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Abstract the segmentation task and initially only divide the input into
small generic fragments of objects (short stroke fragments).

Hand-drawn diagrams present a complex recognition We then perform joint classification to identify what object
problem. Fragments of the drawing are often individually classes all the fragments are parts of. This step results in
ambiguous, and require context to be interpreted. an implicit segmentation, except that fragments in the same

We present a recognizer based on conditional random class must still be grouped, which is typically a much eas-
fields (CRFs) that jointly analyze all drawing fragments in ier task. Thus, our joint classifier combines recognition with
order to incorporate contextual cues. The classification of partial segmentation.
each fragment influences the classification of its neighbors.  Combined segmentation and recognition has been done
CRFs allow flexible and correlated features, and take tem- previously using generative probabilistic models. Cough-
poral information into account. Training is done via con- |an and Ferreira [1] found objects in images using de-
ditional MAP estimation that is guaranteed to reach the formable templates which were fit with dynamic program-
global optimum. During recognition we propagate informa- ming and loopy belief propagation. However, the technique
tion globally to find the joint MAP or maximum marginal  depends heavily on templates, which limits its applicabil-
solution for each fragment. We demonstrate the frameworkity. For complicated or free-form objects such as connec-
on a container versus connector recognition task. tors, it is difficult to construct templates or generative mod-
els for the observed drawing(x). Recently, Tu et al. [6]
proposed a Markov Chain Monte Carlo approach for im-
age parsing, which combines segmentation, detection, and
recognition. They also used a generative approach to model

Hand-drawn diagrams consist of parts whose function CPJ€cts.
depends heavily on context. For example, a single line frag-  Unlike the above generative approaches, we advocate a
ment could constitute the side of a container, or the stemdiscriminative classification scheme, where we only model
of a connector, and its role could only be disambiguated by the conditional distribution of the labelg, i.e., P(y|[x).
looking at neighboring fragments. In this paper we cleanly This conditional distribution is what we ultimately need
incorporate context into recognition of parts by treating the for the classification task. We avoid modeling the drawing
problem as a joint classification task. In other words, in- data distribution”(x), which can be complicated and is not
stead of recognizing parts individually, we will recognize Needed.
them together by making interdependent classifications. Many traditional discriminative classification ap-
The recognition of parts in complex scenes is tightly in- proaches such as logistic regression, neural networks and
tertwined with the problem of segmentation. Good segmen-support vector machines can only model labeled points in-
tation is often crucial for achieving accurate recognition. dependently of one another. In contrast, conditional random
Traditionally these two problems have been treated sepadfields (CRFs) [4] model dependencies not only between in-
rately, by first segmenting a drawing or image into indi- put data and its labels, but also model dependencies be-
vidual shapes or objects, and then recognizing each segtween labels. Specifically, they provide a joint distribution
ment. The problem is that it is difficult to segment the over the labels conditioned on the data. They are an in-
scene into objects before recognizing them. We postponestance of undirected graphical models [2].
Kumar and Hebert [3] applied conditional random fields
x Now at MIT Media Lab, 20 Ames Street, Cambridge, MA, 02139, and achieved good results on an image region classification
USA problem. They employed a crude pseudo-likelihood approx-
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the outputy range over the labels of shapes to be recog-
nized. All componentg; of y are assumed to range over a

set of labelsT . In this paper, we focus on the binary case

7T ={-1,1}.

