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Abstract We give a tutorial overview of several geometric methods for feature extraction
and dimensional reduction. We divide the methods into projective methods and
methods that model the manifold on which the data lies. For projective meth-
ods, we review projection pursuit, principal component analysis (PCA), kernel
PCA, probabilistic PCA, and oriented PCA; and for the manifold methods, we
review multidimensional scaling (MDS), landmark MDS, Isomap, locally linear
embedding, Laplacian eigenmaps and spectral clustering. The Nyström method,
which links several of the algorithms, is also reviewed. The goal is to provide
a self-contained review of the concepts and mathematics underlying these algo-
rithms.
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Introduction

Feature extraction can be viewed as a preprocessing step which removes
distracting variance from a dataset, so that downstream classifiers or regression
estimators perform better. The area where feature extraction ends and classi-
fication, or regression, begins is necessarily murky: an ideal feature extractor
would simply map the data to its class labels, for the classification task. On the
other hand, a character recognition neural net can take minimally preprocessed
pixel values as input, in which case feature extraction is an inseparable part of
the classification process (LeCun and Bengio, 1995). Dimensional reduction -
the (usually non-invertible) mapping of data to a lower dimensional space - is
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closely related (often dimensional reduction is used as a step in feature extrac-
tion), but the goals can differ. Dimensional reduction has a long history as a
method for data visualization, and for extracting key low dimensional features
(for example, the 2-dimensional orientation of an object, from its high dimen-
sional image representation). The need for dimensionality reduction also arises
for other pressing reasons. (Stone, 1982) showed that, under certain regularity
assumptions, the optimal rate of convergence1 for nonparametric regression
varies asm−p/(2p+d), wherem is the sample size, the data lies inRd, and
where the regression function is assumed to bep times differentiable. Con-
sider 10,000 sample points, forp = 2 andd = 10. If d is increased to 20,
the number of sample points must be increased to approximately 10 million in
order to achieve the same optimal rate of convergence. If our data lie (approx-
imately) on a low dimensional manifoldL that happens to be embedded in a
high dimensional manifoldH, modeling the projected data inL rather than in
H may turn an infeasible problem into a feasible one.

The purpose of this review is to describe the mathematics and ideas un-
derlying the algorithms. Implementation details, although important, are not
discussed. Some notes on notation: vectors are denoted by boldface, whereas
components are denoted byxa, or by (xi)a for thea’th component of thei’th
vector. Following (Horn and Johnson, 1985), the set ofp by q matrices is de-
notedMpq, the set of (square)p by p matrices byMp, and the set of symmetric
p by p matrices bySp (all matrices considered are real).e with no subscript
is used to denote the vector of all ones; on the other handea denotes thea’th
eigenvector. We denote sample size bym, and dimension usually byd or d′,
with typically d′ ¿ d. δij is the Kronecker delta (theij’th component of the
unit matrix). We generally reserve indicesi, j, to index vectors anda, b to
index dimension.

We place feature extraction and dimensional reduction techniques into two
broad categories: methods that rely on projections (Section 1) and methods
that attempt to model the manifold on which the data lies (Section 2). Sec-
tion 1 gives a detailed description of principal component analysis; apart from
its intrinsic usefulness, PCA is interesting because it serves as a starting point
for many modern algorithms, some of which (kernel PCA, probabilistic PCA,
and oriented PCA) are also described. However it has clear limitations: it is
easy to find even low dimensional examples where the PCA directions are far
from optimal for feature extraction (Duda and Hart, 1973), and PCA ignores
correlations in the data that are higher than second order. Section 2 starts with
an overview of the Nystr̈om method, which can be used to extend, and link,
several of the algorithms described in this chapter. We then examine some
methods for dimensionality reduction which assume that the data lie on a low
dimensional manifold embedded in a high dimensional spaceH, namely lo-
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cally linear embedding, multidimensional scaling, Isomap, Laplacian eigen-
maps, and spectral clustering.

1. Projective Methods

If dimensional reduction is so desirable, how should we go about it? Per-
haps the simplest approach is to attempt to find low dimensionalprojections
that extract useful information from the data, by maximizing a suitable ob-
jective function. This is the idea of projection pursuit (Friedman and Tukey,
1974). The name ’pursuit’ arises from the iterative version, where the currently
optimal projection is found in light of previously found projections (in fact
originally this was done manually2). Apart from handling high dimensional
data, projection pursuit methods can be robust to noisy or irrelevant features
(Huber, 1985), and have been applied to regression (Friedman and Stuetzle,
1981), where the regression is expressed as a sum of ’ridge functions’ (func-
tions of the one dimensional projections) and at each iteration the projection
is chosen to minimize the residuals; to classification; and to density estima-
tion (Friedman et al., 1984). How are the interesting directions found? One
approach is to search for projections such that the projected data departs from
normality (Huber, 1985). One might think that, since a distribution is normal if
and only if all of its one dimensional projections are normal, if the least normal
projection of some dataset is still approximately normal, then the dataset is also
necessarily approximately normal, but this is not true; Diaconis and Freedman
have shown that most projections of high dimensional data are approximately
normal (Diaconis and Freedman, 1984) (see also below). Given this, finding
projections along which the density departs from normality, if such projections
exist, should be a good exploratory first step.

The sword of Diaconis and Freedman cuts both ways, however. If most pro-
jections of most high dimensional datasets are approximately normal, perhaps
projections are not always the best way to find low dimensional representa-
tions. Let’s review their results in a little more detail. The main result can be
stated informally as follows: consider a model where the data, the dimension
d, and the sample sizem depend on some underlying parameterν, such that
asν tends to infinity, so dom andd. Suppose that asν tends to infinity, the
fraction of vectors which are not approximately the same length tends to zero,
and suppose further that under the same conditions, the fraction of pairs of vec-
tors which are not approximately orthogonal to each other also tends to zero3.
Then ((Diaconis and Freedman, 1984), theorem 1.1) the empirical distribution
of the projections along any given unit direction tends toN(0, σ2) weakly in
probability. However, if the conditions are not fulfilled, as for some long-tailed
distributions, then the opposite result can hold - that is, most projections are
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not normal (for example, most projections of Cauchy distributed data4 will be
Cauchy (Diaconis and Freedman, 1984)).

As a concrete example5, consider data uniformly distributed over the unit
n + 1-sphereSn+1 for oddn. Let’s compute the density projected along any
line I passing through the origin. By symmetry, the result will be independent
of the direction we choose. If the distance along the projection is parameterized
by ξ ≡ cos θ, whereθ is the angle betweenI and the line from the origin to
a point on the sphere, then the density atξ is proportional to the volume of an
n-sphere of radiussin θ: ρ(ξ) = C(1−ξ2)

n−1
2 . Requiring that

∫ 1
−1 ρ(ξ)dξ = 1

gives the constantC:

C = 2−
1
2
(n+1) n!!

(1
2(n− 1))!

(1.1)

Let’s plot this density and compare against a one dimensional Gaussian density
fitted using maximum likelihood. For that we just need the variance, which can
be computed analytically:σ2 = 1

n+2 , and the mean, which is zero. Figure 1.1
shows the result for the 20-sphere. Although data uniformly distributed onS20

is far from Gaussian, its projection along any direction is close to Gaussian for
all such directions, and we cannot hope to uncover such structure using one
dimensional projections.
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Figure 1.1. Dotted line: a Gaussian with zero mean and variance 1/21. Solid line: the density
projected from data distributed uniformly over the 20-sphere, to any line passing through the
origin.

The notion of searching for non-normality, which is at the heart of projec-
tion pursuit (the goal of which is dimensional reduction), is also the key idea
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underlying independent component analysis (ICA) (the goal of which is source
separation). ICA (Hyv̈arinen et al., 2001) searches for projections such that the
probability distributions of the data along those projections are statistically in-
dependent: for example, consider the problem of separating the source signals
in a linear combinations of signals, where the sources consist of speech from
two speakers who are recorded using two microphones (and where each mi-
crophone captures sound from both speakers). The signal is the sum of two
statistically independent signals, and so finding those independent signals is
required in order to decompose the signal back into the two original source
signals, and at any given time, the separated signal values are related to the
microphone signals by two (time independent) projections (forming an invert-
ible 2 by 2 matrix). If the data is normally distributed, finding projections
along which the data is uncorrelated is equivalent to finding projections along
which it is independent, so although using principal component analysis (see
below) will suffice to find independent projections, those projections will not
be useful for the above task. For most other distributions, finding projections
along which the data is statistically independent is a much stronger (and for
ICA, useful) condition than finding projections along which the data is uncor-
related. Hence ICA concentrates on situations where the distribution of the
data departs from normality, and in fact, finding the maximally non-Gaussian
component (under the constraint of constant variance) will give you an inde-
pendent component (Hyvärinen et al., 2001).

1.1 Principal Components Analysis (PCA)

1.1.1 PCA: Finding an Informative Direction. Given dataxi ∈ Rd,
i = 1, · · · ,m, suppose you’d like to find a directionv ∈ Rd for which the
projectionxi · v gives a good one dimensional representation of your original
data: that is, informally, the act of projecting loses as little information about
your expensively-gathered data as possible (we will examine the information
theoretic view of this below). Suppose that unbeknownst to you, your data in
fact lies along a lineI embedded inRd, that is,xi = µ + θin, whereµ is the
sample mean6, θi ∈ R, andn ∈ Rd has unit length. The sample variance of
the projection alongn is then

vn ≡ 1
m

m∑

i=1

((xi − µ) · n)2 =
1
m

m∑

i=1

θ2
i (1.2)

and that along some other unit directionn′ is

v′n ≡
1
m

m∑

i=1

((xi − µ) · n′)2 =
1
m

m∑

i=1

θ2
i (n · n′)2 (1.3)
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Since(n·n′)2 = cos2 φ, whereφ is the angle betweenn andn′, we see that the
projected variance is maximized if and only ifn = ±n′. Hence in this case,
finding the projection for which the projected variance is maximized gives you
the direction you are looking for, namelyn, regardless of the distribution of the
data alongn, as long as the data has finite variance. You would then quickly
find that the variance along all directions orthogonal ton is zero, and conclude
that your data in fact lies along a one dimensional manifold embedded inRd.
This is one of several basic results of PCA that hold for arbitrary distributions,
as we shall see.

