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We give a tutorial overview of several geometric methods for feature extraction
and dimensional reduction. We divide the methods into projective methods and
methods that model the manifold on which the data lies. For projective meth-
ods, we review projection pursuit, principal component analysis (PCA), kernel
PCA, probabilistic PCA, and oriented PCA; and for the manifold methods, we
review multidimensional scaling (MDS), landmark MDS, Isomap, locally linear
embedding, Laplacian eigenmaps and spectral clustering. ThedRystethod,
which links several of the algorithms, is also reviewed. The goal is to provide
a self-contained review of the concepts and mathematics underlying these algo-
rithms.
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Introduction

Feature extraction can be viewed as a preprocessing step which removes
distracting variance from a dataset, so that downstream classifiers or regression
estimators perform better. The area where feature extraction ends and classi-
fication, or regression, begins is necessarily murky: an ideal feature extractor
would simply map the data to its class labels, for the classification task. On the
other hand, a character recognition neural net can take minimally preprocessed
pixel values as input, in which case feature extraction is an inseparable part of
the classification process (LeCun and Bengio, 1995). Dimensional reduction -
the (usually non-invertible) mapping of data to a lower dimensional space - is



2

closely related (often dimensional reduction is used as a step in feature extrac-
tion), but the goals can differ. Dimensional reduction has a long history as a
method for data visualization, and for extracting key low dimensional features
(for example, the 2-dimensional orientation of an object, from its high dimen-
sional image representation). The need for dimensionality reduction also arises
for other pressing reasons. (Stone, 1982) showed that, under certain regularity
assumptions, the optimal rate of convergeénfoe nonparametric regression
varies asm?/(2p+d)  wherem is the sample size, the data lies7&f, and
where the regression function is assumed t@ ltienes differentiable. Con-
sider 10,000 sample points, for= 2 andd = 10. If d is increased to 20,

the number of sample points must be increased to approximately 10 million in
order to achieve the same optimal rate of convergence. If our data lie (approx-
imately) on a low dimensional manifold that happens to be embedded in a
high dimensional manifol@{, modeling the projected data thrather than in

‘H may turn an infeasible problem into a feasible one.

The purpose of this review is to describe the mathematics and ideas un-
derlying the algorithms. Implementation details, although important, are not
discussed. Some notes on notation: vectors are denoted by boldface, whereas
components are denoted by, or by (x;), for thea’th component of the'th
vector. Following (Horn and Johnson, 1985), the set bl ¢ matrices is de-
notedM,,, the set of (squarg) by p matrices by\/,, and the set of symmetric
p by p matrices bysS,, (all matrices considered are read.with no subscript
is used to denote the vector of all ones; on the other kgradknotes the'th
eigenvector. We denote sample sizerbyand dimension usually by or d’,
with typically ' < d. ¢;; is the Kronecker delta (thig’th component of the
unit matrix). We generally reserve indicésj, to index vectors and, b to
index dimension.

We place feature extraction and dimensional reduction techniques into two
broad categories: methods that rely on projections (Section 1) and methods
that attempt to model the manifold on which the data lies (Section 2). Sec-
tion 1 gives a detailed description of principal component analysis; apart from
its intrinsic usefulness, PCA is interesting because it serves as a starting point
for many modern algorithms, some of which (kernel PCA, probabilistic PCA,
and oriented PCA) are also described. However it has clear limitations: it is
easy to find even low dimensional examples where the PCA directions are far
from optimal for feature extraction (Duda and Hart, 1973), and PCA ignores
correlations in the data that are higher than second order. Section 2 starts with
an overview of the Nystrm method, which can be used to extend, and link,
several of the algorithms described in this chapter. We then examine some
methods for dimensionality reduction which assume that the data lie on a low
dimensional manifold embedded in a high dimensional sgaceamely lo-
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cally linear embedding, multidimensional scaling, Isomap, Laplacian eigen-
maps, and spectral clustering.

1. Projective Methods

If dimensional reduction is so desirable, how should we go about it? Per-
haps the simplest approach is to attempt to find low dimensijomgéctions
that extract useful information from the data, by maximizing a suitable ob-
jective function. This is the idea of projection pursuit (Friedman and Tukey,
1974). The name ’pursuit’ arises from the iterative version, where the currently
optimal projection is found in light of previously found projections (in fact
originally this was done manually. Apart from handling high dimensional
data, projection pursuit methods can be robust to noisy or irrelevant features
(Huber, 1985), and have been applied to regression (Friedman and Stuetzle,
1981), where the regression is expressed as a sum of ridge functions’ (func-
tions of the one dimensional projections) and at each iteration the projection
is chosen to minimize the residuals; to classification; and to density estima-
tion (Friedman et al., 1984). How are the interesting directions found? One
approach is to search for projections such that the projected data departs from
normality (Huber, 1985). One might think that, since a distribution is normal if
and only if all of its one dimensional projections are normal, if the least normal
projection of some dataset is still approximately normal, then the dataset is also
necessarily approximately normal, but this is not true; Diaconis and Freedman
have shown that most projections of high dimensional data are approximately
normal (Diaconis and Freedman, 1984) (see also below). Given this, finding
projections along which the density departs from normality, if such projections
exist, should be a good exploratory first step.

The sword of Diaconis and Freedman cuts both ways, however. If most pro-
jections of most high dimensional datasets are approximately normal, perhaps
projections are not always the best way to find low dimensional representa-
tions. Let’s review their results in a little more detail. The main result can be
stated informally as follows: consider a model where the data, the dimension
d, and the sample size depend on some underlying parametesuch that
asv tends to infinity, so don andd. Suppose that as tends to infinity, the
fraction of vectors which are not approximately the same length tends to zero,
and suppose further that under the same conditions, the fraction of pairs of vec-
tors which are not approximately orthogonal to each other also tends tb zero
Then ((Diaconis and Freedman, 1984), theorem 1.1) the empirical distribution
of the projections along any given unit direction tends\t@, o) weakly in
probability. However, if the conditions are not fulfilled, as for some long-tailed
distributions, then the opposite result can hold - that is, most projections are
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notnormal (for example, most projections of Cauchy distributed‘datt be
Cauchy (Diaconis and Freedman, 1984)).

As a concrete exampleconsider data uniformly distributed over the unit
n + 1-sphereS™*! for oddn. Let's compute the density projected along any
line Z passing through the origin. By symmetry, the result will be independent
of the direction we choose. If the distance along the projection is parameterized
by ¢ = cosf, whered is the angle betweeh and the line from the origin to
a point on the sphere, then the density & proportional to the volume of an
n-sphere of radiusin 0: p(§) = C(1—§2)"T71. Requiring tha@[_ll p(&)de =1
gives the constartt

nl!
(3(n—1))!

Let's plot this density and compare against a one dimensional Gaussian density
fitted using maximum likelihood. For that we just need the variance, which can
be computed analyticallyt? = %4-2 and the mean, which is zero. Figure 1.1
shows the result for the 20-sphere. Although data uniformly distribute2fon

is far from Gaussian, its projection along any direction is close to Gaussian for
all such directions, and we cannot hope to uncover such structure using one

dimensional projections.

C =27 3(n+D) (1.1)
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Figure 1.1. Dotted line: a Gaussian with zero mean and variance 1/21. Solid line: the density
projected from data distributed uniformly over the 20-sphere, to any line passing through the
origin.

The notion of searching for non-normality, which is at the heart of projec-
tion pursuit (the goal of which is dimensional reduction), is also the key idea
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underlying independent component analysis (ICA) (the goal of which is source
separation). ICA (Hyarinen et al., 2001) searches for projections such that the
probability distributions of the data along those projections are statistically in-
dependent: for example, consider the problem of separating the source signals
in a linear combinations of signals, where the sources consist of speech from
two speakers who are recorded using two microphones (and where each mi-
crophone captures sound from both speakers). The signal is the sum of two
statistically independent signals, and so finding those independent signals is
required in order to decompose the signal back into the two original source
signals, and at any given time, the separated signal values are related to the
microphone signals by two (time independent) projections (forming an invert-
ible 2 by 2 matrix). If the data is normally distributed, finding projections
along which the data is uncorrelated is equivalent to finding projections along
which it is independent, so although using principal component analysis (see
below) will suffice to find independent projections, those projections will not
be useful for the above task. For most other distributions, finding projections
along which the data is statistically independent is a much stronger (and for
ICA, useful) condition than finding projections along which the data is uncor-
related. Hence ICA concentrates on situations where the distribution of the
data departs from normality, and in fact, finding the maximally non-Gaussian
component (under the constraint of constant variance) will give you an inde-
pendent component (H@vinen et al., 2001).

