
Object-Level Ranking: Bringing Order to Web Objects ∗

Zaiqing Nie
Web Search & Mining Group

Microsoft Research Asia
Beijing, P. R. China

t-znie@microsoft.com

Yuanzhi Zhang†
CS Dept.

Peking University
Beijing, P. R. China

zhangyzh@db.
pku.edu.cn

Ji-Rong Wen Wei-Ying Ma
Web Search & Mining Group

Microsoft Research Asia
Beijing, P. R. China

{jrwen,wyma}@microsoft.com

ABSTRACT
In contrast with the current Web search methods that es-
sentially do document-level ranking and retrieval, we are ex-
ploring a new paradigm to enable Web search at the object
level. We collect Web information for objects relevant for a
specific application domain and rank these objects in terms
of their relevance and popularity to answer user queries.
Traditional PageRank model is no longer valid for object
popularity calculation because of the existence of heteroge-
neous relationships between objects. This paper introduces
PopRank, a domain-independent object-level link analysis
model to rank the objects within a specific domain. Specifi-
cally we assign a popularity propagation factor to each type
of object relationship, study how different popularity propa-
gation factors for these heterogeneous relationships could af-
fect the popularity ranking, and propose efficient approaches
to automatically decide these factors. Our experiments are
done in the context of Libra, an object-level paper search
engine indexing 1 million CS papers.

Keywords
Web Objects, Object-level Web Search, Link Analysis

1. INTRODUCTION
Existing Web search engines generally treat a whole Web

page as the unit for retrieval and consuming. However, there
are various kinds of objects embedded in the static Web
pages or Web databases. Typical objects are products, peo-
ple, papers, organizations, etc. We can imagine that if these
objects can be extracted and integrated from the Web, pow-
erful object-level search engines can be built to meet users’
information needs more precisely, especially for some specific
domains. Such a perspective has lead to significant interests
in research communities, and related technologies such as
wrapper deduction [11, 3], Web database schema matching
[16, 8], and object identification on the Web [15] have been
developed in recent years. These techniques made it possible
for us to extract and integrate all the related Web informa-
tion about the same object together as an information unit.
We call these Web information units Web objects. Currently,

∗Technical Report. Microsoft Research. MSR-TR-2004-129
†This work is done when the author is visiting Microsoft
Research Asia.

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

few work has been done in retrieving and ranking relevant
Web objects to answer user queries.

Like Web pages that are connected among each other to
form a so-called Web graph, various kinds of objects also
form an object graph based on the correlations among them.
In the Web graph, different pages have different popularity
according to their in-links. Technologies such as PageRank
[13] and HITS [10] have been successfully applied to distin-
guish the popularity of different Web pages through analyz-
ing the link structure in the Web graph. It is obvious that,
in the object graph, objects are also not equally popular.
Take the research domain as an example. Only several top
conferences within a research field can attract high quality
papers, and their papers are more likely to be read. In or-
der to help users quickly locate their interested objects, we
should calculate the popularity of collected objects. Because
it is clear that the more popular the objects are, the more
likely they will be interested by a user. So a natural ques-
tion is: could the popularity of Web objects be effectively
computed by also applying link analysis techniques? This
paper targets to answer this question. Our answer to the
question is yes, but quite different technologies are required
because of the unique characteristics of object graph.

For link analysis, the most unique characteristics of the
object graph is the heterogeneity of links, i.e., objects are
related to each other through different types of relation-
ships. For example, a paper object may be cited by a set of
other paper objects, written by a set of author objects, and
published in a conference/journal object (see Figure 1). So
there are three kinds of different links in the graph: cited-by,
authored-by and published-by and they have quite different
semantics. The traditional link analysis methods including
PageRank and HITS assume that all the links are with the
same ”endorsement” semantics and equally important, di-
rectly applying these methods would result in unreasonable
popularity ranking. For example, the popularity of a paper
should not be affected too much by the number of authors,
and the number of citations does have a large impact on it.
In this paper, we propose PopRank, a method to measure
the popularity of Web objects in an object graph.