Even if the underlying physical process generates data that ideally lies along
I, noise will usually modify the data at various stages up to and including the
measurements themselves, and so your data will very likely not lie exactly
alongI. If the overall noise is much smaller than the signal, it makes sense to
try to findI by searching for that projection along which the projected data has
maximum variance. If in addition your data lies in a two (or higher) dimen-
sional subspace, the above argument can be repeated, picking off the highest
variance directions in turn. Let’s see how that works.

1.1.2 PCA: Ordering by Variance. We’ve seen that directions of
maximum variance can be interesting, but how can we find them? The vari-
ance along unit vectorn (Eq. (1.2)) isn′Cn whereC is the sample co-
variance matrix. SinceC is positive semidefinite, its eigenvalues are posi-
tive or zero; let’s choose the indexing such that the (unit normed) eigenvec-
tors ea, a = 1, . . . , d are arranged in order of decreasing size of the corre-
sponding eigenvaluesλa. Since the{ea} span the space, we can expandn
in terms of them:n =

∑d
a=1 αaea, and we’d like to find theαa that max-

imize n′Cn = n′
∑

a αaCea =
∑

a λaα
2
a, subject to

∑
a α2

a = 1 (to give
unit normedn). This is just a convex combination of theλ’s, and since a con-
vex combination of any set of numbers is maximized by taking the largest, the
optimaln is just e1, the principal eigenvector (or any one of the set of such
eigenvectors, if multiple eigenvectors share the same largest eigenvalue), and
furthermore, the variance of the projection of the data alongn is justλ1.

The above construction captures the variance of the data along the direction
n. To characterize the remaining variance of the data, let’s find that direction
m which is both orthogonal ton, and along which the projected data again has
maximum variance. Since the eigenvectors ofC form an orthonormal basis
(or can be so chosen), we can expandm in the subspaceRd−1 orthogonal to
n asm =

∑d
a=2 βaea. Just as above, we wish to find theβa that maximize

m′Cm =
∑d

a=2 λaβ
2
a, subject to

∑d
a=2 β2

a = 1, and by the same argument,
the desired direction is given by the (or any) remaining eigenvector with largest
eigenvalue, and the corresponding variance is just that eigenvalue. Repeating
this argument givesd orthogonal directions, in order of monotonically decreas-
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ing projected variance. Since thed directions are orthogonal, they also provide
a complete basis. Thus if one uses alld directions, no information is lost, and
as we’ll see below, if one uses thed′ < d principal directions, then the mean
squared error introduced by representing the data in this manner is minimized.
Finally, PCA for feature extraction amounts to projecting the data to a lower
dimensional space: given an input vectorx, the mapping consists of comput-
ing the projections ofx along theea, a = 1, . . . , d′, thereby constructing the
components of the projectedd′-dimensional feature vectors.

1.1.3 PCA Decorrelates the Samples. Now suppose we’ve performed
PCA on our samples, and instead of using it to construct low dimensional fea-
tures, we simply use the full set of orthonormal eigenvectors as a choice of
basis. In the old basis, a given input vectorx is expanded asx =

∑d
a=1 xaua

for some orthonormal set{ua}, and in the new basis, the same vector is ex-
panded asx =

∑d
b=1 x̃beb, so x̃a ≡ x · ea = ea ·

∑
b xbub. The mean

µ ≡ 1
m

∑
i xi has components̃µa = µ · ea in the new basis. The sample co-

variance matrix depends on the choice of basis: ifC is the covariance matrix
in the old basis, then the corresponding covariance matrix in the new basis is
C̃ab ≡ 1

m

∑
i(x̃ia−µ̃a)(x̃ib−µ̃b) = 1

m

∑
i{ea ·(

∑
p xipup−µ)}{∑q xiquq−

µ) · eb} = e′aCeb = λbδab. Hence in the new basis the covariance matrix is
diagonal and the samples are uncorrelated. It’s worth emphasizing two points:
first, although the covariance matrix can be viewed as a geometric object in
that it transforms as a tensor (since it is a summed outer product of vectors,
which themselves have a meaning independent of coordinate system), never-
theless, the notion of correlation is basis-dependent (data can be correlated in
one basis and uncorrelated in another). Second, PCA decorrelates the samples
whatever their underlying distribution; it does not have to be Gaussian.

1.1.4 PCA: Reconstruction with Minimum Squared Error. The
basis provided by the eigenvectors of the covariance matrix is also optimal for
dimensional reduction in the following sense. Again consider some arbitrary
orthonormal basis{ua, a = 1, . . . , d}, and take the firstd′ of these to perform
the dimensional reduction:̃x ≡ ∑d′

a=1(x · ua)ua. The chosenua form a basis
for Rd′ , so we may take the components of the dimensionally reduced vectors
to bex·ua, a = 1, . . . , d′ (although here we leavẽx with dimensiond). Define
the reconstruction error summed over the dataset as

∑m
i=1 ‖xi − x̃i‖2. Again

assuming that the eigenvectors{ea} of the covariance matrix are ordered in
order of non-increasing eigenvalues, choosing to use those eigenvectors as ba-
sis vectors will give minimal reconstruction error. If the data is not centered,
then the mean should be subtracted first, the dimensional reduction performed,
and the mean then added back7; thus in this case, the dimensionally reduced
data will still lie in the subspaceRd′ , but that subspace will be offset from the
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origin by the mean. Bearing this caveat in mind, to prove the claim we can
assume that the data is centered. Expandingua ≡

∑d
p=1 βapep, we have

1
m

∑

i

‖xi − x̃i‖2 =
1
m

∑

i

‖xi‖2 − 1
m

d′∑

a=1

∑

i

(xi · ua)2 (1.4)

with the constraints
∑d

p=1 βapβbp = δab. The second term on the right is

−
d′∑

a=1

u′aCua = −
d′∑

a=1

(
d∑

p=1

βape′p)C(
d∑

q=1

βaqeq) = −
d′∑

a=1

d∑

p=1

λpβ
2
ap

Introducing Lagrange multipliersωab to enforce the orthogonality constraints
(Burges, 2004), the objective function becomes

F =
d′∑

a=1

d∑

p=1

λpβ
2
ap −

d′∑

a,b=1

ωab




d∑

p=1

βapβbp − δab


 (1.5)

Choosing8 ωab ≡ ωaδab and taking derivatives with respect toβcq givesλqβcq =
ωcβcq. Both this and the constraints can be satisfied by choosingβcq = 0 ∀q >
c andβcq = δcq otherwise; the objective function is then maximized if the first
d′ largestλp are chosen. Note that this also amounts to a proof that the ’greedy’
approach to PCA dimensional reduction - solve for a single optimal direction
(which gives the principal eigenvector as first basis vector), then project your
data into the subspace orthogonal to that, then repeat - also results in the global
optimal solution, found by solving for all directions at once. The same is true
for the directions that maximize the variance. Again, note that this argument
holds however your data is distributed.

1.1.5 PCA Maximizes Mutual Information on Gaussian Data. Now
consider some proposed set of projectionsW ∈ Md′d, where the rows ofW
are orthonormal, so that the projected data isy ≡ Wx, y ∈ Rd′ , x ∈ Rd,
d′ ≤ d. Suppose thatx ∼ N (0, C). Then since they’s are linear com-
binations of thex’s, they are also normally distributed, with zero mean and
covarianceCy ≡ (1/m)

∑m
i yiy′i = (1/m)W (

∑m
i xix′i)W

′ = WCW ′. It’s
interesting to ask howW can be chosen so that the mutual information between
the distribution of thex’s and that of they’s is maximized (Baldi and Hornik,
1995; Diamantaras and Kung, 1996). Since the mappingW is deterministic,
the conditional entropyH(y|x) vanishes, and the mutual information is just
I(x,y) = H(y) − H(y|x) = H(y). Using a small, fixed bin size, we can
approximate this by the differential entropy,

H(y) = −
∫

p(y) log2 p(y)dy =
1
2

log2(e(2π)d′) +
1
2

log2 det(Cy) (1.6)
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This is maximized by maximizingdet(Cy) = det(WCW ′) over choice of
W , subject to the constraint that the rows ofW are orthonormal. The general
solution to this isW = UE, whereU is an arbitraryd′ by d′ orthogonal
matrix, and where the rows ofE ∈ Md′d are formed from the firstd′ principal
eigenvectors ofC, and at the solution,det(Cy) is just the product of the first
d′ principal eigenvalues. Clearly, the choice ofU does not affect the entropy,
sincedet(UECE′U ′) = det(U) det(ECE′) det(U ′) = det(ECE′). In the
special case whered′ = 1, so thatE consists of a single, unit length vector
e, we havedet(ECE′) = e′Ce, which is maximized by choosinge to be the
principal eigenvector ofC, as shown above. (The other extreme case, where
d′ = d, is easy too, since thendet(ECE′) = det(C) and E can be any
orthogonal matrix). We refer the reader to (Wilks, 1962) for a proof for the
general case1 < d′ < d.