1.1 Principal Components Analysis (PCA)

1.1.1 PCA: Finding an Informative Direction. Given datax; € R¢,
i=1,---,m, suppose you'd like to find a direction € R? for which the
projectionx; - v gives a good one dimensional representation of your original
data: that is, informally, the act of projecting loses as little information about
your expensively-gathered data as possible (we will examine the information
theoretic view of this below). Suppose that unbeknownst to you, your data in
fact lies along a lin€ embedded irmk?, that is,x; = u + 0;n, wherep is the
sample medh 6; € R, andn € R? has unit length. The sample variance of
the projection alona is then

o= 3 (G ) n) = )62 (1.2)

S
: ~
Il

S ) wP = 3 @ nnl)? (13)
=1 3
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Since(n-n’)? = cos? ¢, Whereg is the angle betweemandn’, we see that the
projected variance is maximized if and onlyrif= +n’. Hence in this case,
finding the projection for which the projected variance is maximized gives you
the direction you are looking for, namaly regardless of the distribution of the
data alongn, as long as the data has finite variance. You would then quickly
find that the variance along all directions orthogonakis zero, and conclude
that your data in fact lies along a one dimensional manifold embeddgd.in
This is one of several basic results of PCA that hold for arbitrary distributions,
as we shall see.

Even if the underlying physical process generates data that ideally lies along
Z, noise will usually modify the data at various stages up to and including the
measurements themselves, and so your data will very likely not lie exactly
alongZ. If the overall noise is much smaller than the signal, it makes sense to
try to find Z by searching for that projection along which the projected data has
maximum variance. If in addition your data lies in a two (or higher) dimen-
sional subspace, the above argument can be repeated, picking off the highest
variance directions in turn. Let's see how that works.

1.1.2 PCA: Ordering by Variance. We've seen that directions of
maximum variance can be interesting, but how can we find them? The vari-
ance along unit vecton (Eq. (1.2)) isn’Cn whereC is the sample co-
variance matrix. Sinc&' is positive semidefinite, its eigenvalues are posi-
tive or zero; let's choose the indexing such that the (unit normed) eigenvec-
torse,, a = 1,...,d are arranged in order of decreasing size of the corre-
sponding eigenvalues,. Since the{e,} span the space, we can expamnd

in terms of them:n = ¢, a,e,, and we'd like to find thev, that max-
imizen'Cn = n'Y", a,Ce, = >, \aa?2, subject to>", a2 = 1 (to give

unit normedn). This is just a convex combination of thés, and since a con-

vex combination of any set of numbers is maximized by taking the largest, the
optimaln is juste;, the principal eigenvector (or any one of the set of such
eigenvectors, if multiple eigenvectors share the same largest eigenvalue), and
furthermore, the variance of the projection of the data alemgjust \;.

The above construction captures the variance of the data along the direction
n. To characterize the remaining variance of the data, let’s find that direction
m which is both orthogonal ta, and along which the projected data again has
maximum variance. Since the eigenvectorg’bform an orthonormal basis
(or can be so chosen), we can expandn the subspac®&“~! orthogonal to
nasm = ZZ:z Ba.€q. Just as above, we wish to find thg that maximize

m'Cm = 3%, A\, (2, subject to>?_, 32 = 1, and by the same argument,
the desired direction is given by the (or any) remaining eigenvector with largest
eigenvalue, and the corresponding variance is just that eigenvalue. Repeating

this argument gived orthogonal directions, in order of monotonically decreas-
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ing projected variance. Since thelirections are orthogonal, they also provide

a complete basis. Thus if one usesdtlirections, no information is lost, and

as we'll see below, if one uses the < d principal directions, then the mean
squared error introduced by representing the data in this manner is minimized.
Finally, PCA for feature extraction amounts to projecting the data to a lower
dimensional space: given an input vectgrthe mapping consists of comput-

ing the projections ok along thee,, a = 1,...,d’, thereby constructing the
components of the projecteftdimensional feature vectors.

1.1.3 PCA Decorrelates the Samples. Now suppose we've performed
PCA on our samples, and instead of using it to construct low dimensional fea-
tures, we simply use the full set of orthonormal eigenvectors as a choice of
basis. In the old basis, a given input veckois expanded ag = ZZ:1 Talg

for some orthonormal setu, }, and in the new basis, the same vector is ex-
panded ax = Zgzl Tpep, SOT, = X - €, = €q -y, TpWp. The mean

w= % , X; has componentg, = p - e, in the new basis. The sample co-
variance matrix depends on the choice of basig? i the covariance matrix

in the old basis, then the corresponding covariance matrix in the new basis is
Cap = % >i(Tia — fa) (Tip — fin) = % > i{ea (Zp xipup_:u)}{zq LigUq —

w) - eyt = e,Ce, = \pdap. Hence in the new basis the covariance matrix is
diagonal and the samples are uncorrelated. It's worth emphasizing two points:
first, although the covariance matrix can be viewed as a geometric object in
that it transforms as a tensor (since it is a summed outer product of vectors,
which themselves have a meaning independent of coordinate system), never-
theless, the notion of correlation is basis-dependent (data can be correlated in
one basis and uncorrelated in another). Second, PCA decorrelates the samples
whatever their underlying distribution; it does not have to be Gaussian.

1.14 PCA: Reconstruction with Minimum Squared Error. The

basis provided by the eigenvectors of the covariance matrix is also optimal for
dimensional reduction in the following sense. Again consider some arbitrary
orthonormal basi$u,, a = 1,...,d}, and take the firs’ of these to perform

the dimensional reductiox = Zi/:l(x -ug)u,. The chosem, form a basis

for R, so we may take the components of the dimensionally reduced vectors
tobex-u,,a =1,...,d (although here we leaiewith dimensiond). Define

the reconstruction error summed over the datasét ds ||x; — %;||%. Again
assuming that the eigenvectdfs, } of the covariance matrix are ordered in
order of non-increasing eigenvalues, choosing to use those eigenvectors as ba-
sis vectors will give minimal reconstruction error. If the data is not centered,
then the mean should be subtracted first, the dimensional reduction performed,
and the mean then added bagthus in this case, the dimensionally reduced
data will still lie in the subspacB? , but that subspace will be offset from the
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origin by the mean. Bearing this caveat in mind, to prove the claim we can
assume that the data is centered. Expandine: Zd:1 Bapep, We have

3 =l = S el L S e aa

a=1 1

with the constraintg‘:l:1 BapBrp = bap. The second term on the right is

d/
—ZugCua = —Z Z/Bape Zﬁaqeq ZZ)‘Z’
a=1

a=1 p=1 a=1 p=1

Introducing Lagrange multipliers,; to enforce the orthogonality constraints
(Burges, 2004), the objective function becomes

d d
F = Z Z )\pﬁ Z Wab Z 6apﬁbp dab (15)

a=1 p=1 a,b=1

Choosing w., = wadap and taking derivatives with respectdg, gives\, 3., =

weBcq. Both this and the constraints can be satisfied by chogsing- 0 Vg >
candg., = d., otherwise; the objective function is then maximized if the first

d’ largest\,, are chosen. Note that this also amounts to a proof that the 'greedy’
approach to PCA dimensional reduction - solve for a single optimal direction
(which gives the principal eigenvector as first basis vector), then project your
data into the subspace orthogonal to that, then repeat - also results in the global
optimal solution, found by solving for all directions at once. The same is true
for the directions that maximize the variance. Again, note that this argument
holds however your data is distributed.

1.1.5 PCA Maximizes Mutual Information on Gaussian Data. Now
consider some proposed set of projectidvisc My 4, where the rows oft/

are orthonormal, so that the projected datg iss Wx, y € RY, x € R¢,

d < d. Suppose thak ~ N(0,C). Then since the/'s are linear com-
binations of thex’s, they are also normally distributed, with zero mean and
covariancely = (1/m) > """ yiyi = (1/m)W (-7 xx,)W' = WCW'. It's
interesting to ask howd” can be chosen so that the mutual information between
the distribution of thex’s and that of they’s is maximized (Baldi and Hornik,
1995; Diamantaras and Kung, 1996). Since the mappihg deterministic,
the conditional entropy? (y|x) vanishes, and the mutual information is just
I(x,y) = H(y) — H(y|x) = H(y). Using a small, fixed bin size, we can
approximate this by the differential entropy,

H(y) =~ [ ply)log ply)dy = 3 logs(e(2m)") + ; log det(C,) (1.6
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This is maximized by maximizinglet(C,) = det(ZWCW’) over choice of
W, subject to the constraint that the rowsl&fare orthonormal. The general
solution to this isW = UE, whereU is an arbitraryd’ by d’ orthogonal
matrix, and where the rows @ € M, are formed from the first’ principal
eigenvectors of”, and at the solutiordet(C,) is just the product of the first

d' principal eigenvalues. Clearly, the choiceldfdoes not affect the entropy,
sincedet(UECE'U’) = det(U) det(ECE’) det(U’) = det(ECE'). In the
special case wher¢ = 1, so thatE' consists of a single, unit length vector
e, we havedet(ECE’) = €'Ce, which is maximized by choosingto be the
principal eigenvector of’, as shown above. (The other extreme case, where
d = d, is easy too, since thedet(ECE’') = det(C) and E can be any
orthogonal matrix). We refer the reader to (Wilks, 1962) for a proof for the
general casé < d’ < d.