PopRank extends the PageRank model by adding a pop-
ularity propagation factor (PPF) to each link pointing to
an object, and uses different propagation factors for links of
different types of relationships. For example, for the links
pointing to a paper object, we need three propagation fac-
tors (γ3, γ2, and γ1 in Figure 1) for the three different types
of relationships: cited-by, authored-by, and published-by,

Figure 1: Paper Object Relationship Graph

respectively. However manually assigning these factors to
make the popularity ranking reasonable is extremely chal-
lenging. With a huge link graph, it is very hard for us to
tell which types of links are more important and even harder
to quantify their exact importance. Fortunately it is always
easier for us to collect some partial ranking of the objects
from domain experts. For example, as a researcher, we know
the order of the top conferences or journals within our field,
and we may also know which papers are more popular. We
propose a learning based approach to automatically learn
the popularity propagation factors for different types of links
using the partial ranking of the objects given by domain ex-
perts. The simulated annealing algorithm is used to explore
the search space of all possible combinations of propagation
factors and to iteratively reduce the difference between the
partial ranking from the domain experts and that from our
learned model.

One major challenging problem facing our learning ap-
proach is that it is prohibitively expensive to try hundreds
of combinations of feasible factors which is normally needed
for us to get a reasonable assignment of the propagation fac-
tors. Since it may take hours to compute the PopRank of
the objects to test the optimality of a PPF factor assign-
ment. In order to make the learning time manageable, we
propose to use a subgraph of the entire object link graph in
the learning process. Because as soon as we have most of
the related objects and their links surrounding the training
objects 1, we should be able to calculate an close approxima-
tion of the PopRank of these training objects. Since we are
not interested in getting the exact rank scores but the rela-
tive rank of the these training objects, very little reduction
of accuracy will not affect the optimality of the assignment
too much. However in cases where the object link graph is
prohibitively large, one might have to trade optimality for
efficiency.

The PopRank link analysis model described and moti-
vated in the foregoing has been fully implemented, and has
been evaluated in the context of a paper search engine called
Libra[2]. In this paper, we describe the details of the PopRank
model, and its use in Libra. Our model could be also ap-
plied to many other vertical search domains including on-
line product search, image search, music search, and people
search with little modification. Our experimental results on
Libra show that PopRank can achieve significantly better
ranking results than naively applying PageRank on the ob-
ject graph.

The rest of the paper is organized as follows. In the next
section, we give a mathematical description of the PopRank
link analysis model and provides intuitive justification. Sec-
tion 3 describes the details of our link importance learning
approach. Section 3.2 describes how we select a subgraph
of the entire object link graph. In Section 4, we briefly

1The objects ranked by domain experts

Figure 2: BackLinks of an Object of Type Xi from
other Objects and the Web

introduce our Libra paper search. Section 5 describes the
experiments we have done with PopRank and Libra to eval-
uate the effectiveness of our approach. Section 6 discusses
related work and possible extensions, and Section 7 presents
our conclusions.

2. THE POPRANK MODEL
Suppose we have n different types of Web objects X1,X2,

..., Xn in an application domain. For example, in the scien-
tific literature domain, we have 4 types of objects: papers,
authors, conferences, and journals. These objects are re-
lated to each other in different ways: a paper cites another
paper, a paper is written by an author, a paper is published
by a conference, and so on. In this section we give the de-
tails of our PopRank model for computing the popularity of
the objects with the same type.

2.1 Web and Object Relationship Graph
In Figure 2, we show the back links of an object of type

Xi. In the Figure, the solid arrows are used to show the
back links from both the objects of the same type and those
of other types, and the dotted arrows are used to show that
the object is contained in a Web page or a Web database.