1.2 Probabilistic PCA (PPCA)

Suppose you’ve applied PCA to obtain low dimensional feature vectors for
your data, but that you have also somehow found a partition of the data such
that the PCA projections you obtain on each subset are quite different from
those obtained on the other subsets. It would be tempting to perform PCA
on each subset and use the relevant projections on new data, but how do you
determine what is ’relevant’? That is, how would you construct a mixture
of PCA models? While several approaches to such mixtures have been pro-
posed, the first such probabilistic model was proposed by (Tipping and Bishop,
1999A; Tipping and Bishop, 1999B). The advantages of a probabilistic model
are numerous: for example, the weight that each mixture component gives to
the posterior probability of a given data point can be computed, solving the
’relevance’ problem stated above. In this section we briefly review PPCA.

The approach is closely related to factor analysis, which itself is a classical
dimensional reduction technique. Factor analysis first appeared in the behav-
ioral sciences community a century ago, when Spearman hypothesised that
intelligence could be reduced to a single underlying factor (Spearman, 1904).
If, given ann by n correlation matrix between variablesxi ∈ R, i = 1, · · · , n,
there is a single variableg such that the correlation betweenxi andxj van-
ishes fori 6= j given the value ofg, theng is the underlying ’factor’ and the
off-diagonal elements of the correlation matrix can be written as the corre-
sponding off-diagonal elements ofzz′ for somez ∈ Rn (Darlington). Modern
factor analysis usually considers a model where the underlying factorsx ∈ Rd′

are Gaussian, and where a Gaussian noise termε ∈ Rd is added:

y = Wx + µ + ε (1.7)

x ∼ N (0,1)
ε ∼ N (0, Ψ)
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Herey ∈ Rd are the observations, the parameters of the model areW ∈ Mdd′

(d′ ≤ d), Ψ andµ, andΨ is assumed to be diagonal. By construction, they’s
have meanµ and ’model covariance’WW ′ + Ψ. For this model, givenx, the
vectorsy − µ become uncorrelated. Sincex andε are Gaussian distributed,
so isy, and so the maximum likelihood estimate ofE[y] is just µ. How-
ever, in general,W andΨ must be estimated iteratively, using for example
EM. There is an instructive exception to this (Basilevsky, 1994; Tipping and
Bishop, 1999A). Suppose thatΨ = σ21, that thed − d′ smallest eigenvalues
of the model covariance are the same and are equal toσ2, and that the sample
covarianceS is equal to the model covariance (so thatσ2 follows immediately
from the eigendecomposition ofS). Lete(j) be thej’th orthonormal eigenvec-
tor of S with eigenvalueλj . Then by considering the spectral decomposition

of S it is straightforward to show thatWij =
√

(λj − σ2)e(j)
i , i = 1, · · · , d,

j = 1, · · · , d′, if the e(j) are in principal order. The model thus arrives at
the PCA directions, but in a probabilistic way.ProbabilisticPCA (PPCA) is a
more general extension of factor analysis: it assumes a model of the form (1.7)
with Ψ = σ21, but it drops the above assumption that the model and sample
covariances are equal (which in turn means thatσ2 must now be estimated).
The resulting maximum likelihood estimates ofW andσ2 can be written in
closed form, as (Tipping and Bishop, 1999A)

WML = U(Λ− σ21)R (1.8)

σ2
ML =

1
d− d′

d∑

i=d′+1

λi (1.9)

whereU ∈ Mdd′ is the matrix of thed′ principal column eigenvectors ofS, Λ
is the corresponding diagonal matrix of principal eigenvalues, andR ∈ Md′ is
an arbitrary orthogonal matrix. Thusσ2 captures the variance lost in the dis-
carded projections and the PCA directions appear in the maximum likelihood
estimate ofW (and in fact re-appear in the expression for the expectation of
x giveny, in the limit σ → 0, in which case thex become the PCA projec-
tions of they). This closed form result is rather striking in view of the fact
that for general factor analysis we must resort to an iterative algorithm. The
probabilistic formulation makes PCA amenable to a rich variety of probabilis-
tic methods: for example, PPCA allows one to perform PCA when some of
the data is missing components; andd′ (which so far we’ve assumed known)
can itself be estimated using Bayesian arguments (Bishop, 1999). Returning to
the problem posed at the beginning of this Section, a mixture of PPCA mod-
els, each with weightπi ≥ 0,

∑
i πi = 1, can be computed for the data using

maximum likelihood and EM, thus giving a principled approach to combining
several local PCA models (Tipping and Bishop, 1999B).
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1.3 Kernel PCA

PCA is a linear method, in the sense that the reduced dimension representa-
tion is generated by linear projections (although the eigenvectors and eigenval-
ues depend non-linearly on the data), and this can severely limit the usefulness
of the approach. Several versions of nonlinear PCA have been proposed (see
e.g. (Diamantaras and Kung, 1996)) in the hope of overcoming this prob-
lem. In this section we describe a more recent algorithm called kernel PCA
(Scḧolkopf et al., 1998). Kernel PCA relies on the “kernel trick”, which is the
following observation: suppose you have an algorithm (for example, k’th near-
est neighbour) which depends only on dot products of the data. Consider using
the same algorithm on transformed data:x → Φ(x) ∈ F , whereF is a (possi-
bly infinite dimensional) vector space, which we will call feature space9. Op-
erating inF , your algorithm depends only on the dot productsΦ(xi) ·Φ(xj).
Now suppose there exists a (symmetric) ’kernel’ functionk(xi,xj) such that
for all xi, xj ∈ Rd, k(xi,xj) = Φ(xi) · Φ(xj). Then since your algorithm
depends only on these dot products, you never have to computeΦ(x) explic-
itly; you can always just substitute in the kernel form. This was first used by
(Aizerman et al., 1964) in the theory of potential functions, and burst onto the
machine learning scene in (Boser et al., 1992), when it was applied to support
vector machines. Kernel PCA applies the idea to performing PCA inF . It’s
striking that, since projections are being performed in a space whose dimension
can be much larger thand, the number of useful such projections can actually
exceedd, so kernel PCA is aimed more at feature extraction than dimensional
reduction.

It’s not immediately obvious that PCA is eligible for the kernel trick, since in
PCA the data appears in expectations over products of individual components
of vectors, not over dot products between the vectors. However (Schölkopf
et al., 1998) show how the problem can indeed be cast entirely in terms of
dot products. They make two key observations: first, that the eigenvectors of
the covariance matrix inF lie in the span of the (centered) mapped data, and
second, that therefore no information in the eigenvalue equation is lost if the
equation is replaced bym equations, formed by taking the dot product of each
side of the eigenvalue equation with each (centered) mapped data point. Let’s
see how this works. The covariance matrix of the mapped data in feature space
is

C ≡ 1
m

m∑

i=1

(Φi − µ)(Φi − µ)T (1.10)

whereΦi ≡ Φ(xi) andµ ≡ 1
m

∑
i Φi. We are looking for eigenvector solu-

tionsv of

Cv = λv (1.11)
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Since this can be written1m
∑m

i=1(Φi−µ)[(Φi−µ)·v] = λv, the eigenvectors
v lie in the span of theΦi − µ’s, or

v =
∑

i

αi(Φi − µ) (1.12)

for someαi. Since (both sides of) Eq. (1.11) lie in the span of theΦi − µ, we
can replace it with them equations

(Φi − µ)T Cv = λ(Φi − µ)Tv (1.13)

Now consider the ’kernel matrix’Kij , the matrix of dot products inF : Kij ≡
Φi · Φj , i, j = 1, . . . , m. We know how to calculate this, given a kernel
functionk, sinceΦi ·Φj = k(xi,xj). However, what we need is thecentered
kernel matrix,KC

ij ≡ (Φi − µ) · (Φj − µ). Happily, anym by m dot product
matrix can be centered by left- and right- multiplying by the projection matrix
P ≡ 1− 1

mee′, where1 is the unit matrix inMm and wheree is them-vector
of all ones (see Section 2.2 for further discussion of centering). Hence we have
KC = PKP , and Eq. (1.13) becomes

KCKCα = λ̄KCα (1.14)

whereα ∈ Rm and wherēλ ≡ mλ. Now clearly any solution of

KCα = λ̄α (1.15)

is also a solution of (1.14). It’s straightforward to show that any solution of
(1.14) can be written as a solutionα to (1.15) plus a vectorβ which is orthog-
onal toα (and which satisfies

∑
i βi(Φi − µ) = 0), and which therefore does

not contribute to (1.12); therefore we need only consider Eq. (1.15). Finally,
to use the eigenvectorsv to compute principal components inF , we needv to
have unit length, that is,v · v = 1 = λ̄α · α, so theα must be normalized to
have length1/

√
λ̄.

The recipe for extracting thei’th principal component inF using kernel
PCA is therefore:

1 Compute thei’th principal eigenvector ofKC , with eigenvaluēλ.

2 Normalize the corresponding eigenvector,α, to have length1/
√

λ̄.

3 For a training pointxk, the principal component is then just

(Φ(xk)− µ) · v = λ̄αk
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4 For a general test pointx, the principal component is

(Φ(x)− µ) · v =
∑

i

αik(x,xi)− 1
m

∑

i,j

αik(x,xj)

− 1
m

∑

i,j

αik(xi,xj) +
1

m2

∑

i,j,n

αik(xj ,xn)

where the last two terms can be dropped since they don’t depend onx.

Kernel PCA may be viewed as a way of putting more effort into the up-
front computation of features, rather than putting the onus on the classifier
or regression algorithm. Kernel PCA followed by a linear SVM on a pattern
recognition problem has been shown to give similar results to using a nonlin-
ear SVM using the same kernel (Schölkopf et al., 1998). It shares with other
Mercer kernel methods the attractive property of mathematical tractability and
of having a clear geometrical interpretation: for example, this has led to us-
ing kernel PCA for de-noising data, by finding that vectorz ∈ Rd such that
the Euclidean distance betweenΦ(z) and the vector computed from the first
few PCA components inF is minimized (Mika et al., 1999). Classical PCA
has the significant limitation that it depends only on first and second moments
of the data, whereas kernel PCA does not (for example, a polynomial kernel
k(xi,xj) = (xi ·xj +b)p contains powers up to order2p, which is particularly
useful for e.g. image classification, where one expects that products of several
pixel values will be informative as to the class). Kernel PCA has the computa-
tional limitation of having to compute eigenvectors for square matrices of side
m, but again this can be addressed, for example by using a subset of the train-
ing data, or by using the Nyström method for approximating the eigenvectors
of a large Gram matrix (see below).