1.2 Probabilistic PCA (PPCA)

Suppose you've applied PCA to obtain low dimensional feature vectors for
your data, but that you have also somehow found a partition of the data such
that the PCA projections you obtain on each subset are quite different from
those obtained on the other subsets. It would be tempting to perform PCA
on each subset and use the relevant projections on new data, but how do you
determine what is 'relevant? That is, how would you construct a mixture
of PCA models? While several approaches to such mixtures have been pro-
posed, the first such probabilistic model was proposed by (Tipping and Bishop,
1999A; Tipping and Bishop, 1999B). The advantages of a probabilistic model
are numerous: for example, the weight that each mixture component gives to
the posterior probability of a given data point can be computed, solving the
'relevance’ problem stated above. In this section we briefly review PPCA.

The approach is closely related to factor analysis, which itself is a classical
dimensional reduction technique. Factor analysis first appeared in the behav-
ioral sciences community a century ago, when Spearman hypothesised that
intelligence could be reduced to a single underlying factor (Spearman, 1904).
If, given ann by n correlation matrix between variablese R,i =1, -+ ,n,
there is a single variable such that the correlation betweepandz; van-
ishes fori # j given the value ofj, theng is the underlying 'factor’ and the
off-diagonal elements of the correlation matrix can be written as the corre-
sponding off-diagonal elements at’ for somez € R™ (Darlington). Modern
factor analysis usually considers a model where the underlying factor&
are Gaussian, and where a Gaussian noise ¢ezriR? is added:

y = Wx+p+e 1.7)
x ~ N(0,1)
e ~ N(0,7)
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Herey € R? are the observations, the parameters of the modéVare M,

(d < d), ¥ andu, and¥ is assumed to be diagonal. By construction, yte
have meamn and 'model covarianceV W’ + . For this model, givex, the
vectorsy — u become uncorrelated. Singeande are Gaussian distributed,

so isy, and so the maximum likelihood estimate Bfy] is just . How-
ever, in general}¥ and ¥ must be estimated iteratively, using for example
EM. There is an instructive exception to this (Basilevsky, 1994; Tipping and
Bishop, 1999A). Suppose thit = ¢21, that thed — d’ smallest eigenvalues

of the model covariance are the same and are equd, tand that the sample
covariancesS is equal to the model covariance (so thétfollows immediately
from the eigendecomposition §Y). Letel) be thej’th orthonormal eigenvec-

tor of S with eigenvalue);. Then by considering the spectral decomposition
of S it is straightforward to show thaV;; = /(\; — 02)e§”, i=1,---,d,

j =1,---,d, if the e are in principal order. The model thus arrives at
the PCA directions, but in a probabilistic waBrobabilisticPCA (PPCA) is a
more general extension of factor analysis: it assumes a model of the form (1.7)
with U = ¢21, but it drops the above assumption that the model and sample
covariances are equal (which in turn means tifamust now be estimated).
The resulting maximum likelihood estimates 16f ando? can be written in
closed form, as (Tipping and Bishop, 1999A)

Wy = U —o*1)R (1.8)
1 d
2 _ .
oML = mz Ai (1.9)
i=d'+1

whereU € Mgy is the matrix of thel’ principal column eigenvectors 6f, A

is the corresponding diagonal matrix of principal eigenvalues,fardMy is

an arbitrary orthogonal matrix. Thus captures the variance lost in the dis-
carded projections and the PCA directions appear in the maximum likelihood
estimate ofi’ (and in fact re-appear in the expression for the expectation of
x giveny, in the limit c — 0, in which case the become the PCA projec-
tions of they). This closed form result is rather striking in view of the fact
that for general factor analysis we must resort to an iterative algorithm. The
probabilistic formulation makes PCA amenable to a rich variety of probabilis-
tic methods: for example, PPCA allows one to perform PCA when some of
the data is missing components; afidwhich so far we've assumed known)
can itself be estimated using Bayesian arguments (Bishop, 1999). Returning to
the problem posed at the beginning of this Section, a mixture of PPCA mod-
els, each with weight; > 0, Y. m; = 1, can be computed for the data using
maximum likelihood and EM, thus giving a principled approach to combining
several local PCA models (Tipping and Bishop, 1999B).
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1.3 Kernel PCA

PCA is a linear method, in the sense that the reduced dimension representa-
tion is generated by linear projections (although the eigenvectors and eigenval-
ues depend non-linearly on the data), and this can severely limit the usefulness
of the approach. Several versions of nonlinear PCA have been proposed (see
e.g. (Diamantaras and Kung, 1996)) in the hope of overcoming this prob-
lem. In this section we describe a more recent algorithm called kernel PCA
(Schblkopf et al., 1998). Kernel PCA relies on the “kernel trick”, which is the
following observation: suppose you have an algorithm (for example, k'th near-
est neighbour) which depends only on dot products of the data. Consider using
the same algorithm on transformed data=~ ®(x) € F, whereF is a (possi-
bly infinite dimensional) vector space, which we will call feature spaGp-
erating inF, your algorithm depends only on the dot produdis;) - ®(x;).

Now suppose there exists a (Symmetric) 'kernel’ functign;, x;) such that

for all x;, x; € RY, k(x;,%;) = ®(x;) - ®(x;). Then since your algorithm
depends only on these dot products, you never have to cordgteexplic-

itly; you can always just substitute in the kernel form. This was first used by
(Aizerman et al., 1964) in the theory of potential functions, and burst onto the
machine learning scene in (Boser et al., 1992), when it was applied to support
vector machines. Kernel PCA applies the idea to performing PCA.irt’s
striking that, since projections are being performed in a space whose dimension
can be much larger thafy the number of useful such projections can actually
exceedl, so kernel PCA is aimed more at feature extraction than dimensional
reduction.

It's notimmediately obvious that PCA is eligible for the kernel trick, since in
PCA the data appears in expectations over products of individual components
of vectors, not over dot products between the vectors. Howevel (St
et al., 1998) show how the problem can indeed be cast entirely in terms of
dot products. They make two key observations: first, that the eigenvectors of
the covariance matrix itF lie in the span of the (centered) mapped data, and
second, that therefore no information in the eigenvalue equation is lost if the
equation is replaced by, equations, formed by taking the dot product of each
side of the eigenvalue equation with each (centered) mapped data point. Let's
see how this works. The covariance matrix of the mapped data in feature space
is

0= L3 @ @) (1.10)
=1

where®; = ®(x;) andp = L 3. ®;. We are looking for eigenvector solu-
tionsv of

Cv=2J\v (1.11)
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Since this can be writtefy >, (®;—p)[(®;—p)-v] = Av, the eigenvectors
v lie in the span of th&,; — u's, or

v = Z o (®; — p) (1.12)

for someq;. Since (both sides of) Eq. (1.11) lie in the span of#he— u, we
can replace it with then equations

(®; —w)TCv =\®; — p)Tv (1.13)

Now consider the 'kernel matrix;;, the matrix of dot products itF: K;; =
®;,-®;, 4,5 = 1,...,m. We know how to calculate this, given a kernel
functionk, since®; - ®; = k(x;, x;). However, what we need is tlentered
kernel matrix,Kg = (®; — pn) - (®; — p). Happily, anym by m dot product
matrix can be centered by left- and right- multiplying by the projection matrix
P=1- %ee’, wherel is the unit matrix inM,,, and wheree is them-vector

of all ones (see Section 2.2 for further discussion of centering). Hence we have
K¢ = PKP, and Eq. (1.13) becomes

K°Ka=\K%a (1.14)
wherea € R™ and where\ = mA. Now clearly any solution of
K% =\ (1.15)

is also a solution of (1.14). It's straightforward to show that any solution of
(1.14) can be written as a solutiento (1.15) plus a vectg8 which is orthog-
onal toa (and which satisfie§ . 5;(®; — n) = 0), and which therefore does
not contribute to (1.12); therefore we need only consider Eqg. (1.15). Finally,
to use the eigenvectotsto compute principal components.ff, we needv to
have unit length, that is; - v = 1 = Ao - a, SO thea must be normalized to
have lengthl /v/X.