Since Web objects are contained in Web pages or Web
databases, so the popularity of these Web pages and databases
could also affect the popularity of their contained objects. If
a Web pages is popular, its object information is more likely
to be read. We use Web popularity to denote the probability
that a ”random surfer” on the Web reads the information
about an object by keeping clicking on the links between
Web pages (including Web pages dynamically generated by
Web databases). Since the information about an object is
normally represented as a block of a Web page [12, 14]. The
Web popularity can be computed by considering the PageR-
ank [5, 13] scores of Web pages containing the object and
the importance of the Web page blocks [14, 6]. We assume
Web databases will uniformly propagate its popularity (i.e.
PageRank) to their objects, so the Web popularity from
these sources can be easily computed.

The relationship graph of the objects in a domain is an-

other important resource that can be used to calculate a
popularity ranking for an object. For example, assuming a
reader wants to get into a new research field and to read the
related papers. To get started, he may first use Google or
CiteSeer to find several seed objects which could be some
related papers, authors, or conferences/journals. After that
he most likely just follows the object relationship links to lo-
cate more papers. He may want to read the papers cited by
the papers he has already read, or read papers of his favorite
authors, conferences, or journals. Clearly, a paper cited by
a large number of popular papers could be popular, and a
recent paper published in a prestigious conference with few
citations could also be popular.

2.2 PopRank
We introduce a ”random object finder” model to explain

the reader’s behavior. The ”random object finder” simply
keeps clicking on successive Web page links, Web page to
object links, and object relationship links at random. Basi-
cally he starts his random walk on the Web, and he will start
following the object relationship links once he finds the first
object on the Web, never hitting ”back” but eventually gets
bored and will restart his random walk on the Web again to
find another seed object.

We use a vector REX to denote the probability that the
”random object finder” finds the object x only through the
link graph of the Web, and another vector RX to denote the
probability that he finds the object by random walk both on
the graph of the Web and on the object relationship graph.

To compute the popularity score of an object, the PopRank
model takes into account both the Web popularity of the ob-
ject and its relations with other object. We use the following
formula to compute the PopRank scores RX of the objects
of type X:

RX = εREX + (1− ε)
∑

∀Y

γY X MT
Y XRY

Where

• X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn}: objects of
type X and type Y ;

• RX , RY : vector of popularity rankings of objects of
type X and type Y ;

• MY X : adjacent matrices,

myx = 1
Num(y,x)

, if there is a relationship link from

object y to object x, Num(x, y) denotes the num-
ber of links from object y to any objects of type
X;

myx = 0, otherwise;

• γY X denotes the popularity propagation factor of the
relationship link from an object of type Y to an object
of type X, and

∑
∀Y γY X = 1;

• REX : vector of Web popularity of objects of type X;

• ε: a damping factor which is the probability that the
”random object finder” will get bored of following the
object relationship links and request another object
from the Web using some Web page search engines.

PopRank can be calculated using a simple iterative algo-
rithm.

3. AUTOMATED ASSIGNMENT OF POPU-
LARITY PROPAGATION FACTORS

As we mentioned earlier, in order to calculate the popu-
larity of an object, we need to know the popularity propa-
gation factors of relationship links from the related objects.
Because different types of relationships affect the popular-
ity of the related objects in different ways. However it’s not
practical to manually decide these factors. Since the num-
ber of different types of relationships could be very large,
and it’s hard for a system designer to figure out exactly how
much a related object could affect the popularity of another
object. However it’s easy for the system designer to col-
lect information from domain experts about the popularity
orders of some subsets of objects, which are called partial
ranking lists. In this section we propose an novel approach
to automatically learn a set of good popularity propagation
factors using these partial ranking lists given by users.