1.4 Oriented PCA and Distortion Discriminant Analysis

Before leaving projective methods, we describe another extension of PCA,
which has proven very effective at extracting robust features from audio (Burges
et al., 2002; Burges et al., 2003). We first describe the method of oriented PCA
(OPCA) (Diamantaras and Kung, 1996). Suppose we are given a set of ’sig-
nal’ vectorsxi ∈ Rd, i = 1, . . . , m, where eachxi represents an undistorted
data point, and suppose that for eachxi, we have a set ofN distorted versions
x̃k

i , k = 1, . . . , N . Define the corresponding ’noise’ difference vectors to be
zk

i ≡ x̃k
i − xi. Roughly speaking, we wish to find linear projections which

are as orthogonal as possible to the difference vectors, but along which the
variance of the signal data is simultaneously maximized. Denote the unit vec-
tors defining the desired projections byni, i = 1, . . . , d′, ni ∈ Rd, where
d′ will be chosen by the user. By analogy with PCA, we could construct a
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feature extractorn which minimizes the mean squared reconstruction error
1

mN

∑
i,k(xi − x̂k

i )
2, wherex̂k

i ≡ (x̃k
i · n)n. The n that solves this prob-

lem is that eigenvector ofR1 − R2 with largest eigenvalue, whereR1, R2 are
the correlation matrices of thexi andzi respectively. However this feature
extractor has the undesirable property that the directionn will change if the
noise and signal vectors are globally scaled with two different scale factors.
OPCA (Diamantaras and Kung, 1996) solves this problem. The first OPCA di-
rection is defined as that directionn that maximizes the generalized Rayleigh
quotient (Duda and Hart, 1973; Diamantaras and Kung, 1996)q0 = n′C1n

n′C2n
,

whereC1 is the covariance matrix of the signal andC2 that of the noise. For
d′ directions collected into a column matrixN ∈ Mdd′ , we instead maximize
det(N ′C1N )
det(N ′C2N ) . For Gaussian data, this amounts to maximizing the ratio of the
volume of the ellipsoid containing the data, to the volume of the ellipsoid con-
taining the noise, where the volume is that lying inside an ellipsoidal surface of
constant probability density. We in fact use the correlation matrix of the noise
rather than the covariance matrix, since we wish to penalize the mean noise
signal as well as its variance (consider the extreme case of noise that has zero
variance but nonzero mean). Explicitly, we take

C ≡ 1
m

∑

i

(xi − E[x])(xi − E[x])′ (1.16)

R ≡ 1
mN

∑

i,k

zk
i (z

k
i )
′ (1.17)

and maximizeq = n′Cn
n′Rn , whose numerator is the variance of the projection of

the signal data along the unit vectorn, and whose denominator is the projected
mean squared “error” (the mean squared modulus of all noise vectorszk

i pro-
jected alongn). We can find the directionsnj by setting∇q = 0, which gives
the generalized eigenvalue problemCn = qRn; those solutions are also the
solutions to the problem of maximizingdet(N ′CN )

det(N ′RN ) . If R is not of full rank,
it must be regularized for the problem to be well-posed. It is straightforward
to show that, for positive semidefiniteC, R, the generalized eigenvalues are
positive, and that scaling either the signal or the noise leaves the OPCA di-
rections unchanged, although the eigenvalues will change. Furthermore theni

are, or may be chosen to be, linearly independent, and although theni are not
necessarily orthogonal, they are conjugate with respect to both matricesC and
R, that is,n′iCnj ∝ δij , n′iRnj ∝ δij . Finally, OPCA is similar to linear
discriminant analysis (Duda and Hart, 1973), but where each signal pointxi is
assigned its own class.

’Distortion discriminant analysis’ (Burges et al., 2002; Burges et al., 2003)
uses layers of OPCA projectors both to reduce dimensionality (a high prior-
ity for audio or video data) and to make the features more robust. The above
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features, computed by taking projections along then’s, are first translated and
normalized so that the signal data has zero mean and the noise data has unit
variance. For the audio application, for example, the OPCA features are col-
lected over several audio frames into new ’signal’ vectors, the corresponding
’noise’ vectors are measured, and the OPCA directions for the next layer found.
This has the further advantage of allowing different types of distortion to be
penalized at different layers, since each layer corresponds to a different time
scale in the original data (for example, a distortion that results from comparing
audio whose frames are shifted in time to features extracted from the original
data - ’alignment noise’ - can be penalized at larger time scales).

2. Manifold Modeling

In Section 1 we gave an example of data with a particular geometric struc-
ture which would not be immediately revealed by examining one dimensional
projections in input space10. How, then, can such underlying structure be
found? This section outlines some methods designed to accomplish this. How-
ever we first describe the Nyström method (hereafter simply abbreviated
’Nyström’), which provides a thread linking several of the algorithms de-
scribed in this review.

2.1 The Nystr̈om method

Suppose thatK ∈ Mn and that the rank ofK is r ¿ n. Nystr̈om gives a
way of approximating the eigenvectors and eigenvalues ofK using those of a
small submatrixA. If A has rankr, then the decomposition is exact. This is
a powerful method that can be used to speed up kernel algorithms (Williams
and Seeger, 2001), to efficiently extend some algorithms (described below) to
out-of-sample test points (Bengio et al., 2004), and in some cases, to make an
otherwise infeasible algorithm feasible (Fowlkes et al., 2004). In this section
only, we adopt the notation that matrix indices refer to sizes unless otherwise
stated, so that e.g.Amm means thatA ∈ Mm.

2.1.1 Original Nyström. The Nystr̈om method originated as a method
for approximating the solution of Fredholm integral equations of the second
kind (Press et al., 1992). Let’s consider the homogeneousd-dimensional form
with densityp(x), x ∈ Rd. This family of equations has the form

∫
k(x,y)u(y)p(y)dy = λu(x) (1.18)

The integral is approximated using the quadrature rule (Press et al., 1992)

λu(x) ≈ 1
m

m∑

i=1

k(x,xi)u(xi) (1.19)
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which when applied to the sample points becomes a matrix equationKmm

um = mλum (with componentsKij ≡ k(xi,xj) andui ≡ u(xi)). This
eigensystem is solved, and the value of the integral at a new pointx is approx-
imated by using (1.19), which gives a much better approximation that using
simple interpolation (Press et al., 1992). Thus, the original Nyström method
provides a way to smoothly approximate an eigenfunctionu, given its values
on a sample set of points. If a different numberm′ of elements in the sum
are used to approximate the same eigenfunction, the matrix equation becomes
Km′m′um′ = m′λum′ so the corresponding eigenvalues approximately scale
with the number of points chosen. Note that we have not assumed thatK is
symmetric or positive semidefinite; however from now on we will assume that
K is positive semidefinite.

2.1.2 Exact Nystr̈om Eigendecomposition. Suppose that̃Kmm has
rank r < m. Since it’s positive semidefinite it is a Gram matrix and can be
written asK̃ = ZZ ′ whereZ ∈ Mmr andZ is also of rankr (Horn and
Johnson, 1985). Order the row vectors inZ so that the firstr are linearly
independent: this just reorders rows and columns inK̃ to giveK, but in such
a way thatK is still a (symmetric) Gram matrix. Then the principal submatrix
A ∈ Sr of K (which itself is the Gram matrix of the firstr rows ofZ) has full
rank. Now lettingn ≡ m− r, write the matrixK as

Kmm ≡
[

Arr Brn

B′
nr Cnn

]
(1.20)

SinceA is of full rank, ther rows
[

Arr Brn

]
are linearly independent, and

sinceK is of rankr, then rows
[

B′
nr Cnn

]
can be expanded in terms of

them, that is, there existsHnr such that[
B′

nr Cnn

]
= Hnr

[
Arr Brn

]
(1.21)

The firstr columns giveH = B′A−1, and the lastn columns then giveC =
B′A−1B. ThusK must be of the form11

Kmm =
[

A B
B′ B′A−1B

]
=

[
A
B′

]

mr

A−1
rr

[
A B

]
rm

(1.22)

The fact that we’ve been able to writeK in this ’bottleneck’ form suggests that
it may be possible to construct theexacteigendecomposition ofKmm (for its
nonvanishing eigenvalues) using the eigendecomposition of a (possibly much
smaller) matrix inMr, and this is indeed the case (Fowlkes et al., 2004). First
use the eigendecomposition ofA, A = UΛU ′, whereU is the matrix of column
eigenvectors ofA andΛ the corresponding diagonal matrix of eigenvalues, to
rewrite this in the form

Kmm =
[

U
B′UΛ−1

]

mr

Λrr

[
U Λ−1U ′B

]
rm
≡ DΛD′ (1.23)



Geometric Methods for Feature Extraction and Dimensional Reduction 17

This would be exactly what we want (dropping all eigenvectors whose eigen-
values vanish), if the columns ofD were orthogonal, but in general they are
not. It is straightforward to show that, if instead of diagonalizingA we diago-
nalizeQrr ≡ A + A−1/2BB′A−1/2 ≡ UQΛQU ′

Q, then the desired matrix of
orthogonal column eigenvectors is

Vmr ≡
[

A
B′

]
A−1/2UQΛ−1/2

Q (1.24)

(so thatKmm = V ΛQV ′ andV ′V = 1rr) (Fowlkes et al., 2004).
Although this decomposition is exact, this last step comes at a price: to ob-

tain the correct eigenvectors, we had to perform an eigendecomposition of the
matrix Q which depends onB. If our intent is to use this decomposition in
an algorithm in whichB changes when new data is encountered (for exam-
ple, an algorithm which requires the eigendecomposition of a kernel matrix
constructed from both train and test data), then we must recompute the decom-
position each time new test data is presented. If instead we’d like to compute
the eigendecomposition just once, we must approximate.