The recipe for extracting théth principal component inF using kernel
PCA is therefore:

1 Compute the’th principal eigenvector of< ¢, with eigenvalue\.
2 Normalize the corresponding eigenvectar,to have length /v/X.

3 For a training poinky, the principal component is then just

(®(xr) — 1) v = Aoy,
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4 For a general test point, the principal component is

(P(x)—p)-v = Zaik(x,xi) - % Zaik(x,xj)
i irj

1 1
- *E ik (%, X; —5 ik(Xj, Xn
mija (x x])—l—m2 aik(x;,%p)

i7j7n
where the last two terms can be dropped since they don't depexrd on

Kernel PCA may be viewed as a way of putting more effort into the up-
front computation of features, rather than putting the onus on the classifier
or regression algorithm. Kernel PCA followed by a linear SVM on a pattern
recognition problem has been shown to give similar results to using a nonlin-
ear SVM using the same kernel (Stkopf et al., 1998). It shares with other
Mercer kernel methods the attractive property of mathematical tractability and
of having a clear geometrical interpretation: for example, this has led to us-
ing kernel PCA for de-noising data, by finding that vectoe R? such that
the Euclidean distance betweéz) and the vector computed from the first
few PCA components itF is minimized (Mika et al., 1999). Classical PCA
has the significant limitation that it depends only on first and second moments
of the data, whereas kernel PCA does not (for example, a polynomial kernel
k(x;,x;) = (xi-x;+ )P contains powers up to ordp, which is particularly
useful for e.g. image classification, where one expects that products of several
pixel values will be informative as to the class). Kernel PCA has the computa-
tional limitation of having to compute eigenvectors for square matrices of side
m, but again this can be addressed, for example by using a subset of the train-
ing data, or by using the Ny&tm method for approximating the eigenvectors
of a large Gram matrix (see below).

1.4 Oriented PCA and Distortion Discriminant Analysis

Before leaving projective methods, we describe another extension of PCA,
which has proven very effective at extracting robust features from audio (Burges
etal., 2002; Burges et al., 2003). We first describe the method of oriented PCA
(OPCA) (Diamantaras and Kung, 1996). Suppose we are given a set of 'sig-
nal’ vectorsx; € R%, i = 1,...,m, where eack; represents an undistorted
data point, and suppose that for eagchwe have a set oV distorted versions
%x¥ k =1,...,N. Define the corresponding 'noise’ difference vectors to be
zk = Scf — x;. Roughly speaking, we wish to find linear projections which
are as orthogonal as possible to the difference vectors, but along which the
variance of the signal data is simultaneously maximized. Denote the unit vec-
tors defining the desired projections fy, i = 1,...,d’, n; € R¢, where
d" will be chosen by the user. By analogy with PCA, we could construct a
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feature extracton which minimizes the mean squared reconstruction error
- Y k(Xi — XF)%, wherex} = (X} - n)n. Then that solves this prob-

lem is that eigenvector a®, — Ry with largest eigenvalue, wher,, R, are

the correlation matrices of the; andz; respectively. However this feature
extractor has the undesirable property that the direatiawill change if the
noise and signal vectors are globally scaled with two different scale factors.
OPCA (Diamantaras and Kung, 1996) solves this problem. The first OPCA di-
rection is defined as that directienthat maximizes the generalized Rayleigh
guotient (Duda and Hart, 1973; Diamantaras and Kung, 1996} 2&2
where( is the covariance matrix of the signal a6d that of the noise. For

d’ directions collected into a column mattlX € My, we instead maximize
%. For Gaussian data, this amounts to maximizing the ratio of the
volume of the ellipsoid containing the data, to the volume of the ellipsoid con-
taining the noise, where the volume is that lying inside an ellipsoidal surface of
constant probability density. We in fact use the correlation matrix of the noise
rather than the covariance matrix, since we wish to penalize the mean noise
signal as well as its variance (consider the extreme case of noise that has zero

variance but nonzero mean). Explicitly, we take

C = ;Z(xi—E[x])(xi—E[x])/ (1.16)
]' /

R = mN;zf(zf) (1.17)

n’Cn

and maximize; = 175>, whose numerator is the variance of the projection of
the signal data along the unit vectorand whose denominator is the projected
mean squared “error” (the mean squared modulus of all noise vettqno-
jected alongn). We can find the directions; by settingVq = 0, which gives
the generalized eigenvalue probl€rm = ¢Rn; those solutions are also the
solutions to the problem of maximizinﬁ%. If R is not of full rank,
it must be regularized for the problem to be well-posed. It is straightforward
to show that, for positive semidefinité, R, the generalized eigenvalues are
positive, and that scaling either the signal or the noise leaves the OPCA di-
rections unchanged, although the eigenvalues will change. Furthermaxg the
are, or may be chosen to be, linearly independent, and althougt #ire not
necessarily orthogonal, they are conjugate with respect to both mattiand
R, that is,n;Cn; o 6;;, n;Rn; o J;;. Finally, OPCA is similar to linear
discriminant analysis (Duda and Hart, 1973), but where each signalxpast
assigned its own class.

'Distortion discriminant analysis’ (Burges et al., 2002; Burges et al., 2003)
uses layers of OPCA projectors both to reduce dimensionality (a high prior-
ity for audio or video data) and to make the features more robust. The above
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features, computed by taking projections alongrits are first translated and
normalized so that the signal data has zero mean and the noise data has unit
variance. For the audio application, for example, the OPCA features are col-
lected over several audio frames into new 'signal’ vectors, the corresponding
'noise’ vectors are measured, and the OPCA directions for the next layer found.
This has the further advantage of allowing different types of distortion to be
penalized at different layers, since each layer corresponds to a different time
scale in the original data (for example, a distortion that results from comparing
audio whose frames are shifted in time to features extracted from the original
data - "alignment noise’ - can be penalized at larger time scales).

2. Manifold Modeling

In Section 1 we gave an example of data with a particular geometric struc-
ture which would not be immediately revealed by examining one dimensional
projections in input spa¢e. How, then, can such underlying structure be
found? This section outlines some methods designed to accomplish this. How-
ever we first describe the Nystn method (hereafter simply abbreviated
'Nystrom’), which provides a thread linking several of the algorithms de-
scribed in this review.

2.1 The Nystiom method

Suppose thall' € M,, and that the rank of( is r < n. Nystdm gives a
way of approximating the eigenvectors and eigenvaludgs ofing those of a
small submatrixA. If A has rankr, then the decomposition is exact. This is
a powerful method that can be used to speed up kernel algorithms (Williams
and Seeger, 2001), to efficiently extend some algorithms (described below) to
out-of-sample test points (Bengio et al., 2004), and in some cases, to make an
otherwise infeasible algorithm feasible (Fowlkes et al., 2004). In this section
only, we adopt the notation that matrix indices refer to sizes unless otherwise
stated, so that e.gl,,.,, means thatd € M,,.

2.1.1 Original Nystrom.  The Nystdm method originated as a method
for approximating the solution of Fredholm integral equations of the second
kind (Press et al., 1992). Let’s consider the homogenédalismensional form
with densityp(x), x € R¢. This family of equations has the form

/ k(x, y)u(y)p(y)dy = Au(x) (1.18)

The integral is approximated using the quadrature rule (Press et al., 1992)

Au(x) ~ % Z E(x,x;)u(x;) (1.29)
i=1
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which when applied to the sample points becomes a matrix equaijon

u, = mAu, (with componentsk;; = k(x;,x;) andu; = u(x;)). This
eigensystem is solved, and the value of the integral at a new p@rapprox-
imated by using (1.19), which gives a much better approximation that using
simple interpolation (Press et al., 1992). Thus, the original Nystmethod
provides a way to smoothly approximate an eigenfunctipgiven its values

on a sample set of points. If a different numbet of elements in the sum
are used to approximate the same eigenfunction, the matrix equation becomes
K,ma,y = m’Au,, so the corresponding eigenvalues approximately scale
with the number of points chosen. Note that we have not assumedktist
symmetric or positive semidefinite; however from now on we will assume that
K is positive semidefinite.