Basically we want to search for a set of popularity prop-
agation factors which could be used in the our PopRank
model to produce similar rankings for the objects in the
partial ranking lists given by domain experts. This becomes
a parameter estimation problem. Automated PPF factor as-
signment is challenging. Since the object relationship graph
could be very large, and we may need to wait several hours
(or days) to know the quality of an assignment. It would be
impractical for us to try thousands of assignments to find a
good one. In order to make the learning cost management,
we need a good search strategy to find a good assignment
by exploring only a small portion of the search space. At
the same time, we need to reduce the cost for estimating the
quality of each assignment of PPF factors. In the following
two subsections, we introduce how we apply existing search
algorithms to the PPF estimation problem, and how to re-
duce the learning cost for each iteration by only considering
a subgraph of the entire object relationship graph.

3.1 Search Strategies
The PPF estimation problem is a typical parameter opti-

mization problem, there is a number heuristic based search
algorithms that could be adapted to solve the problem. In
Figure 3 we show the SAFA (Simulated Annealing for Factor
Assignment) algorithm which adapts the simulated anneal-
ing algorithm [9] to automatically assign popularity propa-
gation factors.

The basic idea of the algorithms is that we keep examining
the neighbors of the current best (or chosen) combination of
PPF factors, if a neighbor is better, then it will be chosen as
the best combination. We may deliberately choose a worse
combination occasionally to avoid being trapped in a local
optimal area.

We find the neighbors of the current PPF combination by
only changing one factor in a period of time and keep the
rest fixed. The neighbors of a single factor Neighbor(γY X)
is experimentally set as [γY X − 0.05, γY X + 0.05]. The cost
function f(γ′Y X) is used to measure the quality of the new
factor γ′Y X . It is computed by replacing the γY X in the
current combination of PPF factors, and applying the new
combination of PPF factors to the object relationship graph
to compute the PopRank score of the training objects. The
distance between the ranking results and the ranking given
by domain experts is the cost f(γ′Y X) (please see Section

Algorithm SAFA(timeout: stopping condition)
for (each object type X)

n ← total number of different object types related
to objects of type X;

for (each related object type Y) γY X ← 1
n
;

end for
t ← a large number;
do

for (each object type X)
for (each object type Y)

repeat
repeat

randomly select γ′Y X in Neighbor(γY X)
diff ← f(γY X)− f(γ′Y X);
if diff > 0 then γY X ← γ′Y X ;
else generate random x in (0,1)

if x < exp(−diff/t) then γY X ← γ′Y X ;
until iteration count =

max number iteration;
t ← 0.9t;

until iteration count =
max number iteration;

end for
end for

until timeout;
return the best combination of γY Xs;

End SAFA;

Figure 3: The SAFA algorithm

5.2 for a detailed discussion on how to measure the distance
between two rankings).

3.2 Subgraph Selection
As we mentioned earlier, it would take hours (or days) to

estimate the quality of a new PPF factor f(γ′Y X) for large
object relationship graph. Since a search algorithm has to
try many combinations of PPF factors to find a good one, it
would be prohibitively expensive to automatically learn such
factors. Fortunately since we only need to know the ranking
of the train objects to estimate the quality of a combination
of PPF factors, we don’t need to use the entire graph during
the PopRank computation.

We propose to use a subgraph of the entire object rela-
tionship graph to reduce the time of ranking the training
objects under an assignment of PPF factors. The subgraph
consists of a set of concentric circles with the training ob-
jects in the center as the core. The circles consist of the
objects and their relationship links to other objects in the
subgraph. We use the term k−diameter subgraph to refer
the subgraph with k concentric circles which contains all the
objects that are less than k−links away from the core, and
all the links between these objects. We don’t need to con-
sider objects that are far away from the core because of the
damping factor and their effluence to the core will become
smaller and smaller as we increase the distance. The prob-
lem now becomes how to find a good subgraph that would
not affect the estimation of PPF factors.