The structure of the network of classifiers specifies
which classifiers can directly influence each other. The in-
teractions are specified by a gragh= (V, E) where the
nodesV are fragments to be classified and the edges-
dicate possible dependencies. Formally, a CRF speci-
fies Markov independence properties between the inputs

" and outputs as follows [4]:

marked. the Markov property with respect to the graph: namely
P(yilx,yv—i) = P(yi|x,yn;), Whereyy_, is the set of
all nodes inG except the nodg and.\; is the set of neigh-
imation for maximum-likelihood learning of model param- bors of the node linked with edges irk.
eters, which tends to overestimate parameter values. They jplike traditional Markov random fields (MRFs)
gsed other approximations (iterated conditional modes) forynich are generative models, CRFs only model the condi-
inference. . N tional distributionP(y|x) and do not explicitly model the
This paper describes how to apply conditional random marginal P(x). Note that the individual labelg; are glob-
fields to two-dimensional recognition problems exactly, ally conditioned on the whole observation in CRFs.
without resorting to the pseudo-likelihood or other approx- Thjs global conditioning allows very flexible features that
imations. Conditional random fields show great promise can capture long-distance dependencies, arbitrary correla-
in classifying sequence data (such as text or speech), angion, and practically any aspect of a drawing. In contrast,
we now demonstrate their power in a two-dimensional set- yragjtional generative models require features to be condi-

ting, without the previously crippling assumptions. tionally independent given the labels.
Our application is recognition of hand-drawn organiza-

tion charts (Figure 1). We focus on classifying which frag- . e

ments of ink are parts of containers versus parts of connec-2'2' Individual Classification

tors. This is an inherently ambiguous problem, as both con-

tainers and connectors consist of similar stroke fragments,

and only the context of a fragment can resolve its true class.

At each node in the graph there is a classification to be
made. In a CRF with no interaction&' (= @), we can ap-
ply a classifier independently to each nadend assign (a

In the following sections, we first introduce conditional two-class) label probability

random fields, and then derive training and inference pro-
cedures. We then describe the ink parsing task and experi-
mental results.

Py(yilx,w) = U(yw'gi(x)). (e

1
Z(w)
Here,g;(x) are features associated at siteisually based

on observations in a local neighborhood, but potentially also
dependent on global properties xf The features are lin-

A conditional random field can be seen as a network of €arly weighted byw, and then fed through a nonlinearity
interacting classifiers: the decision made by one classifier? and normalized to sum to 1 by(w). Common choices
influences the decisions of its neighbors. We thus need tofor the nonlinearity arel’ = exp, in which case we ob-

describe the individual classifiers, their inputs and outputs, tain a logistic classifier. Alternatively, we will use the pro-
as well as the structure of the network. bit function, which is the cumulative distribution of a Gaus-

sian:¥(a) = [*_ N(z;0,1)dz.

2. Conditional Random Fields

2.1. Formal Definition
2.3. Joint Modeling
Let x be an input random vector for the observed data,
andy be an output random vector over labels of the cor-  When we want to model node interactions indicated by
responding data. The inpstmight range over the ink and edgesF in G, we must look at the joint distributioR (y|x).



The Hammersley-Clifford theorem shows that the CRF con- sorbing the labels into the feature functioggx, y;) and
ditional distribution P(y|x) can be written as a normal- f;;(x,y;,y;) with little change.

ized product of potential functions on cliques of the graph

(i.e., complete subgraphs of the graph). We willemploy two 3, Training CRFs

types of potentials. Firstly, for each node we introduce a site

potential®; (y;, x; w), which measures the compatibility of We train the CRFs in a discriminative way. Given a set of
one label with its associated ink, as a function of model pa- training data, we find the parametés= [w v] that maxi-
rametersw. Secondly, for each edge there is an interaction mize conditional MAP

potentialQ; ; (yi, y;, x; v), which measures the compatibil-

ity between two neighboring labels, depending on their as- @ = argmay, log P(0|x,y) = argmay, log P(y|x, 8) P(6)

sociated ink and parametersWe collect all parameters in o _ _ (6)
6 = [w v]. Now, the CRF defines the joint label probabil- ~ We assign independent Gaussian priors to the parame-
ity as ters, P(6) = N(6;0,0°I). For exponential nonlinearities
) ande=0, thelog P(y|x, 8)P(6) simplifies toL =