2.1.3 Approximate Nyström Eigendecomposition. Two kinds of
approximation naturally arise. The first occurs ifK is only approximately
low rank, that is, its spectrum decays rapidly, but not to exactly zero. In this
case,B′A−1B will only approximately equalC above, and the approximation
can be quantified as

∥∥C −B′A−1B
∥∥ for some matrix norm‖·‖, where the

difference is known as the Schur complement ofA for the matrixK (Golub
and Van Loan, 1996).

The second kind of approximation addresses the need to compute the eigen-
decomposition just once, to speed up test phase. The idea is simply to take
Equation (1.19), sum overd elements on the right hand side whered ¿ m
andd > r, and approximate the eigenvector of the full kernel matrixKmm

by evaluating the left hand side at allm points (Williams and Seeger, 2001).
Empirically it has been observed that choosingd to be some small integer fac-
tor larger thanr works well (Platt). How does using (1.19) correspond to the
expansion in (1.23), in the case where the Schur complement vanishes? Ex-
pandingA, B in their definition in Eq. (1.20) toAdd, Bdn, so thatUdd contains
the column eigenvectors ofA andUmd contains the approximated (high di-
mensional) column eigenvectors, (1.19) becomes

UmdΛdd ≈ KmdUdd =
[

A
B′

]
Udd =

[
UΛdd

B′Udd

]
(1.25)

so multiplying byΛ−1
dd from the right shows that the approximation amounts

to taking the matrixD in (1.23) as the approximate column eigenvectors: in
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this sense, the approximation amounts to dropping the requirement that the
eigenvectors be exactly orthogonal.

We end with the following observation (Williams and Seeger, 2001): the
expression for computing the projections of a mapped test point along principal
components in a kernel feature space is, apart from proportionality constants,
exactly the expression for the approximate eigenfunctions evaluated at the new
point, computed according to (1.19). Thus the computation of the kernel PCA
features for a set of points can be viewed as using the Nyström method to
approximate the full eigenfunctions at those points.

2.2 Multidimensional Scaling

We begin our look at manifold modeling algorithms with multidimensional
scaling (MDS), which arose in the behavioral sciences (Borg and Groenen,
1997). MDS starts with a measure of dissimilarity between each pair of data
points in the dataset (note that this measure can be very general, and in partic-
ular can allow for non-vectorial data). Given this, MDS searches for a map-
ping of the (possibly further transformed) dissimilarities to a low dimensional
Euclidean space such that the (transformed) pair-wise dissimilarities become
squared distances. The low dimensional data can then be used for visualiza-
tion, or as low dimensional features.

We start with the fundamental theorem upon which ’classical MDS’ is built
(in classical MDS, the dissimilarities are taken to be squared distances and no
further transformation is applied (Cox and Cox, 2001)). We give a detailed
proof because it will serve to illustrate a recurring theme. Lete be the column
vector ofm ones. Consider the ’centering’ matrixP e ≡ 1 − 1

mee′. Let X
be the matrix whose rows are the datapointsx ∈ Rn, X ∈ Mmn. Since
ee′ ∈ Mm is the matrix of all ones,P eX subtracts the mean vector from each
rowx in X (hence the name ’centering’), and in addition,P ee = 0. In facte is
the only eigenvector (up to scaling) with eigenvalue zero, for supposeP ef = 0
for somef ∈ Rm. Then each component off must be equal to the mean of
all the components off , so all components off are equal. HenceP e has rank
m− 1, andP e projects onto the subspaceRm−1 orthogonal toe.

By a ’distance matrix’ we will mean a matrix whoseij’th element is
‖xi − xj‖2 for somexi, xj ∈ Rd, for somed, where‖·‖ is the Euclidean
norm. Notice that the elements are squared distances, despite the name.P e

can also be used to center both Gram matrices and distance matrices. We can
see this as follows. Let[C(i, j)] be that matrix whoseij’th element isC(i, j).
ThenP e[xi ·xj ]P e = P eXX ′P e = (P eX)(P eX)′ = [(xi−µ) ·(xj−µ)]. In
addition, using this result,P e[‖xi − xj‖2]P e = P e[‖xi‖2eiej + ‖xj‖2eiej −
2xi · xj ]P e = −2P exi · xjP

e = −2[(xi − µ) · (xj − µ)].
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For the following theorem, the earliest form of which is due to Schoenberg
(Schoenberg, 1935), we first note that, for anyA ∈ Mm, and lettingQ ≡
1
mee′,

P eAP e = {(1−Q)A(1−Q)}ij = Aij −AR
ij −AC

ij + ARC
ij (1.26)

whereAC ≡ AQ is the matrixA with each column replaced by the column
mean,AR ≡ QA is A with each row replaced by the row mean, andARC ≡
QAQ is A with every element replaced by the mean of all the elements.

Theorem: Consider the class of symmetric matricesA ∈ Sn such that
Aij ≥ 0 andAii = 0 ∀i, j. ThenĀ ≡ −P eAP e is positive semidefinite if and
only if A is a distance matrix (with embedding spaceRd for somed). Given
thatA is a distance matrix, the minimal embedding dimensiond is the rank of
Ā, and the embedding vectors are any set of Gram vectors ofĀ, scaled by a
factor of 1√

2
.

Proof: Assume thatA ∈ Sm, Aij ≥ 0 andAii = 0 ∀i, and thatĀ is
positive semidefinite. SincēA is positive semidefinite it is also a Gram matrix,
that is, there exist vectorsxi ∈ Rm, i = 1, · · · ,m such thatĀij = xi · xj .
Introduceyi = 1√

2
xi. Then from Eq. (1.26),

Āij = (−P eAP e)ij = xi · xj = −Aij + AR
ij + AC

ij −ARC
ij (1.27)

so that

2(yi − yj)2 ≡ (xi − xj)2 = AR
ii + AC

ii −ARC
ii + AR

jj + AC
jj −ARC

jj

−2(−Aij + AR
ij + AC

ij −ARC
ij )

= 2Aij (1.28)

usingAii = 0, AR
ij = AR

jj , AC
ij = AC

ii , and from the symmetry ofA, AR
ij =

AC
ji. ThusA is a distance matrix with embedding vectorsyi. Now consider a

matrix A ∈ Sn that is a distance matrix, so thatAij = (yi − yj)2 for some
yi ∈ Rd for somed, and letY be the matrix whose rows are theyi. Then
since each row and column ofP e sums to zero, we havēA = −(P eAP e) =
2(P eY )(P eY )′, henceĀ is positive semidefinite. Finally, given a distance
matrix Aij = (yi − yj)2, we wish to find the dimension of the minimal em-
bedding Euclidean space. First note that we can assume that theyi have zero
mean (

∑
i yi = 0), since otherwise we can subtract the mean from eachyi

without changingA. ThenĀij = xi · xj , again introducingxi ≡
√

2yi, so
the embedding vectorsyi are a set of Gram vectors of̄A, scaled by a factor of
1√
2
. Now let r be the rank ofĀ. SinceĀ = XX ′, and sincerank(XX ′) =

rank(X) for any real matrixX (Horn and Johnson, 1985), and sincerank(X)
is the number of linearly independentxi, the minimal embedding space for the
xi (and hence for theyi) has dimensionr. ¤



20

2.2.1 General Centering. Is P e the most general matrix that will
convert a distance matrix into a matrix of dot products? Since the embedding
vectors are not unique (given a set of Gram vectors, any global orthogonal
matrix applied to that set gives another set that generates the same positive
semidefinite matrix), it’s perhaps not surprising that the answer is no. A dis-
tance matrix is an example of a conditionally negative definite (CND) matrix.
A CND matrix D ∈ Sm is a symmetric matrix that satisfies

∑
i,j aiajDij ≤

0 ∀{ai ∈ R :
∑

i ai = 0}; the class of CND matrices is a superset of the
class of negative semidefinite matrices (Berg et al., 1984). Defining the pro-
jection matrixP c ≡ (1 − ec′), for any c ∈ Rm such thate′c = 1, then
for any CND matrixD, the matrix−P cDP ′c is positive semidefinite (and
hence a dot product matrix) (Schölkopf, 2001; Berg et al., 1984) (note that
P c is not necessarily symmetric). This is straightforward to prove: for any
z ∈ Rm, P ′cz = (1 − ce′)z = z − c(

∑
a za), so

∑
i(P

′cz)i = 0, hence
(P ′cz)′D(P ′cz) ≤ 0 from the definition of CND. Hence we can map a dis-
tance matrixD to a dot product matrixK by usingP c in the above manner for
any set of numbersci that sum to unity.

2.2.2 Constructing the Embedding. To actually find the embedding
vectors for a given distance matrix, we need to know how to find a set of
Gram vectors for a positive semidefinite matrix̄A. Let E be the matrix of
column eigenvectorse(α) (labeled byα), ordered by eigenvalueλα, so that
the first column is the principal eigenvector, andĀE = EΛ, whereΛ is the
diagonal matrix of eigenvalues. Then̄Aij =

∑
α λαe

(α)
i e

(α)
j . The rows ofE

form the dual (orthonormal) basis toe(α)
i , which we denotẽe(i)

α . Then we can

write Āij =
∑

α(
√

λαẽ
(i)
α )(

√
λαẽ

(i)
α ). Hence the Gram vectors are just the

dual eigenvectors with each component scaled by
√

λα. Defining the matrix
Ẽ ≡ EΛ1/2, we see that the Gram vectors are just the rows ofẼ.