We introduce a DiameterEstimator algorithms (see Fig-
ure 4) to decide an optimal diameter. We first use the entire

Algorithm DiameterEstimator(δ:stopping threshold)
for (each object type X)

n ← total number of different object types related
to objects of type X;

for (each related object type Y) γY X ← 1
n
;

end for
compute the PopRank scores over the entire graph;
R ← the ranking vector of the training objects;
R′ ← E;
k ← 0;
while(||R−R′||1 > δ)

k + +;
compute the PopRank scores over the k diameter

subgraph;
R′ ← the ranking vector of the training objects;

end while
return k;

End DiameterEstimator ;

Figure 4: The DiameterEstimator algorithm

graph and uniform PPF factors to compute the ranking of
all the training objects. Then we compute the ranking of
all the training objects using the k−diameter subgraph. If
the difference between the new ranking and the ranking us-
ing the entire graph is smaller than the stopping threshold,
we consider that the k−diameter subgraph is large enough.
Since the outside objects of the subgraph will have little
impact on estimating the PopRank scores of the core ob-
jects (i.e. training objects), and their impact may be ignore
anyway because of the preset stopping threshold.

4. A CASE STUDY: LIBRA PAPER SEARCH
Based on the PopRank model, we have been developing

Libra 2(see Figure 5), an object-level paper search engine,
to help scientists and students locate research materials. Li-
bra collects Web information for all types of objects in the
research literature including papers, authors, conferences,
and journals.

The object information are extracted from Web databases,
Web pages, and PDF/PS files. All the information about the
same object is integrated as a basic information unit. Cur-
rently a paper is uniquely identified by it’s title, authors’ last
names and year information, an author is uniquely identified
by his/her full name, and the conferences and journals are
identified by their short names (full names are used when no
short names are available). The objects are retrieved and
ranked according to their relevance to the query and their
popularity. The object relevance is calculated using all the
collected information about this object, which is stored with
respect to each individual attribute. For example, paper in-
formation is stored w.r.t. the following attributes: title, au-
thor, year, conference, abstract, and full text. In this way,
we can also handle structured queries very well, and at the
same time, and give different attribute-weights to the hits
[5] in different attributes in calculating the relevance score.
The details of object relevance score calculation are beyond

2http://libra.directtaps.net, username:guest, pass-
word:hello libra!

Figure 5: The Libra User Interface

the scope of this paper.
Compared with traditional paper search engines includ-

ing CiteSeer [1], which search paper information at the doc-
ument level, Libra can retrieve and rank objects such as
authors, papers, conferences and journals with respect to a
user query. This will greatly benefit junior researchers and
students who would be very interested in locating popular
scientists, papers, conferences, and journals in their research
field. Also, even for recently published papers with few cita-
tions, the PopRank could assign proper popularity to them
if they are published in good conferences or authored by
famous researchers.

5. EXPERIMENTS
The PopRank model and the PPF estimation algorithms

proposed in the paper are fully implemented and evaluated
in the context of Libra. The goals of the experimental study
are: (i) to compare the performance of our PopRank model
with that of the PageRank model, (ii) to see how different
level of subgraph approximation could affect the quality and
the efficiency of assigning PPF factors; (iii) to understand
the shape of the search space and evaluate the performance
of the factor assignment algorithm SAFA. We now describe
the datasets and metrics of our experimental evaluation.

5.1 Datasets
Libra currently contains 7 million object relationship links

between the collected Web objects including 1 million pa-
pers, 650,000 authors, 1700 conferences, and 480 journals.
In Figure 1, we show the object relationship graph of these
objects. As we can see, there are three different type of rela-
tionships links pointing to paper objects: conference/journal
→ paper, author → paper, and paper → paper. Since the
other two types of objects, Conference/Journal objects and
Author objects, only has one type of relationship links point-
ing to them, then the PPF factors for these links is 1. We
just need to assign PPF factors for the relationship links
pointing to the paper objects.

