

The site potentials refer to the labelyi of a single frag-
ment and its ink context. The context can be any subset of
all ink x, but typically only neighboring fragments are in-
cluded. Note that site potentials are already very powerful
compared to approaches that model each fragment of ink in-
dependently.

Interaction potentials model whether a pair of fragments
prefer the same or differing labels. These potentials can de-
pend on features of the pair, such as the nearest distance
or angle between the fragments. Again, they can also take
other fragments into account as context, typically neighbor-
ing fragments.

Our approach is to compute many redundant low-level
ink features, and represent them in potentials in the random
field. The CRF algorithm then learns which features or com-
binations of features that are discriminative for the task.

Our two simplest features are the length and orientation
angle of an ink fragment. These are encoded in site poten-
tials. Secondly, we consider the context of a single frag-
ment. We calculate the histogram of distances and relative
angles to neighboring fragments, and use these as vector-
valued features. Next, for interaction potentials, we com-
pute features depending on pairs of fragmentsi andj. These
include the distance and angle between the fragments, and
temporal features such as whether the pen was lifted in be-
tween them.



Finally, we include template features that detect simple
perceptual relations. We employ domain-knowledge to cap-
ture parts of organization charts. We employ a basic corner
and a T-junction feature, a container-side feature that checks
whether corners are present on both ends of a fragment, and
an alignment measure of whether two fragments are paral-
lel and aligned. Some of these features yield real number
values, but most are binary. Lastly, we include a bias fea-
ture that is always 1. For other recognition tasks, appropri-
ate features can be added easily.

6. Experiments and Discussion

We asked 17 subjects to draw given organization charts
on a TabletPC device capturing online handwriting. The
given charts consisted of rectangular containers and con-
nectors made from line segments. We focused on graphical
elements, and removed any text.

The pen strokes were subdivided yielding a database of
1000 fragments, which we split into training sets drawn by
half of the subjects, and test sets drawn by the other half. We
built a CRF with site potential functions for each fragment,
and interaction potential between all pairs of fragments that
were within 5mm of each other, resulting in 3000 interac-
tion potentials.

Since the undirected graphical models generated from
the organization charts were sparse, triangulation yielded
junction trees with low tree width and we trained with
BFGS. The template features (T-junction) were weighted
most heavily by the classifier. For inference, we ran the
max-product algorithm to determine global MAP and max-
margin solutions. Priors for the weight parameters were set
to σ=2 and a no label error modelε=0 was used. However,
ε > 0 actually gives significantly better accuracy (detailed
experiments are in progress).

We measured the performance on different types of orga-
nization charts: type A and B (the latter exemplified in Fig-
ure 4), as well as a mixed set with four chart types. The first
and third rows in Table 1 show test errors for classification
using only the site potentials, i.e., individual classification
of fragments. The second and fourth rows give errors for
conditional random fields that propagate information from
both site and interaction potentials. These results were pro-
duced from max-marginals, which gave almost identical re-
sults to MAP, but MM appears better when label errorε is
non-zero. Both MAP and MM labeling takes less than one
second per drawing.

A typical result is shown in Figure 3. To the left we see
the results of a CRF employing only site potentials (indi-
vidual classification.) There are two ambiguous rectangles
created from fragments 18-21-22-29 and 14-16-17. The site
potentials misclassify fragments 13, 14, 21 and 22. The
CRF with interaction potentials resolves the ambiguity us-

Nonlin. Type A Type B Mixed
Individual exp 4.4% 12.1 % 10.2%
Joint exp 0% 3.5 % 7.7%
Individual probit 4.4% 11.6 % 9.3%
Joint probit 0% 3.5 % 6.2%

Table 1. Classification errors for individual
and joint classification for two nonlinearities.

ing context and correctly classifies all fragments. Similar
benefits arise for other charts (Figure 4).

7. Conclusion

We have demonstrated that exploiting context can sig-
nificantly improve recognition accuracy. We proposed joint
classification with conditional random fields for analysis of
hand-drawn diagrams. The framework is general and allows
flexible features. The joint probability output enables us to
find not only the most likely labeling, but also to rank the
top labelings, also after further user corrections of individ-
ual parts. The technique can be applied in many other hand-
writing and image recognition tasks.

In the future, we will consider densely connected ink
graphs using approximate inference or intelligent choice of
graph structure. Also, we can kernelize CRF potential func-
tions to enhance their modeling power. Moreover, we will
apply CRFs to labeling more than two classes. A challeng-
ing problem is to apply CRFs to hierarchical parsing of a
2D scene.
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Figure 3. Classification of a chart from the mixed group. Left: individual classification with a CRF em-
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nectors are thin lines.
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