Plylx.0) = 755 [T ®wix0) [T 25wy, x6) 10]2

eV (i))ek (2) Z yiw " gi(x) + Z yiy v fi5(x) —log Z(0) — 952
andZ(0) = > (I ®i(wi,x;0) [ ©iswirvs.%:9)) v (DB @)

y i€V (i,j)EE

(plus a constant), and its gradients wwtandv are respec-
Z(0) is a normalizing constant known as the partition func- tively

tion.
Both types of potentials use a linearly weighted combi- % ) ey . W
nation of ink features passed through a nonlineabity dw Z vigi(x) Z yigi(x) 2?
eV eV P(y|x,0)
Site ®;(yi, x;0) = U(y;w' gi(x)) 3 dc v
Interaction € ; (yi, y;, x;0) = U(yy; v fi;(x)), (4) dv (2)213 viyifii (0 = (D2 wafis(x) ) — o2’
2,J

(5)eE P(y|x,0)
Note that the strength of interaction potentials may depend
on the observatiox through the featurd;;(x). In tradi-
tional random fields the interaction potentials do not de-
pend on observations. One can view the interaction po-
tential (4) as a classifier of pairs of neighboring labels.
Importantly, we make no restrictions on the relations be-
tween featureg;(x) andg;(x), nor onf;; (x) for different
sitesi andj. For example, features can overlap, be strongly
correlated, and extend over long distances. dc, W
We consider two nonlinearities. Firstly, the exponential aw Z %:Yi8i(x) — <Z Qiyigi(x)>P( | 6; 3
yix,

The angle brackets denote expectations with respect to the
current model distribution. Since only sums of single
or pairs y;y; occur in the expectations, only individual
marginalsP(y; |x, #) and pairwise marginalB(y;, y;|x, )
are required.

For probit ¥ nonlinearities with the label noise model,
the gradient has a similar form

2
function¥ = exp, which is convenient for maximizing log- i€V ie‘é o
likelihood and MAP, because after simplification only the whereg; — N(yiw ' gi(x))
linear argument remains. Secondly, we Wse probit func- CU(ywTgi(x)) + 5

tion. In both cases we can also include a label noise proba- o ) ) )
bility €, which increases robustness by considering label er-and likewise for the gradient for the interaction parameters

rors in two-class problems. Specifically, V. ) _ ) N
For both exponential and probit nonlinearities, the log-
Di(yi,x;0) = (1 — )T (y;w gi(x)) + eV (—y;w ! gi(x)), likelihood is concave when the label noise- 0. Thus, gra-
(5) dient ascent is guaranteed to find a global maximum. The
and similarly for the interaction potential. guasi-Newton technique BFGS [5] converges in 50-100 it-

By combining site and interaction potentials, the CRF is erations in our application.
effectively a network of coupled classifiers. Each site po-  The computational cost is dominated by calculating the
tential acts like a classifier predicting the label at one site partition functionZ(0) and the marginal$(y;|x, ) and
in the graph. These predictions are then coupled by classi-P(y;, y,|x, 8). In general, an exact calculation is exponen-
fiers based on interaction potentials. tial in the number of nodes in the graph, but fortunately
We have illustrated CRFs for two classes, however, theour graphs are sparsely connected. In this case, the junc-
multiple class case can be reduced to two classes by abtion tree algorithm is feasible on the triangulated graph [2].



Our ink graphs have a tree width typically less than 5, and
require around 5000 FLOPS to calculate a complete set of
marginals and the partition function. For more densely con-

nected graphs, approximate inference such as loopy belief
propagation may be necessary.

4. Inference on CRFs

Unlike traditional classification problems, where we find
the probability of a single label given an input, a CRF as-
signs a joint probability to a configuration of labels given Figure 2. The conditional random field su-

an inputx and parameter8. We are typically interested to perimposed on part of the chart from Fig-
find either the maximum a posteriori (MAP) or maximum ure 1. There is one node (circled) per frag-
marginal (MM) solution: ment, and edges indicate interaction poten-
VAP tials between neighboring fragments.
y = argmax, P(y|x, 0) (8)
yy™ = argmax, P(yi|x,0), VieV. 9)

be groups of ink dots within a stroke that form straight line
segments (within some tolerance) (Figure 1).