We have collected 14 partial ranking lists containing rank-
ing information for 67 objects. 8 partial ranking lists (3 for
papers, 2 for authors, 2 for conferences, and 1 for journals)

containing partial ranking for 45 objects are chosen as train-
ing objects and the rest 6 ranking lists (3 for papers, 1 for
authors, 1 for conferences, and 1 for journals) containing
partial ranking for 22 objects are chosen as test objects.
These partial ranking lists are provided by the researchers
within the Microsoft Research lab in different areas such
as information retrieval, machine learning, databases, com-
puter vision, etc. Here we show a partial ranking list about
the ranked conferences in the database community: 1. SIG-
MOD, 2. VLDB, 3. ICDE, 4. EDBT, 5. ICDT, 6. ER, 7.
DEXA, 8. WIDM. We ensure that each object type have at
least two ranking lists. A good ranking lists should ensure
the correctness of the ranking, and at the same time, the
objects close to each other in a ranking list should not have
a large gap between their popularity.

5.2 Evaluation Metrics
In order to measure the quality of the ranking results, we

compute the distance between two ranking lists of the same
set of objects. We need to have an evaluation metrics which
not only measures the number of mismatches between these
two lists, but also considers the position of these mismatches.
For example, if a ranking list switched the ranking of the first
object and the second object, the distance between this list
and the test list should be greater than that of a ranking
list which only switched the last object and the second last
object. Since users usually only browse a few top objects in
the result list.

We propose the following distance metrics to measure the
distance between two ranking lists, R and R′.

D(R, R′) =

∑n
i=1[(n− i)×∑i

j=1∧R′j /∈{R1,...,Ri} 1]

∑bn
2 c

i=1 [(n− i)× i] +
∑n

i=bn
2 c+1[(n− i)× (n− i)]

Where n is the total number of objects in the ranking lists,
Ri denotes the ith object in ranking list R. Note that the
numerator of the formula is used to measure the real distance
of these two rankings, and the denominator of the formula
is used to normalize the real distance to a number between
0 and 1. As we can see, we give greater penalty to the
mismatches for the top objects. For example if the best
object is ranked wrongly, the weight for the error will be
n−1, while if only the second best object is ranked wrongly
the weight for the error will be n− 2.

5.3 Experimental Results
We now present the experimental results.

Understanding the Shape of the Search Space: In
Figure 6 we show the search space of the paper-paper rela-
tionship PPF factor when the conference-paper relationship
PPF Factor is set to 0.3. The data points are collected by
uniformly sampling the interval [0, 0.65] of the paper-paper
PPF factor with step width 0.005. As we can see that the
shape of the search space of the paper-paper PPF is quite
predictable if we fix the other factors, there is no dramatic
changes within a small interval. Figure 7 shows the search
space of the conference-paper relationship PPF factor when
the paper-paper PPF is set to 0.3. Although the shape of the
search space is not as predictable, there is also no dramatic
changes with a small interval. It’s clear that a heuristic
based search algorithm is suitable for exploring this type of

Figure 6: Search Space of Paper-Paper Relationship
PPF Factors with Conference-Paper PPF=0.3

Figure 7: Search Space of Conference-Paper Rela-
tionship PPF Factors with Paper-Paper PPF=0.3

search space.
Stop Thresholds: Using the DiameterEstimator algo-
rithm, we automatically select the diameter of the subgraph
for PPF factor assignment based on the stopping threshold
δ. In Figure 9 and Figure 8, we show the learning time of the
PPF factor estimation and the quality of the results using
the learned PPF factors for different threshold δ. As we can
see the smaller the stopping threshold, the better the quality
at the beginning and the longer the learning time. However
the quality of the ranking results can not be improved fur-
ther for thresholds less than 0.01, while PPF factor learning
time will keep increasing as the threshold becomes smaller.
We can clearly see that 0.01 is a good stop threshold for our
datasets.
Subgraph Diameters: In Figure 10, we show how the
total number of relationship links change when we increase
the diameter of the subgraph. We choose two sets of training
objects: 45 core objects and 8 core objects respectively, to
study their growing speed of their link graph sizes. As we
can see their graph sizes are significantly different when the
diameter is smaller than 6.