If Ā ∈ Sn has rankr ≤ n, then the finaln−r columns ofẼ will be zero, and
we have directly found ther-dimensional embedding vectors that we are look-
ing for. If Ā ∈ Sn is full rank, but the lastn− p eigenvalues are much smaller
than the firstp, then it’s reasonable to approximate thei’th Gram vector by its
first p components

√
λαẽ(i)

α , α = 1, · · · , p, and we have found a low dimen-
sional approximation to they’s. This device - projecting to lower dimensions
by lopping off the last few components of the dual vectors corresponding to
the (possibly scaled) eigenvectors - is shared by MDS, Laplacian eigenmaps,
and spectral clustering (see below). Just as for PCA, where the quality of the
approximation can be characterized by the unexplained variance, we can char-
acterize the quality of the approximation here by the squared residuals. LetĀ
have rankr, and suppose we only keep the firstp ≤ r components to form the
approximate embedding vectors. Then denoting the approximation with a hat,
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the summed squared residuals are

m∑

i=1

‖ŷi − yi‖2 =
1
2

m∑

i=1

‖x̂i − xi‖2

=
1
2

m∑

i=1

p∑

a=1

λaẽ
(i)2
a +

1
2

m∑

i=1

r∑

a=1

λaẽ
(i)2
a −

m∑

i=1

p∑

a=1

λaẽ
(i)2
a

but
∑m

i=1 ẽ
(i)2
a =

∑m
i=1 e

(a)2
i = 1, so

m∑

i=1

‖ŷi − yi‖2 =
1
2

(
r∑

a=1

λa −
p∑

a=1

λa

)
=

r∑

a=p+1

λa (1.29)

Thus the fraction of ’unexplained residuals’ is
∑r

a=p+1 λa/
∑r

a=1 λa, in anal-
ogy to the fraction of ’unexplained variance’ in PCA.

If the original symmetric matrixA is such thatĀ is not positive semidefinite,
then by the above theorem there exist no embedding points such that the dis-
similarities are distances between points in some Euclidean space. In that case,
we can proceed by adding a sufficiently large positive constant to the diagonal
of Ā, or by using the closest positive semidefinite matrix, in Frobenius norm12,
to Ā, which is Â ≡ ∑

α:λα>0 λαe(α)e(α)′ . Methods such as classical MDS,
that treat the dissimilarities themselves as (approximate) squared distances, are
called metric scaling methods. A more general approach - ’non-metric scaling’
- is to minimize a suitable cost function of the difference between the embed-
ded squared distances, and some monotonic function of the dissimilarities (Cox
and Cox, 2001); this allows for dissimilarities which do not arise from a met-
ric space; the monotonic function, and other weights which are solved for, are
used to allow the dissimilarities to nevertheless be represented approximately
by low dimensional squared distances. An example of non-metric scaling is
ordinal MDS, whose goal is to find points in the low dimensional space so that
the distances there correctly reflect a given rank ordering of the original data
points.

2.2.3 Landmark MDS. MDS is computationally expensive: since the
distances matrix is not sparse, the computational complexity of the eigende-
composition isO(m3). This can be significantly reduced by using a method
called Landmark MDS (LMDS) (Silva and Tenenbaum, 2002). In LMDS the
idea is to chooseq points, called ’landmarks’, whereq > r (wherer is the rank
of the distance matrix), butq ¿ m, and to perform MDS on landmarks, map-
ping them toRd. The remaining points are then mapped toRd using only their
distances to the landmark points (so in LMDS, the only distances considered
are those to the set of landmark points). As first pointed out in (Bengio et al.,
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2004) and explained in more detail in (Platt, 2005), LMDS combines MDS
with the Nystr̈om algorithm. LetE ∈ Sq be the matrix of landmark distances
andU (Λ) the matrix of eigenvectors (eigenvalues) of the corresponding kernel
matrixA ≡ −1

2P cEP ′c, so that the embedding vectors of the landmark points
are the firstd elements of the rows ofUΛ1/2. Now, extendingE by an ex-
tra column and row to accommodate the squared distances from the landmark
points to a test point, we write the extended distance matrix and corresponding
kernel as

D =
[

E f
f ′ g

]
, K ≡ −1

2
P cDP ′c =

[
A b
b′ c

]
(1.30)

Then from Eq. (1.23) we see that the Nyström method gives the approximate
column eigenvectors for the extended system as

[
U

b′UΛ−1

]
(1.31)

Thus the embedding coordinates of the test point are given by the firstd el-
ements of the row vectorb′UΛ−1/2. However, we only want to computeU
andΛ once - they must not depend on the test point. (Platt, 2005) has pointed
out that this can be accomplished by choosing the centering coefficientsci in
P c ≡ 1− ec′ such thatci = 1/q for i ≤ q andcq+1 = 0: in that case, since

Kij = −1

2


Dij − ei(

q+1∑

k=1

ckDkj)− ej(

q+1∑

k=1

Dikck) + eiej(

q+1∑

k,m=1

ckDkmcm)




the matrixA (found by limiting i, j to 1, . . . , q above) depends only on the
matrix E above. Finally, we need to relateb back to the measured quantities
- the vector of squared distances from the test point to the landmark points.
Usingbi = (−1

2P cDP ′c)q+1,i, i = 1, · · · , q, we find that

bk = −1
2


Dq+1,k − 1

q

q∑

j=1

Dq+1,jek − 1
q

q∑

i=1

Dik +
1
q2




q∑

i,j=1

Dij


 ek




The first term in the square brackets is the vector of squared distances from the
test point to the landmarks,f . The third term is the row mean of the landmark
distance squared matrix,̄E. The second and fourth terms are proportional
to the vector of all onese, and can be dropped13 sinceU ′e = 0. Hence,
modulo terms which vanish when constructing the embedding coordinates, we
haveb ' −1

2(f − Ē), and the coordinates of the embedded test point are
1
2Λ−1/2U ′(Ē − f); this reproduces the form given in (Silva and Tenenbaum,
2002). Landmark MDS has two significant advantages: first, it reduces the
computational complexity fromO(m3) to O(q3 + q2(m − q) = q2m); and
second, it can be applied to any non-landmark point, and so gives a method of
extending MDS (using Nyström) to out-of-sample data.
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2.3 Isomap

MDS is valuable for extracting low dimensional representations for some
kinds of data, but it does not attempt to explicitly model the underlying mani-
fold. Two methods that do directly model the manifold are Isomap and Locally
Linear Embedding. Suppose that as in Section 1.1.1, again unbeknownst to
you, your data lies on a curve, but in contrast to Section 1.1.1, the curve is not
a straight line; in fact it is sufficiently complex that the minimal embedding
spaceRd that can contain it has high dimensiond. PCA will fail to discover
the one dimensional structure of your data; MDS will also, since it attempts to
faithfully preserve all distances. Isomap (isometric feature map) (Tenenbaum,
1998), on the other hand, will succeed. The key assumption made by Isomap is
that the quantity of interest, when comparing two points, is the distance along
the curve between the two points; if that distance is large, it is to be taken,
even if in fact the two points are close inRd (this example also shows that
noise must be handled carefully). The low dimensional space can have more
than one dimension: (Tenenbaum, 1998) gives an example of a 5 dimensional
manifold embedded in a 50 dimensional space. The basic idea is to construct
a graph whose nodes are the data points, where a pair of nodes are adjacent
only if the two points are close inRd, and then to approximate the geodesic
distance along the manifold between any two points as the shortest path in the
graph, computed using the Floyd algorithm (Gondran and Minoux, 1984); and
finally to use MDS to extract the low dimensional representation (as vectors
in Rd′ , d′ ¿ d) from the resulting matrix of squared distances (Tenenbaum
(Tenenbaum, 1998) suggests using ordinal MDS, rather than metric MDS, for
robustness).

Isomap shares with the other manifold mapping techniques we describe the
property that it does not provide a direct functional form for the mapping
I : Rd → Rd′ that can simply be applied to new data, so computational
complexity of the algorithm is an issue in test phase. The eigenvector compu-
tation isO(m3), and the Floyd algorithm alsoO(m3), although the latter can
be reduced toO(hm2 log m) whereh is a heap size (Silva and Tenenbaum,
2002). Landmark Isomap simply employs landmark MDS (Silva and Tenen-
baum, 2002) to addresses this problem, computing all distances as geodesic
distances to the landmarks. This reduces the computational complexity to
O(q2m) for the LMDS step, and toO(hqm log m) for the shortest path step.

2.4 Locally Linear Embedding

Locally linear embedding (LLE) (Roweis and Saul, 2000) models the man-
ifold by treating it as a union of linear patches, in analogy to using coordinate
charts to parameterize a manifold in differential geometry. Suppose that each
pointxi ∈ Rd has a small number of close neighbours indexed by the setN (i),
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and letyi ∈ Rd′ be the low dimensional representation ofxi. The idea is to
express eachxi as a linear combination of its neighbours, and then construct
the yi so that they can be expressed as the same linear combination of their
corresponding neighbours (the latter also indexed byN (i)). To simplify the
discussion let’s assume that the number of the neighbours is fixed ton for all
i. The condition on thex’s can be expressed as finding thatW ∈ Mmn that
minimizes the sum of the reconstruction errors,

∑
i ‖xi −

∑
j∈N (i) Wijxj‖2.