2.1.2 Exact Nystbm Eigendecomposition.  Suppose thak,,,, has
rankr < m. Since it's positive semidefinite it is a Gram matrix and can be
written asK = ZZ' whereZ € M,,, and Z is also of rankr (Horn and
Johnson, 1985). Order the row vectors4nso that the first- are linearly
independent: this just reorders rows and column&ito give K, but in such

a way thatk is still a (symmetric) Gram matrix. Then the principal submatrix
A € S, of K (which itself is the Gram matrix of the firstrows of Z) has full
rank. Now lettingn = m — r, write the matrixk” as

— Arr Brn
Kmm - |: B;zr C'rm :|

SinceA is of full rank, ther rows[ A,r B ] are linearly independent, and
sinceK is of rankr, then rows [ B!, Cun ] can be expanded in terms of
them, that is, there exisfd,,,. such that

[ By, Cun | =Hpy [ Arr Brn | (1.21)

The firstr columns giveH = B’A~!, and the last columns then give' =
B'A~'B. ThusK must be of the forrh
A B A
Komm = [ B B'A™'B ] - [ B
The fact that we've been able to writ€ in this 'bottleneck’ form suggests that
it may be possible to construct tlegacteigendecomposition ok ..., (for its
nonvanishing eigenvalues) using the eigendecomposition of a (possibly much
smaller) matrix inM,., and this is indeed the case (Fowlkes et al., 2004). First
use the eigendecompositionaf A = UAU’, whereU is the matrix of column
eigenvectors ofd and A the corresponding diagonal matrix of eigenvalues, to
rewrite this in the form

U
Kmm — |: B/UAfl

(1.20)

} A A B (122

} A [U A'U'B ] =DAD  (1.23)
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This would be exactly what we want (dropping all eigenvectors whose eigen-
values vanish), if the columns dp were orthogonal, but in general they are
not. It is straightforward to show that, if instead of diagonalizihgve diago-
nalizeQ,, = A+ A™/2BB'A71/? = Uy AUy, then the desired matrix of
orthogonal column eigenvectors is

Vi = [ ]?, } ATV2UQAL (1.24)

(so thatK,,,,, = VAQV’' andV'V = 1,,) (Fowlkes et al., 2004).

Although this decomposition is exact, this last step comes at a price: to ob-
tain the correct eigenvectors, we had to perform an eigendecomposition of the
matrix ) which depends o3. If our intent is to use this decomposition in
an algorithm in whichB changes when new data is encountered (for exam-
ple, an algorithm which requires the eigendecomposition of a kernel matrix
constructed from both train and test data), then we must recompute the decom-
position each time new test data is presented. If instead we'd like to compute
the eigendecomposition just once, we must approximate.

2.1.3 Approximate Nystrom Eigendecomposition. Two kinds of
approximation naturally arise. The first occurshf is only approximately
low rank, that is, its spectrum decays rapidly, but not to exactly zero. In this
case, B’ A~! B will only approximately equalC’ above, and the approximation
can be quantified a§C — B’A~'B|| for some matrix norni|-||, where the
difference is known as the Schur complementdofor the matrix X' (Golub

and Van Loan, 1996).

The second kind of approximation addresses the need to compute the eigen-
decomposition just once, to speed up test phase. The idea is simply to take
Equation (1.19), sum ovet elements on the right hand side wherex m
andd > r, and approximate the eigenvector of the full kernel matftix,,
by evaluating the left hand side at all points (Williams and Seeger, 2001).
Empirically it has been observed that choosing be some small integer fac-
tor larger than- works well (Platt). How does using (1.19) correspond to the
expansion in (1.23), in the case where the Schur complement vanishes? Ex-
pandingA, B in their definition in Eq. (1.20) tolyg, Bay, SO that/,; contains
the column eigenvectors of andU,,,; contains the approximated (high di-
mensional) column eigenvectors, (1.19) becomes

A UA
Umalag ~ KmaUgg = [ B } Ugg = [ B’UCZ } (1.25)

so multiplying byA;d1 from the right shows that the approximation amounts
to taking the matrixD in (1.23) as the approximate column eigenvectors: in
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this sense, the approximation amounts to dropping the requirement that the
eigenvectors be exactly orthogonal.

We end with the following observation (Williams and Seeger, 2001): the
expression for computing the projections of a mapped test point along principal
components in a kernel feature space is, apart from proportionality constants,
exactly the expression for the approximate eigenfunctions evaluated at the new
point, computed according to (1.19). Thus the computation of the kernel PCA
features for a set of points can be viewed as using the Blystethod to
approximate the full eigenfunctions at those points.

2.2 Multidimensional Scaling

We begin our look at manifold modeling algorithms with multidimensional
scaling (MDS), which arose in the behavioral sciences (Borg and Groenen,
1997). MDS starts with a measure of dissimilarity between each pair of data
points in the dataset (note that this measure can be very general, and in partic-
ular can allow for non-vectorial data). Given this, MDS searches for a map-
ping of the (possibly further transformed) dissimilarities to a low dimensional
Euclidean space such that the (transformed) pair-wise dissimilarities become
squared distances. The low dimensional data can then be used for visualiza-
tion, or as low dimensional features.

We start with the fundamental theorem upon which ‘classical MDS’ is built
(in classical MDS, the dissimilarities are taken to be squared distances and no
further transformation is applied (Cox and Cox, 2001)). We give a detailed
proof because it will serve to illustrate a recurring theme.d e the column
vector ofm ones. Consider the 'centering’ matriX* = 1 — %ee’. Let X
be the matrix whose rows are the datapoiwts R", X € M,.,. Since
ee’ € M,, is the matrix of all onesP¢X subtracts the mean vector from each
rowx in X (hence the name 'centering’), and in additiétfe = 0. In facte is
the only eigenvector (up to scaling) with eigenvalue zero, for suppége= 0
for somef € R™. Then each component 6fmust be equal to the mean of
all the components df, so all components df are equal. Henc&*¢ has rank
m — 1, and P¢ projects onto the subspa®" ! orthogonal tce.

By a 'distance matrix’ we will mean a matrix whogg'th element is
|x; — x,||* for somex;, x; € RY, for somed, where|-|| is the Euclidean
norm. Notice that the elements are squared distances, despite the Rame.
can also be used to center both Gram matrices and distance matrices. We can
see this as follows. Lét (i, j)] be that matrix whoséj'th element isC'(4, 7).
ThenP¢[x;-x;|P¢ = P°XX'P® = (P°X)(P°X) = [(x;—p)-(x;—p)]. In
addition, using this resul?¢[||x; — x;||?|P¢ = P¢[||xi||%eie; + ||Ix;|%eie; —
2x; - x| P° = —2P°x; - x;P¢ = =2[(x; — ) - (x; — p)].
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For the following theorem, the earliest form of which is due to Schoenberg
(Schoenberg, 1935), we first note that, for atiye M,,, and lettingQ =
1 ee/,

PLAP = {(1- QAL = Q)}y = Ay — A — AT+ AJT (1.26)

whereA¢ = AQ is the matrixA with each column replaced by the column
mean, A" = QA is A with each row replaced by the row mean, ah® =
QAQ is A with every element replaced by the mean of all the elements.

Theorem: Consider the class of symmetric matricdse S, such that
A;; > 0andA; =0 Vi, . ThenA = — P¢AP¢ is positive semidefinite if and
only if A is a distance matrix (with embedding spdé for somed). Given
that A is a distance matrix, the minimal embedding dimensidsthe rank of
A, and the embedding vectors are any set of Gram vectork staled by a

1
factor of 7

Proof: Assume thatd € S,,, 4;; > 0 and4;; = 0 Vi, and thatA is
positive semidefinite. Sincé is positive semidefinite it is also a Gram matrix,

that is, there exist vectorss; € R™, i = 1,--- ,m such thatd;; = x; - x;.
Introducey; = %xi. Then from Eq. (1.26),