Based on the previous experimental results, we set the
stopping threshold δ = 0.01. The PPF learning time for dif-
ferent diameter sizes using the 45 training objects is shown
in Figure 11. From this figure we can found that the learn-
ing time could be greatly reduced when we reduce the size

Figure 8: Ranking Distances for Different Thresh-
olds

Figure 9: PPF Learning Time for Different Thresh-
olds

of the subgraph.
After we get the learned combination of PPF factors for

different diameter sizes, we apply it to the entire graph to
calculate the popularity ranking for all objects. We compare
the ranking results of the test objects with the ranking from
domain experts. Their ranking distance is shown in the
figure 12. We can see from the graph, that as we increase the
size of the diameter to greater than 4, the ranking distance
remains the same, although the PPF factor learning time
keeps increasing.
Simulated Annealing: Figure 13 shows the performance
of our SAFA algorithm using the 45 training objects. We
found that the algorithm tried around 300-400 iterations to
find out the optimal PPF assignment. It maybe a local op-
timal solution, however we tried for another 1100 iterations
and found no improvement.
PopRank versus PageRank: For comparison, we imple-
mented the PageRank algorithm which assigns a uniform
popularity propagation factor for all links. Figure 14 shows
the comparison of our PopRank algorithm with the PageR-
ank algorithm in several test datasets. In order to show that
our PopRank model works well even with a small number of
training objects, we use the previous 22 test objects as train-
ing objects here, and 6 subsets of the previous 45 training
objects are selected as the test datasets here. The number
of objects in a test dataset changes from 45 to 20. The
results show that our algorithm is significantly better than

Figure 10: Number of Object Relationship Links for
Different Subgraph Diameters

Figure 11: PPF Factor Learning Time for Different
Subgraph

PageRank for all the test datasets. In average, our ranking
accuracy increases about 50%, Which clearly illustrates that
naively applying PageRank on object relationship graph is
essentially not feasible.
Number of Training Objects: In Figure 15, we observe
how different number of training objects affects the qual-
ity of ranking results. As we can see when we increase the
number of training objects, the ranking accuracy keeps im-
proving. Currently, we only collected 67 ranked objects for
training and test. In the future, we plan to include more
objects for training. Hopefully, the accuracy will be further
improved.

6. RELATED WORK
Brin and Page first introduce the PageRank technique [13]

to calculate the importance of a Web page based on the
scores of the pages pointing to the page. Hence, Web pages
pointed by many high quality pages become important as
well. Alternatively, the importance score of a Web page
is equal to the probability that a random surfer, starting
from a random page, will reach the Web page at a specific
time. Since the PageRank model considers that all the links
have the same authority propagation factors, it could not be
directly applied to our object-level ranking problem.

The PageRank model has also been adapted to structure
databases. Guo et al. [7] introduce XRANK to rank XML

Figure 12: Ranking Distance for Different Diame-
ters

Figure 13: Simulated Annealing

elements using the link structure of the database. Balmin
et al. propose the ObjectRank system [4] which applies the
random walk model to keyword search in databases mod-
elled as labelled graphs. A similar notion of our popularity
propagation factors called authority transfer rates is intro-
duced. In their relevance feedback survey study, the authors
find out that using different transfer rates for different edge
types is effective. However the papers did not discuss how
these authority transfer rates could be assigned.