In the second step, we construct a conditional random
field on the fragments. Each ink fragment is represented by
a node in the graph (Figure 2). The node has an associated
label variabley;, which takes on the values -1 (container)
or 1 (connector). CRF potential functiods and {2 quan-
tify how compatible labels are with the underlying ink and
with neighboring labels. Weights in the potential functions
characterize the exact dependence of labels with the ink.

The MAP solution finds a globally compatible label as-
signment, whereas the max marginal solution will greed-
ily choose the most likely individual labels, which may dis-
agree with each other (even though they arise from a joint
distribution). However, in a practical recognition scenario
we like to minimize the number of individually mislabeled
segments, hence the MM criterion is appropriate and usu-
ally performs slightly better than MAP.

To find the MM solution we require individual
marginals, which we calculate exactly, as done during train- ) , )
ing. The MAP solution can also be calculated exactly  1he Site potentials refer to the labglof a single frag-
using the max-product algorithm applied to the junc- me_nt and its mk_context. The_conte>_<t can be any subs_et of
tion tree. Again, approximate techniques may be necessanfi! INk x, but typically only neighboring fragments are in-
for dense graphs with loops [7]. cluded. Note that site potentials are already very povyerfgl

compared to approaches that model each fragment of ink in-

dependently.
Interaction potentials model whether a pair of fragments

f prefer the same or differing labels. These potentials can de-
pend on features of the pair, such as the nearest distance
or angle between the fragments. Again, they can also take
other fragments into account as context, typically neighbor-
ing fragments.

Our approach is to compute many redundant low-level
ink features, and represent them in potentials in the random
1. Subdivision of pen strokes into fragments, field. The CRF algorithm then learns which features or com-
2. Construction of a CRF on the fragments, binations of features that are discriminative for the task.

Our two simplest features are the length and orientation
angle of an ink fragment. These are encoded in site poten-

The input is electronic ink recorded as sampled locationstials. Secondly, we consider the context of a single frag-
of the pen, and collected instrokesseparated by pen-down ment. We calculate the histogram of distances and relative
and pen-up events. In the first step, strokes are divided intoangles to neighboring fragments, and use these as vector-
simpler components callddhgmentsFragments should be  valued features. Next, for interaction potentials, we com-
small enough to belong to a single container or connector.pute features depending on pairs of fragmeiatsd;. These
In contrast, strokes can occasionally span more than ondnclude the distance and angle between the fragments, and
shape, for example when a user draws a container and @aemporal features such as whether the pen was lifted in be-
connector without lifting the pen. We choose fragments to tween them.

5. Application to Ink Classification

Here we apply CRFs to online ink classification, speci
ically to discriminating between containers and connectors
in drawings of organization charts. Context is exploited by
joint classification where the labeling of one ink fragment
influences the labels of the others.

We break the task into three steps:

3. Training and inference on the random field.



Finally, we include template features that detect simple

perceptual relations. We employ domain-knowledge to cap- Nonlin. | Type A | Type B | Mixed
ture parts of organization charts. We employ a basic corner  ["|ndividual | exp 4.4% | 12.1% | 10.2%
and a T-junction feature, a container-side feature that checks | jgint exp 0% | 35%| 7.7%
whether corners are present on both ends of a fragment, and "ndividual | probit 4.4% | 11.6 % | 9.3%
an alignment measure of whether two fragments are paral- | jgint probit 0% | 35%!| 6.2%

lel and aligned. Some of these features yield real number
values, but most are binary. Lastly, we include a bias fea- Table 1. Classification errors for individual
ture that is always 1. For other recognition tasks, appropri- ~ and joint classification for two nonlinearities.
ate features can be added easily.