Ai]’ = (*PGAPG)Z'j =X; Xj = *Ai]’ + Ag + Ag — ASC (127)
so that
20yi —y;)* = (xi —x5)* = Aff + Af — AflC + A?j + A?j - A?jc
R c RC
—2(—Ay + Ajj + Aij — Aij)
= 24;; (1.28)
usingA;; = 0, Al = A%, AC = A, and from the symmetry ofl, A =
AJCZ ThusA is a distance matrix with embedding vectgrs Now consider a
matrix A € S, that is a distance matrix, so thdf; = (y; — yj)2 for some
y; € R? for somed, and letY be the matrix whose rows are tlye. Then
since each row and column &f° sums to zero, we havé = —(P°AP°) =
2(P°Y)(P¢Y), henceA is positive semidefinite. Finally, given a distance
matrix 4;; = (y; — y;)?, we wish to find the dimension of the minimal em-
bedding Euclidean space. First note that we can assume thgt kizere zero
mean § . y; = 0), since otherwise we can subtract the mean from gach
without changingA. Thenfll-j = x; - X;, again introgucing,ci = \/2y;, SO
the embedding vectons; are a set of Gram vectors df, scaled by a factor of
%. Now letr be the rank ofd. SinceA = X X', and sinceank(X X') =
rank(X) for any real matrixX (Horn and Johnson, 1985), and simeek(.X)
is the number of linearly independexy, the minimal embedding space for the
x; (and hence for thg;) has dimension. [
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2.2.1 General Centering. Is P¢ the most general matrix that will
convert a distance matrix into a matrix of dot products? Since the embedding
vectors are not unique (given a set of Gram vectors, any global orthogonal
matrix applied to that set gives another set that generates the same positive
semidefinite matrix), it's perhaps not surprising that the answer is no. A dis-
tance matrix is an example of a conditionally negative definite (CND) matrix.
A CND matrix D € S,, is a symmetric matrix that satisfigs, ; a;a; Di; <
0V{a; € R : > ,a; = 0}; the class of CND matrices is a superset of the
class of negative semidefinite matrices (Berg et al., 1984). Defining the pro-
jection matrix P¢ = (1 — ec’), for anyc € R™ such thate’c = 1, then

for any CND matrixD, the matrix—P°DP’¢ is positive semidefinite (and
hence a dot product matrix) (Salkopf, 2001; Berg et al., 1984) (note that
P¢ is not necessarily symmetric). This is straightforward to prove: for any
z e R" P =(1-ce)z =1z—c(}, %) s0> ,(P°z); =0, hence
(P'“z)'D(P'°z) < 0 from the definition of CND. Hence we can map a dis-
tance matrixD to a dot product matrix< by usingP¢ in the above manner for
any set of numbers; that sum to unity.

222 Constructing the Embedding.  To actually find the embedding
vectors for a given distance matrix, we need to know how to find a set of
Gram vectors for a positive semidefinite matdx Let £ be the matrix of
column eigenvectors(® (labeled by«), ordered by eigenvalug,, so that

the first column is the principal eigenvector, add& = EA, whereA is the

diagonal matrix of eigenvalues. Theh; = 3", Aaegf")eg“’. The rows ofE¥

form the dual (orthonormal) basis eé)o‘), which we denoté&f). Then we can

write A;; = Za(\/xégf))(\/xéfj)). Hence the Gram vectors are just the
dual eigenvectors with each component scaled/By,. Defining the matrix
E = EAY2, we see that the Gram vectors are just the rows.of

If A € S,, hasrank < n, then the finah—r columns ofE will be zero, and
we have directly found the-dimensional embedding vectors that we are look-
ing for. If A € S,, is full rank, but the last — p eigenvalues are much smaller
than the firsp, then it's reasonable to approximate b Gram vector by its

first p components\/xég), a =1,---,p, and we have found a low dimen-
sional approximation to thg's. This device - projecting to lower dimensions

by lopping off the last few components of the dual vectors corresponding to
the (possibly scaled) eigenvectors - is shared by MDS, Laplacian eigenmaps,
and spectral clustering (see below). Just as for PCA, where the quality of the
approximation can be characterized by the unexplained variance, we can char-
acterize the quality of the approximation here by the squared residualgl Let
have rank-, and suppose we only keep the fipst » components to form the
approximate embedding vectors. Then denoting the approximation with a hat,
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the summed squared residuals are

m

m
S li-vil? = 5 kel
=1

=1

—_

m m T m

_ 1 G2 L ()2 _ (i)
= 3 Z)\aea2+222/\aea2 ZZAG%Q

i=1 a=1 i=1 a=1 i=1 a=1

but 7 e? = 3 el9? = 1, s0

m r D r
Sl —yill® = % <Z Aa — Z)m) =) (1.29)
=1 a=1 a=1

a=p+1

Thus the fraction of 'unexplained residuals’ys, _ . ; Ao/ > _;—1 Aa, in anal-
ogy to the fraction of 'unexplained variance’ in PCA.

If the original symmetric matrixl is such thatd is not positive semidefinite,
then by the above theorem there exist no embedding points such that the dis-
similarities are distances between points in some Euclidean space. In that case,
we can proceed by adding a sufficiently large positive constant to the diagonal
of A, or by using the closest positive semidefinite matrix, in Frobenius Korm
to A, whichisA = 3\ _A.e@el®’. Methods such as classical MDS,
that treat the dissimilarities themselves as (approximate) squared distances, are
called metric scaling methods. A more general approach - 'non-metric scaling’
- is to minimize a suitable cost function of the difference between the embed-
ded squared distances, and some monotonic function of the dissimilarities (Cox
and Cox, 2001); this allows for dissimilarities which do not arise from a met-
ric space; the monotonic function, and other weights which are solved for, are
used to allow the dissimilarities to nevertheless be represented approximately
by low dimensional squared distances. An example of non-metric scaling is
ordinal MDS, whose goal is to find points in the low dimensional space so that
the distances there correctly reflect a given rank ordering of the original data
points.

2.2.3 Landmark MDS. MDS is computationally expensive: since the
distances matrix is not sparse, the computational complexity of the eigende-
composition isO(m?). This can be significantly reduced by using a method
called Landmark MDS (LMDS) (Silva and Tenenbaum, 2002). In LMDS the
idea is to choose points, called 'landmarks’, wheke> r (wherer is the rank

of the distance matrix), but < m, and to perform MDS on landmarks, map-
ping them toR<. The remaining points are then mappe®tbusing only their
distances to the landmark points (so in LMDS, the only distances considered
are those to the set of landmark points). As first pointed out in (Bengio et al.,
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2004) and explained in more detail in (Platt, 2005), LMDS combines MDS
with the Nystom algorithm. LetEl € S, be the matrix of landmark distances
andU (A) the matrix of eigenvectors (eigenvalues) of the corresponding kernel
matrix A = —%PCEP’C, so that the embedding vectors of the landmark points
are the firstd elements of the rows dffA/2. Now, extendingE by an ex-

tra column and row to accommodate the squared distances from the landmark
points to a test point, we write the extended distance matrix and corresponding
kernel as

¢ b (1.30)
Then from Eq. (1.23) we see that the Nysir method gives the approximate
column eigenvectors for the extended system as

U
Thus the embedding coordinates of the test point are given by the! figlst
ements of the row vectds’UA~1/2. However, we only want to compufé
andA once - they must not depend on the test point. (Platt, 2005) has pointed

out that this can be accomplished by choosing the centering coeffiejeints
P¢ =1 —ec suchthat; =1/qfori < gandc,y1 = 0: in that case, since

1 q+1 q+1 g+1
K;; = —3 (Dij - ei(z ckDrj) — ej(z Diicr) + eiej( Z ckamcm)>
k=1 k=1 k,m=1
the matrix A (found by limitingi,j to 1,..., ¢ above) depends only on the
matrix £ above. Finally, we need to relakeback to the measured quantities
- the vector of squared distances from the test point to the landmark points.
Usingb; = (—2P°DP’)g11,,i =1, ,q, we find that

1 1¢ 1 ¢ 1<
bh=—5 |Dgy1k— = > Dgyrjer— = Din+— | > Dij | ex
2 155 175 T \ij=

The first term in the square brackets is the vector of squared distances from the
test point to the landmarks, The third term is the row mean of the landmark
distance squared matri¥;. The second and fourth terms are proportional
to the vector of all onee, and can be droppétisinceU’e = 0. Hence,
modulo terms which vanish when constructing the embedding coordinates, we
haveb ~ —1(f — E), and the coordinates of the embedded test point are
1AY2U'(E — f£); this reproduces the form given in (Silva and Tenenbaum,
2002). Landmark MDS has two significant advantages: first, it reduces the
computational complexity frond(m?) to O(¢® + ¢*(m — q) = ¢*m); and
second, it can be applied to any non-landmark point, and so gives a method of
extending MDS (using Nysbm) to out-of-sample data.
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2.3 Isomap

MDS is valuable for extracting low dimensional representations for some
kinds of data, but it does not attempt to explicitly model the underlying mani-
fold. Two methods that do directly model the manifold are Isomap and Locally
Linear Embedding. Suppose that as in Section 1.1.1, again unbeknownst to
you, your data lies on a curve, but in contrast to Section 1.1.1, the curve is not
a straight line; in fact it is sufficiently complex that the minimal embedding
spaceR? that can contain it has high dimensidn PCA will fail to discover
the one dimensional structure of your data; MDS will also, since it attempts to
faithfully preserve all distances. Isomap (isometric feature map) (Tenenbaum,
1998), on the other hand, will succeed. The key assumption made by Isomap is
that the quantity of interest, when comparing two points, is the distance along
the curve between the two points; if that distance is large, it is to be taken,
even if in fact the two points are close ¢ (this example also shows that
noise must be handled carefully). The low dimensional space can have more
than one dimension: (Tenenbaum, 1998) gives an example of a 5 dimensional
manifold embedded in a 50 dimensional space. The basic idea is to construct
a graph whose nodes are the data points, where a pair of nodes are adjacent
only if the two points are close iR, and then to approximate the geodesic
distance along the manifold between any two points as the shortest path in the
graph, computed using the Floyd algorithm (Gondran and Minoux, 1984); and
finally to use MDS to extract the low dimensional representation (as vectors
in RY, d < d) from the resulting matrix of squared distances (Tenenbaum
(Tenenbaum, 1998) suggests using ordinal MDS, rather than metric MDS, for
robustness).