Xi et al. [17] propose a unified link analysis framework
called ”link fusion” to consider both the inter- and intra-
type link structure among multi-type inter-related datan ob-
jects. The PageRank and HITS algorithms [10] are shown
to be special cases of the unified link analysis framework.
Although the paper mentioned some similar notion of our
popularity propagation factor, however how to assign these
factors is considered as the most important future research
work in the paper. Furthermore, our PopRank model itself
is also significantly different from the link fusion framework.
In our PopRank model we take both the Web popularity of
an object and the popularity from the object relationship
graph into account. Combining both types of popularity
is important, especially for application domains where ob-
jects are widely available on Web databases and Web pages.
For example, if we want to build a product search engine
to rank the product related objects, the Web popularity of
these objects could be very useful to calculate the popularity
of these products, only using the object relationship graph

Figure 14: PopRank versus PageRank

Figure 15: Ranking Distances for Different Number
of Training Objects

could lead to unreasonable ranking.

7. CONCLUSION
This paper studies how to calculate the object popularity

scores of Web objects based on their Web popularity and the
object relationship graph. Traditional PageRank algorithms
is no longer valid because of the existence of heterogeneous
relationships between objects. We propose to automatically
assign a popularity propagation factor for each type of object
relationship. Specifically the contributions of the paper are:

(i) A PopRank model which considers both the Web pop-
ularity of an object and the object relationship graph to
calculate the PopRank score of the Web object;

(ii) An automated approach for assigning popularity prop-
agation factors for different types of object relationships us-
ing partial ranking lists from domain experts. We propose
to use a subgraph of the entire object relationship graph to
efficiently search for good propagation factors;

(iii) The experiments are done in the context of Libra, an
object-level Web search engine indexing 1 million papers.

8. REFERENCES
[1] Citeseer. Scientific Literature Digital Library.

http://citeseer.ist.psu.edu.

[2] Libra. Object-level Paper Search Engine.
http://libra.directtaps.net, username:guest,
password:hello libra!

[3] N. Ashish and C. Knoblock. Wrapper generation for
semi-structured internet sources. In Proc. Workshop
on Management of Semistructured Data, Tucson, 1997.

[4] Andrey Balmin, Vagelis Hristidis, and Yannis
Papakonstantinou. Authority-based keyword queries
in databases using objectrank. In Very Large Data
Bases (VLDB), 2004.

[5] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. Computer
Networks and ISDN Systems, 30(1–7):107–117, 1998.

[6] Deng Cai, Xiaofei He, Ji-Rong Wen, and Wei-Ying
Ma. Block-level link analysis. In ACM SIGIR
Conference (SIGIR), 2004.

[7] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. Xrank: Ranked keyword
search over xml documents. In ACM SIGMOD, 2003.

[8] Bin He, Kevin Chen chuan Chang, and Jiawei Han.
Discovering complex matchings across web query
interfaces: a correlation mining approach. In
Knowledge Discovery and Data Mining (KDD), 2004.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598), 1983.

[10] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5), 1999.

[11] Nickolas Kushmerick, Daniel S. Weld, and Robert B.
Doorenbos. Wrapper induction for information
extraction. In Intl. Joint Conference on Artificial
Intelligence (IJCAI), pages 729–737, 1997.

[12] Bing Liu, Robert Grossman, and Yanhong Zhai.
Mining data records in web pages. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 2003.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Libraries, 1998.

[14] Ruihua Song, Haifeng Liu, Ji-Rong Wen, and
Wei-Ying Ma. Learning block importance models for
web pages. In World Wide Web conference (WWW),
2004.

[15] Sheila Tejada, Craig A. Knoblock, and Steven Minton.
Learning domain-independent string transformation
weights for high accuracy object identification. In
Knowledge Discovery and Data Mining (KDD), 2002.

[16] Jiying Wang, Ji-Rong Wen, Frederick H. Lochovsky,
and Wei-Ying Ma. Instance-based schema matching
for web databases by domain-specific query probing.
In Very Large Data Bases (VLDB), 2004.

[17] Wensi Xi, Benyu Zhang, Yizhou Lu, Zheng Chen,
Shuicheng Yan, Huajun Zeng, Wei-Ying Ma, and
Edward A. Fox. Link fusion: A unified link analysis
framework for multi-type interrelated data objects. In
WWW, 2004.