Each reconstruction errorEi ≡ ‖xi −
∑

j∈N (i) Wijxj‖2 should be unaffected

by any global translationxi → xi + δ, δ ∈ Rd, which gives the condition∑
j∈N (i) Wij = 1 ∀i. Note that eachEi is also invariant to global rotations

and reflections of the coordinates. Thus the objective function we wish to min-
imize is

F ≡
∑

i

Fi ≡
∑

i


1

2
‖xi −

∑

j∈N (i)

Wijxj‖2 − λi


 ∑

j∈N (i)

Wij − 1







where the constraints are enforced with Lagrange multipliersλi (Burges, 2004).
Since the sum splits into independent terms we can minimize eachFi sepa-
rately. Thus fixingi and lettingx ≡ xi, v ∈ Rn, vj ≡ Wij , andλ ≡ λi, and
introducing the matrixC ∈ Sn, Cjk ≡ xj · xk, j, k ∈ N (i), and the vector
b ∈ Rn, bj ≡ x ·xj , j ∈ N (i), then requiring that the derivative ofFi with re-
spect tovj vanishes givesv = C−1(λe+b). Imposing the constrainte′v = 1
then givesλ = (1 − e′C−1b)/(e′C−1e). ThusW can be found by applying
this for eachi.

Given theW ’s, the second step is to find a set ofyi ∈ Rd′ that can be ex-
pressed in terms of each other in the same manner. Again no exact solution
may exist and so

∑
i ‖yi−

∑
j∈N (i) Wijyj‖2 is minimized with respect to the

y’s, keeping theW ’s fixed. LetY ∈ Mmd′ be the matrix of row vectors of the
pointsy. (Roweis and Saul, 2000) enforce the condition that they’s span a
space of dimensiond′ by requiring that(1/m)Y ′Y = 1, although any condi-
tion of the formY ′PY = Z whereP ∈ Sm andZ ∈ Sd′ is of full rank would
suffice (see Section 2.5.1). The origin is arbitrary; the corresponding degree
of freedom can be removed by requiring that they’s have zero mean, although
in fact this need not be explicitly imposed as a constraint on the optimization,
since the set of solutions can easily be chosen to have this property. The rank
constraint requires that they’s have unit covariance; this links the variables
so that the optimization no longer decomposes intom separate optimizations:
introducing Lagrange multipliersλαβ to enforce the constraints, the objective
function to be minimized is

F =
1
2

∑

i

‖yi −
∑

j

Wijyj‖2 − 1
2

∑

αβ

λαβ

(∑

i

1
m

YiαYiβ − δαβ

)
(1.32)
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where for convenience we treat theW ’s as matrices inMm, whereWij ≡ 0
for j /∈ N (i). Taking the derivative with respect toYkδ and choosingλαβ =
λαδαβ ≡ Λαβ gives8 the matrix equation

(1−W )′(1−W )Y =
1
m

Y Λ (1.33)

Since(1 − W )′(1 − W ) ∈ Sm, its eigenvectors are, or can be chosen to
be, orthogonal; and since(1 − W )′(1 − W )e = 0, choosing the columns
of Y to be the nextd′ eigenvectors of(1 − W )′(1 − W ) with the smallest
eigenvalues guarantees that they are zero mean (since they are orthogonal to
e). We can also scale they so that the columns ofY are orthonormal, thus
satisfying the covariance constraintY ′Y = 1. Finally, the lowest-but-one
weight eigenvectors are chosen because their corresponding eigenvalues sum
to m

∑
i ‖yi−

∑
j Wijyj‖2, as can be seen by applyingY ′ to the left of (1.33).

Thus, LLE requires a two-step procedure. The first step (finding theW ’s)
hasO(n3m) computational complexity; the second requires eigendecompos-
ing the product of two sparse matrices inMm. LLE has the desirable property
that it will result in the same weightsW if the data is scaled, rotated, translated
and / or reflected.

2.5 Graphical Methods

In this section we review two interesting methods that connect with spectral
graph theory. Let’s start by defining a simple mapping from a dataset to an
undirected graphG by forming a one-to-one correspondence between nodes
in the graph and data points. If two nodesi, j are connected by an arc, asso-
ciate with it a positive arc weightWij , W ∈ Sm, whereWij is a similarity
measure between pointsxi andxj . The arcs can be defined, for example, by
the minimum spanning tree, or by forming theN nearest neighbours, forN
sufficiently large. The Laplacian matrix for any weighted, undirected graph
is defined (Chung, 1997) byL ≡ D−1/2LD−1/2, whereLij ≡ Dij − Wij

and whereDij ≡ δij(
∑

k Wik). We can see thatL is positive semidefinite as
follows: for any vectorz ∈ Rm, sinceWij ≥ 0,

0 ≤ 1
2

∑

i,j

(zi − zj)2Wij =
∑

i

z2
i Dii −

∑

i,j

ziWijzj = z′Lz

and sinceL is positive semidefinite, so is the Laplacian. Note thatL is never
positive definite since the vector of all ones,e, is always an eigenvector with
eigenvalue zero (and similarlyLD1/2e = 0).

Let G be a graph andm its number of nodes. ForWij ∈ {0, 1}, the spec-
trum of G (defined as the set of eigenvalues of its Laplacian) characterizes
its global properties (Chung, 1997): for example, a complete graph (that is,
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one for which every node is adjacent to every other node) has a single zero
eigenvalue, and all other eigenvalues are equal tom

m−1 ; if G is connected but
not complete, its smallest nonzero eigenvalue is bounded above by unity; the
number of zero eigenvalues is equal to the number of connected components
in the graph, and in fact the spectrum of a graph is the union of the spectra of
its connected components; and the sum of the eigenvalues is bounded above
by m, with equality iff G has no isolated nodes. In light of these results, it
seems reasonable to expect that global properties of the data - how it clusters,
or what dimension manifold it lies on - might be captured by properties of the
Laplacian. The following two approaches leverage this idea. We note that us-
ing similarities in this manner results in local algorithms: since each node is
only adjacent to a small set of similar nodes, the resulting matrices are sparse
and can therefore be eigendecomposed efficiently.

2.5.1 Laplacian Eigenmaps. The Laplacian eigenmaps algorithm
(Belkin and Niyogi, 2003) usesWij = exp−‖xi−xj‖2/2σ2

. Let y(x) ∈ Rd′ be
the embedding of sample vectorx ∈ Rd, and letYij ∈ Mmd′ ≡ (yi)j . We
would like to findy’s that minimize

∑
i,j ‖yi − yj‖2 Wij , since then if two

points are similar, theiry’s will be close, whereas ifW ≈ 0, no restriction is
put on theiry’s. We have:
∑

i,j

‖yi − yj‖2 Wij = 2
∑

i,j,a

(yi)a(yj)a(Diiδij−Wij) = 2Tr(Y ′LY ) (1.34)

In order to ensure that the target space has dimensiond′ (minimizing (1.34)
alone has solutionY = 0), we require thatY have rankd. Any constraint of the
form Y ′PY = Z, whereP ∈ Sm andm ≥ d′, will suffice, provided thatZ ∈
Sd′ is of full rank. This can be seen as follows: since the rank ofZ is d′ and
since the rank of a product of matrices is bounded above by the rank of each,
we have thatd′ = rank(Z) = rank(Y ′PY ) ≤ min(rank((Y ′), rank(P ),
rank(Y )), and sorank(Y ) ≥ d′; but sinceY ∈ Mmd′ andd′ ≤ m, the rank
of Y is at mostd′; hencerank(Y ) = d′. However, minimizing Tr(Y ′LY ) sub-
ject to the constraintY ′DY = 1 results in the simple generalized eigenvalue
problemLy = λDy (Belkin and Niyogi, 2003). It’s useful to see how this
arises: we wish to minimize Tr(Y ′LY ) subject to thed′(d′ + 1)/2 constraints
Y ′DY = 1. Let a, b = 1, . . . , d andi, j = 1, . . . ,m. Introducing (symmet-
ric) Lagrange multipliersλab leads to the objective function

∑
i,j,a yiaLijyja−∑

i,j,a,b λab(yiaDijyjb−δab), with extrema at
∑

j Lkjyjβ =
∑

α,i λαβDkiyiα.
We choose8 λαβ ≡ λβδαβ, giving

∑
j Lkjyjα =∑

i λαDkiyiα. This is a generalized eigenvector problem with eigenvectors
the columns ofY . Hence once again the low dimensional vectors are con-
structed from the first few components of the dual eigenvectors, except that
in this case, the eigenvectors with lowest eigenvalues are chosen (omitting the
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eigenvectore), and in contrast to MDS, they are not weighted by the square
roots of the eigenvalues. Thus Laplacian eigenmaps must use some other crite-
rion for deciding on whatd′ should be. Finally, note that they’s are conjugate
with respect toD (as well asL), so we can scale them so that the constraints
Y ′DY = 1 are indeed met, and our drastic simplification of the Lagrange
multipliers did no damage; and left multiplying the eigenvalue equation byy′α
shows thatλα = y′αLyα, so choosing the smallest eigenvalues indeed gives
the lowest values of the objective function, subject to the constraints.