Isomap shares with the other manifold mapping technigues we describe the
property that it does not provide a direct functional form for the mapping
7 : RY — R that can simply be applied to new data, so computational
complexity of the algorithm is an issue in test phase. The eigenvector compu-
tation isO(m?), and the Floyd algorithm alsO(m?), although the latter can
be reduced t@)(hm?logm) whereh is a heap size (Silva and Tenenbaum,
2002). Landmark Isomap simply employs landmark MDS (Silva and Tenen-
baum, 2002) to addresses this problem, computing all distances as geodesic
distances to the landmarks. This reduces the computational complexity to
O(q*m) for the LMDS step, and t®@(hgm log m) for the shortest path step.

2.4 Locally Linear Embedding

Locally linear embedding (LLE) (Roweis and Saul, 2000) models the man-
ifold by treating it as a union of linear patches, in analogy to using coordinate
charts to parameterize a manifold in differential geometry. Suppose that each
pointx; € R? has a small number of close neighbours indexed by th&'é&t
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and lety; € R? be the low dimensional representationsgf The idea is to
express eacly; as a linear combination of its neighbours, and then construct
they; so that they can be expressed as the same linear combination of their
corresponding neighbours (the latter also indexed\ity)). To simplify the
discussion let’'s assume that the number of the neighbours is fixedotoall

1. The condition on th&’s can be expressed as finding thet € M,,,, that
minimizes the sum of the reconstruction errars, [[x; — >_;c ) Wiix;l2.

Each reconstruction errdt; = [|x; — > vy WijX; |? should be unaffected

by any global translatiox; — x; + 8, 6 € R?, which gives the condition
Zje./\/'i W;; = 1 Vi. Note that eachty; is also invariant to global rotations
and re%lections of the coordinates. Thus the objective function we wish to min-
imize is

FEZ'FZEZ %Hxi— Z Wijxj”2_)\i Z Wi]’—l

i i JEN (i) FEN(3)
where the constraints are enforced with Lagrange multiphgfBurges, 2004).
Since the sum splits into independent terms we can minimize Easkpa-
rately. Thus fixing and lettingx = x;, v € R", v; = W;;, and\ = );, and
introducing the matrbxC' € S,,, Cji, = x; - x, J, k € N (i), and the vector
b e R", b; = x-xj,j € N (i), then requiring that the derivative &f with re-
spect tov; vanishes gives = C~!(\e + b). Imposing the constrair{v = 1
then gives\ = (1 — e’C~'b)/(e/C~'e). ThusW can be found by applying
this for each.

Given thel¥V’s, the second step is to find a setygfe R¥ that can be ex-
pressed in terms of each other in the same manner. Again no exact solution
may existand so_; [lyi —>_ e n) Wyl is minimized with respect to the
y’s, keeping théV’s fixed. LetY € M,,, be the matrix of row vectors of the
pointsy. (Roweis and Saul, 2000) enforce the condition thatytisespan a
space of dimensiod’ by requiring that1/m)Y’Y = 1, although any condi-
tion of the formY’PY = Z whereP € S,, andZ < Sy is of full rank would
suffice (see Section 2.5.1). The origin is arbitrary; the corresponding degree
of freedom can be removed by requiring that $fehave zero mean, although
in fact this need not be explicitly imposed as a constraint on the optimization,
since the set of solutions can easily be chosen to have this property. The rank
constraint requires that thgs have unit covariance; this links the variables
so that the optimization no longer decomposes inteeparate optimizations:
introducing Lagrange multipliers, s to enforce the constraints, the objective
function to be minimized is

F= %Z lyi = > WiyllI* - % > Aag (Z %YmYm - 5aﬁ> (1.32)
‘ J op i
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where for convenience we treat thié’s as matrices inV/,,,, whereW;; = 0
for j ¢ N (7). Taking the derivative with respect 19,; and choosing\,3 =
Aabap = Aop gives the matrix equation
(1= WY1 -W)Y = %YA (1.33)

Since(1 — W)'(1 — W) € S,,, its eigenvectors are, or can be chosen to
be, orthogonal; and sindd — W)’ (1 — W)e = 0, choosing the columns
of Y to be the next!’ eigenvectors of1 — W)'(1 — W) with the smallest
eigenvalues guarantees that ghare zero mean (since they are orthogonal to
e). We can also scale the so that the columns of are orthonormal, thus
satisfying the covariance constraiitY = 1. Finally, the lowest-but-one
weight eigenvectors are chosen because their corresponding eigenvalues sum
tom 3, [lyi—>_; Wijy; |2, as can be seen by applyiid to the left of (1.33).

Thus, LLE requires a two-step procedure. The first step (findingitre
hasO(n®*m) computational complexity; the second requires eigendecompos-
ing the product of two sparse matriceshify,,. LLE has the desirable property
that it will result in the same weightd if the data is scaled, rotated, translated
and / or reflected.

2.5 Graphical Methods

In this section we review two interesting methods that connect with spectral
graph theory. Let’s start by defining a simple mapping from a dataset to an
undirected graplix by forming a one-to-one correspondence between nodes
in the graph and data points. If two nodeg are connected by an arc, asso-
ciate with it a positive arc weighit;;, W € S,,, whereW;; is a similarity
measure between points andx;. The arcs can be defined, for example, by
the minimum spanning tree, or by forming thé nearest neighbours, fav
sufficiently large. The Laplacian matrix for any weighted, undirected graph
is defined (Chung, 1997) by = D~Y2LD~'/2, whereL;; = D;; — W,
and whereD;; = §;;(>_;, Wir). We can see thaf is positive semidefinite as
follows: for any vectorz € R™, sinceW;; > 0,

0 S ;Z(zz - Zj)QWZ'j = Z Z?D“ - Z ZZ‘I/VZ‘]‘Z]' = Z/LZ
1,) 7 2y}

and sincel is positive semidefinite, so is the Laplacian. Note thas never
positive definite since the vector of all ones,is always an eigenvector with
eigenvalue zero (and similarigD'/2e = 0).

Let G be a graph andh its number of nodes. Fdi;; € {0, 1}, the spec-
trum of G (defined as the set of eigenvalues of its Laplacian) characterizes
its global properties (Chung, 1997): for example, a complete graph (that is,
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one for which every node is adjacent to every other node) has a single zero
eigenvalue, and all other eigenvalues are equalte; if G is connected but

not complete, its smallest nonzero eigenvalue is bounded above by unity; the
number of zero eigenvalues is equal to the number of connected components
in the graph, and in fact the spectrum of a graph is the union of the spectra of
its connected components; and the sum of the eigenvalues is bounded above
by m, with equality iff G has no isolated nodes. In light of these results, it
seems reasonable to expect that global properties of the data - how it clusters,
or what dimension manifold it lies on - might be captured by properties of the
Laplacian. The following two approaches leverage this idea. We note that us-
ing similarities in this manner results in local algorithms: since each node is
only adjacent to a small set of similar nodes, the resulting matrices are sparse
and can therefore be eigendecomposed efficiently.