ing context and correctly classifies all fragments. Similar

6. Experiments and Discussion benefits arise for other charts (Figure 4).

We asked 17 subjects to draw given organization charts )
on a TabletPC device capturing online handwriting. The 7. Conclusion
given charts consisted of rectangular containers and con- . .
nectors made from line segments. We focused on graphical .We haye demonstrate.d. that exploiting context can sig-
elements, and removed any text. nificantly improve recognition accuracy. We proposed joint

The pen strokes were subdivided yielding a database oﬁlasj'gcat'on d\_N'th Condflt_'r? n?I randomkf_lelds for almalé/aﬁ of
1000 fragments, which we split into training sets drawn by and-drawn diagrams. 1ne framework s general and aflows

half of the subjects, and test sets drawn by the other half. WeﬂeXible features. The joint probability output enables us to

built a CRF with site potential functions for each fragment, find not only the most likely labeling, but also to rank the

and interaction potential between all pairs of fragments thattOp labelings, also a_fter further user_cor_recnons of individ-
were within 5mm of each other, resulting in 3000 interac- ual parts. The technique can be applied in many other hand-
tion potentials ' writing and image recognition tasks.

Since the undirected graphical models generated from In the future, we .W'” cqn5|der dens_ely gonnecteq ink
the organization charts were sparse, triangulation yieldedgraphs using approximate inference or intelligent choice of

junction trees with low tree width and we trained with graph structure. Also, we can kernelize CRF potential func-

BEGS. The template features (T-junction) were weighted tions to enhance thglr modeling power. Moreover, we will
most heavily by the classifier. For inference, we ran the apply CRFs t.o labeling more than t.WO cla§ses. A ghalleng—
max-product algorithm to determine global MAP and max- ing problem is to apply CRFs to hierarchical parsing of a
margin solutions. Priors for the weight parameters were set2D Scene.

to 0=2 and a no label error mode+0 was used. However,

¢ > 0 actually gives significantly better accuracy (detailed ACknowledgments

experiments are in progress).

We measured the performance on different types of orga-
nization charts: type A and B (the latter exemplified in Fig-
ure 4), as well as a mixed set with four chart types. The first
and third rows in Table 1 show test errors for classification
using only the site potentials, i.e., individual classification
of fragments. The second and fourth rows give errors for References
conditional random fields that propagate information from ) o
both site and interaction potentials. These results were prol1] J- Coughlan and S. Ferreira. Finding deformable shapes us-
duced from max-marginals, which gave almost identical re- "9 00y belief propagation. IBuropean Conf. on Computer

We are grateful to Thomas Minka, Michel Gangnet,
Christopher Bishop, Philip Cowans, and Hannah Pepper for
valuable discussions, great inference software and help with
data collection and experiments.

sults to MAP, but MM appears better when label ewos 2] I\:ﬁilzgsiggi esian Networks and Decision GrapBpringer
non-zero. Both MAP and MM labeling takes less than one 2'001 y P ger,

second Per drawmlg. _— [3] S.Kumarand M. Hebert. Discriminative random fields: A dis-
A typical result is shown in Figure 3. To the left we see criminative framework for contextual interaction in classifica-

the results of a CRF employing only site potentials (indi- tion. In IEEE Intl. Conf. on Computer Visio2003.

vidual classification.) There are two ambiguous rectangless) j Lafferty, A. McCallum, and F. Pereira. Conditional Ran-
created from fragments 18-21-22-29 and 14-16-17. The site  dom Fields: Probabilistic models for segmenting and labeling
potentials misclassify fragments 13, 14, 21 and 22. The  sequence data. Imtl. Conf. Machine Learningpages 282—
CRF with interaction potentials resolves the ambiguity us- 289, 2001.
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Figure 3. Classification of a chart from the mixed group. Left: individual classification with a CRF em-
ploying site potentials only, hence no modeling of dependencies across nodes. Right: joint classifi-
cation, using a full CRF with site and interaction potentials. Containers are shown in bold and con-
nectors are thin lines.
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Figure 4. Classification of a chart of Type B. Individual and joint classification (left and right, respec-
tively). Joint classification corrects individually misclassified fragments, except fragment 27.
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