2.5.2 Spectral Clustering. Although spectral clustering is a cluster-
ing method, it is very closely related to dimensional reduction. In fact, since
clusters may be viewed as large scale structural features of the data, any di-
mensional reduction technique that maintains these structural features will be
a good preprocessing step prior to clustering, to the point where very simple
clustering algorithms (such as K-means) on the preprocessed data can work
well (Shi and Malik, 2000; Meila and Shi, 2000; Ng et al., 2002). If a graph is
partitioned into two disjoint sets by removing a set of arcs, thecut is defined
as the sum of the weights of the removed arcs. Given the mapping of data to
graph defined above, a cut defines a split of the data into two clusters, and the
minimum cut encapsulates the notion of maximum dissimilarity between two
clusters. However finding a minimum cut tends to just lop off outliers, so (Shi
and Malik, 2000) define a normalized cut, which is now a function of all the
weights in the graph, but which penalizes cuts which result in a subgraphg
such that the cut divided by the sum of weights fromg to G is large; this solves
the outlier problem. Now suppose we wish to divide the data into two clusters.
Define a scalar on each node,zi, i = 1, . . . , m, such thatzi = 1 for nodes in
one cluster andzi = −1 for nodes in the other. The solution to the normalized
mincut problem is given by (Shi and Malik, 2000)

min
y

y′Ly
y′Dy

such thatyi ∈ {1,−b} andy′De = 0 (1.35)

wherey ≡ (e+z)+b(e−z), andb is a constant that depends on the partition.
This problem is solved by relaxingy to take real values: the problem then
becomes finding the second smallest eigenvector of the generalized eigenvalue
problemLy = λDy (the constrainty′De = 0 is automatically satisfied by the
solutions), which is exactly the same problem found by Laplacian eigenmaps
(in fact the objective function used by Laplacian eigenmaps was proposed as
Eq. (10) in (Shi and Malik, 2000)). The algorithms differ in what they do next.
The clustering is achieved by thresholding the elementyi so that the nodes are
split into two disjoint sets. The dimensional reduction is achieved by treating
the elementyi as the first component of a reduced dimension representation of
the samplexi. There is also an interesting equivalent physical interpretation,
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where the arcs are springs, the nodes are masses, and they are the fundamen-
tal modes of the resulting vibrating system (Shi and Malik, 2000). Meila and
Shi (Meila and Shi, 2000) point out that that matrixP ≡ D−1L is stochastic,
which motivates the interpretation of spectral clustering as the stationary dis-
tribution of a Markov random field: the intuition is that a random walk, once
in one of the mincut clusters, tends to stay in it. The stochastic interpretation
also provides tools to analyse the thresholding used in spectral clustering, and
a method for learning the weightsWij based on training data with known clus-
ters (Meila and Shi, 2000). The dimensional reduction view also motivates a
different approach to clustering, where instead of simply clustering by thresh-
olding a single eigenvector, simple clustering algorithms are applied to the low
dimensional representation of the data (Ng et al., 2002).

3. Pulling the Threads Together

At this point the reader is probably struck by how similar the mathematics
underlying all these approaches is. We’ve used essentially the same Lagrange
multiplier trick to enforce constraints three times; all of the methods in this re-
view rely on an eigendecomposition. Isomap, LLE, Laplacian eigenmaps, and
spectral clustering all share the property that in their original forms, they do not
provide a direct functional form for the dimension-reducing mapping, so the
extension to new data requires re-training. Landmark Isomap solves this prob-
lem; the other algorithms could also use Nyström to solve it (as pointed out by
(Bengio et al., 2004)). Isomap is often called a ’global’ dimensionality reduc-
tion algorithm, because it attempts to preserve all geodesic distances; by con-
trast, LLE, spectral clustering and Laplacian eigenmaps are local (for example,
LLE attempts to preserve local translations, rotations and scalings of the data).
Landmark Isomap is still global in this sense, but the landmark device brings
the computational cost more in line with the other algorithms. Although they
start from quite different geometrical considerations, LLE, Laplacian eigen-
maps, spectral clustering and MDS all look quite similar under the hood: the
first three use the dual eigenvectors of a symmetric matrix as their low dimen-
sional representation, and MDS uses the dual eigenvectors with components
scaled by square roots of eigenvalues. In light of this it’s perhaps not surpris-
ing that relations linking these algorithms can be found: for example, given
certain assumptions on the smoothness of the eigenfunctions and on the distri-
bution of the data, the eigendecomposition performed by LLE can be shown
to coincide with the eigendecomposition of the squared Laplacian (Belkin and
Niyogi, 2003); and (Ham et al., 2004) show how Laplacian eigenmaps, LLE
and Isomap can be viewed as variants of kernel PCA. (Platt, 2005) links sev-
eral flavors of MDS by showing how landmark MDS and two other MDS al-
gorithms (not described here) are in fact all Nyström algorithms. Despite the
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mathematical similarities of LLE, Isomap and Laplacian Eigenmaps, their dif-
ferent geometrical roots result in different properties: for example, for data
which lies on a manifold of dimensiond embedded in a higher dimensional
space, the eigenvalue spectrum of the LLE and Laplacian Eigenmaps algo-
rithms do not reveal anything aboutd, whereas the spectrum for Isomap (and
MDS) does.

The connection between MDS and PCA goes further than the form taken
by the ’unexplained residuals’ in Eq. (1.29). IfX ∈ Mmd is the matrix of
m (zero-mean) sample vectors, then PCA diagonalizes the covariance matrix
X ′X, whereas MDS diagonalizes the kernel matrixXX ′; but XX ′ has the
same eigenvalues asX ′X (Horn and Johnson, 1985), andm − d additional
zero eigenvalues (ifm > d). In fact if v is an eigenvector of the kernel ma-
trix so thatXX ′v = λv, then clearlyX ′X(X ′v) = λ(X ′v), soX ′v is an
eigenvector of the covariance matrix, and similarly ifu is an eigenvector of
the covariance matrix, thenXu is an eigenvector of the kernel matrix. This
provides one way to view how kernel PCA computes the eigenvectors of the
(possibly infinite dimensional) covariance matrix in feature space in terms of
the eigenvectors of the kernel matrix. There’s a useful lesson here: given a
covariance matrix (Gram matrix) for which you wish to compute those eigen-
vectors with nonvanishing eigenvalues, and if the corresponding Gram matrix
(covariance matrix) is both available, and more easily eigendecomposed (has
fewer elements), then compute the eigenvectors for the latter, and map to the
eigenvectors of the former using the data matrix as above. Along these lines,
Williams (Williams, 2001) has pointed out that kernel PCA can itself be viewed
as performing MDS in feature space. Before kernel PCA is performed, the ker-
nel is centered (i.e.P eKP e is computed), and for kernels that depend on the
data only through functions of squared distances between points (such as ra-
dial basis function kernels), this centering is equivalent to centering a distance
matrix in feature space. (Williams, 2001) further points out that for these ker-
nels, classical MDS in feature space is equivalent to a form of metric MDS
in input space. Although ostensibly kernel PCA gives a function that can be
applied to test points, while MDS does not, kernel PCA does so by using the
Nyström approximation (see Section 2.1.3), and exactly the same can be done
with MDS.

The subject of feature extraction and dimensional reduction is vast. In this
review I’ve limited the discussion to mostly geometric methods, and even with
that restriction it’s far from complete, so I’d like to alert the reader to three
other interesting leads. The first is the method of principal curves, where the
idea is to find that smooth curve that passes through the data in such a way
that the sum of shortest distances from each point to the curve is minimized,
thus providing a nonlinear, one-dimensional summary of the data (Hastie and
Stuetzle, 1989); the idea has since been extended by applying various regular-
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ization schemes (including kernel-based), and to manifolds of higher dimen-
sion (Scḧolkopf and Smola, 2002). Second, competitions have been held at
recent NIPS workshops on feature extraction, and the reader can find a wealth
of information there (Guyon, 2003). Finally, recent work on object detection
has shown that boosting, where each weak learner uses a single feature, can
be a very effective method for finding a small set of good (and mutually com-
plementary) features from a large pool of possible features (Viola and Jones,
2001).

Acknowledgments

I thank John Platt for valuable discussions. Thanks also to Lawrence Saul,
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Notes
1. For convenience we reproduce Stone’s definitions (Stone, 1982). Letθ be the unknown regression

function,T̂n an estimator ofθ usingn samples, and{bn} a sequence of positive constants. Then{bn} is
called a lower rate of convergence if there existsc > 0 such thatlimn infT̂n

supθ P (‖T̂n− θ‖ ≥ cbn) =

1, and it is called an achievable rate of convergence if there is a sequence of estimators{T̂n} andc > 0

such thatlimn supθ P (‖T̂n − θ‖ ≥ cbn) = 0; {bn} is called an optimal rate of convergence if it is both
a lower rate of convergence and an achievable rate of convergence.

2. See J.H. Friedman’s interesting response to (Huber, 1985) in the same issue.

3. More formally, the conditions are: forσ2 positive and finite, and for any positiveε, (1/m)card{j ≤
m : |‖xj‖2 − σ2d| > εd} → 0 and(1/m2)card{1 ≤ j, k ≤ m : |xj · xk| > εd} → 0 (Diaconis and
Freedman, 1984).

4. The Cauchy distribution in one dimension has densityc/(c2 + x2) for constantc.
5. The story for evenn is similar but the formulae are slightly different
6. Note that if allxi lie along a given line then so doesµ.
7. The principal eigenvectors are not necessarily the directions that give minimal reconstruction error

if the data is not centered: imagine data whose mean is both orthogonal to the principal eigenvector and far
from the origin. The single direction that gives minimal reconstruction error will be close to the mean.

8. Recall that Lagrange multipliers can be chosen in any way that results in a solution satisfying the
constraints.

9. In fact the method is more general:F can be any complete, normed vector space with inner product
(i.e. any Hilbert space), in which case the dot product in the above argument is replaced by the inner product.

10. Although in that simple example, the astute investigator would notice that all her data vectors have
the same length, and conclude from the fact that the projected density is independent of projection direction
that the data must be uniformly distributed on the sphere.

11. It’s interesting that this can be used to perform ’kernel completion’, that is, reconstruction of a kernel
with missing values; for example, supposeK has rank 2 and that its first two rows (and hence columns) are
linearly independent, and suppose thatK has met with an unfortunate accident that has resulted in all of
its elements, except those in the first two rows or columns, being set equal to zero. Then the originalK is
easily regrown usingC = B′A−1B.

12. The only proof I have seen for this assertion is due to Frank McSherry, Microsoft Research.
13. The last term can also be viewed as an unimportant shift in origin; in the case of a single test point,

so can the second term, but we cannot rely on this argument for multiple test points, since the summand in
the second term depends on the test point.
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