251 Laplacian Eigenmaps. The Laplacian eigenmaps algorithm
(Belkin and Niyogi, 2003) usel/;; = exp~IXi=%il*/27° | ety(x) € R¥ be
the embedding of sample vectere R?, and letY;; € Mo = (yi);. We
would like to findy’s that minimize}_,  |ly; — y;l* Wi;, since then if two
points are similar, theiy’'s will be close, whereas iV =~ 0, no restriction is
put on theiry’s. We have:

Do lyi = yilP Wi =2 (vi)a(yi)a(Diidis — Wij) = 2Te(Y'LY) (1.34)
1,] 1,7,Q

In order to ensure that the target space has dimen&i¢minimizing (1.34)

alone has solutiolr = 0), we require that” have ranki. Any constraint of the

formY'PY = Z, whereP € S,, andm > d’, will suffice, provided thatZ e

Sy is of full rank. This can be seen as follows: since the rank a$ d’ and

since the rank of a product of matrices is bounded above by the rank of each,

we have that!’ = rank(Z) = rank(Y'PY) < min(rank((Y"), rank(P),

rank(Y)), and sorank(Y) > d'; but sinceY” € M,,y andd’ < m, the rank

of Y is at most/’; hencerank(Y') = d’. However, minimizing TfY’LY") sub-

ject to the constraint” DY = 1 results in the simple generalized eigenvalue

problemLy = ADy (Belkin and Niyogi, 2003). It's useful to see how this

arises: we wish to minimize T¥’LY’) subject to thel’(d’ + 1)/2 constraints

Y'DY = 1. Leta,b=1,...,dandi,j = 1,...,m. Introducing (symmet-

ric) Lagrange multipliers,;, leads to the objective functioEm.,a YiaLijYja—

Zi,j,a,b /\ab(ymDijyjb — 5ab), with extrema agj ijyjﬁ = Za,i )\aﬁDkiyia-

We choos® .3 = Agdap,  QVING D Lijyja =

> A\aDrivia- This is a generalized eigenvector problem with eigenvectors

the columns ofY’. Hence once again the low dimensional vectors are con-

structed from the first few components of the dual eigenvectors, except that

in this case, the eigenvectors with lowest eigenvalues are chosen (omitting the
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eigenvector), and in contrast to MDS, they are not weighted by the square
roots of the eigenvalues. Thus Laplacian eigenmaps must use some other crite-
rion for deciding on what!’ should be. Finally, note that thes are conjugate

with respect taD (as well asL), so we can scale them so that the constraints
Y'DY = 1 are indeed met, and our drastic simplification of the Lagrange
multipliers did no damage; and left multiplying the eigenvalue equatiog by
shows that\, = y/,Ly., so choosing the smallest eigenvalues indeed gives
the lowest values of the objective function, subject to the constraints.

25.2 Spectral Clustering.  Although spectral clustering is a cluster-

ing method, it is very closely related to dimensional reduction. In fact, since
clusters may be viewed as large scale structural features of the data, any di-
mensional reduction technique that maintains these structural features will be
a good preprocessing step prior to clustering, to the point where very simple
clustering algorithms (such as K-means) on the preprocessed data can work
well (Shi and Malik, 2000; Meila and Shi, 2000; Ng et al., 2002). If a graph is
partitioned into two disjoint sets by removing a set of arcs,dhids defined

as the sum of the weights of the removed arcs. Given the mapping of data to
graph defined above, a cut defines a split of the data into two clusters, and the
minimum cut encapsulates the notion of maximum dissimilarity between two
clusters. However finding a minimum cut tends to just lop off outliers, so (Shi
and Malik, 2000) define a normalized cut, which is now a function of all the
weights in the graph, but which penalizes cuts which result in a subgraph
such that the cut divided by the sum of weights frgio G is large; this solves

the outlier problem. Now suppose we wish to divide the data into two clusters.
Define a scalar on each nodg, i = 1,...,m, such that; = 1 for nodes in

one cluster and; = —1 for nodes in the other. The solution to the normalized
mincut problem is given by (Shi and Malik, 2000)

. y'Ly
min
y y'Dy

such thaty; € {1, —b} andy’De = 0 (1.35)

wherey = (e+z) +b(e —z), andb is a constant that depends on the partition.
This problem is solved by relaxing to take real values: the problem then
becomes finding the second smallest eigenvector of the generalized eigenvalue
problemLy = A\Dy (the constrainy’ De = 0 is automatically satisfied by the
solutions), which is exactly the same problem found by Laplacian eigenmaps
(in fact the objective function used by Laplacian eigenmaps was proposed as
Eq. (10) in (Shi and Malik, 2000)). The algorithms differ in what they do next.
The clustering is achieved by thresholding the elemgesb that the nodes are
split into two disjoint sets. The dimensional reduction is achieved by treating
the elemeny; as the first component of a reduced dimension representation of
the samplex;. There is also an interesting equivalent physical interpretation,



28

where the arcs are springs, the nodes are masses, apcitbhehe fundamen-

tal modes of the resulting vibrating system (Shi and Malik, 2000). Meila and
Shi (Meila and Shi, 2000) point out that that matfix= D~!L is stochastic,
which motivates the interpretation of spectral clustering as the stationary dis-
tribution of a Markov random field: the intuition is that a random walk, once
in one of the mincut clusters, tends to stay in it. The stochastic interpretation
also provides tools to analyse the thresholding used in spectral clustering, and
a method for learning the weight®;; based on training data with known clus-
ters (Meila and Shi, 2000). The dimensional reduction view also motivates a
different approach to clustering, where instead of simply clustering by thresh-
olding a single eigenvector, simple clustering algorithms are applied to the low
dimensional representation of the data (Ng et al., 2002).

3. Pulling the Threads Together

At this point the reader is probably struck by how similar the mathematics
underlying all these approaches is. We've used essentially the same Lagrange
multiplier trick to enforce constraints three times; all of the methods in this re-
view rely on an eigendecomposition. Isomap, LLE, Laplacian eigenmaps, and
spectral clustering all share the property that in their original forms, they do not
provide a direct functional form for the dimension-reducing mapping, so the
extension to new data requires re-training. Landmark Isomap solves this prob-
lem; the other algorithms could also use Nigstrto solve it (as pointed out by
(Bengio et al., 2004)). Isomap is often called a 'global’ dimensionality reduc-
tion algorithm, because it attempts to preserve all geodesic distances; by con
trast, LLE, spectral clustering and Laplacian eigenmaps are local (for example,
LLE attempts to preserve local translations, rotations and scalings of the data).
Landmark Isomap is still global in this sense, but the landmark device brings
the computational cost more in line with the other algorithms. Although they
start from quite different geometrical considerations, LLE, Laplacian eigen-
maps, spectral clustering and MDS all look quite similar under the hood: the
first three use the dual eigenvectors of a symmetric matrix as their low dimen-
sional representation, and MDS uses the dual eigenvectors with components
scaled by square roots of eigenvalues. In light of this it's perhaps not surpris-
ing that relations linking these algorithms can be found: for example, given
certain assumptions on the smoothness of the eigenfunctions and on the distri-
bution of the data, the eigendecomposition performed by LLE can be shown
to coincide with the eigendecomposition of the squared Laplacian (Belkin and
Niyogi, 2003); and (Ham et al., 2004) show how Laplacian eigenmaps, LLE
and Isomap can be viewed as variants of kernel PCA. (Platt, 2005) links sev-
eral flavors of MDS by showing how landmark MDS and two other MDS al-
gorithms (not described here) are in fact all Ngstralgorithms. Despite the
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mathematical similarities of LLE, Isomap and Laplacian Eigenmaps, their dif-
ferent geometrical roots result in different properties: for example, for data
which lies on a manifold of dimensio embedded in a higher dimensional
space, the eigenvalue spectrum of the LLE and Laplacian Eigenmaps algo-
rithms do not reveal anything abodit whereas the spectrum for Isomap (and
MDS) does.

The connection between MDS and PCA goes further than the form taken
by the 'unexplained residuals’ in Eq. (1.29). Xf € M,,4 is the matrix of
m (zero-mean) sample vectors, then PCA diagonalizes the covariance matrix
X'X, whereas MDS diagonalizes the kernel matkiX’; but X X’ has the
same eigenvalues a’X (Horn and Johnson, 1985), amd — d additional
zero eigenvalues (ifn > d). In fact if v is an eigenvector of the kernel ma-
trix so thatX X'v = Av, then clearlyX' X (X'v) = A(X'v), soX'v is an
eigenvector of the covariance matrix, and similarlyaifs an eigenvector of
the covariance matrix, the u is an eigenvector of the kernel matrix. This
provides one way to view how kernel PCA computes the eigenvectors of the
(possibly infinite dimensional) covariance matrix in feature space in terms of
the eigenvectors of the kernel matrix. There’'s a useful lesson here: given a
covariance matrix (Gram matrix) for which you wish to compute those eigen-
vectors with nonvanishing eigenvalues, and if the corresponding Gram matrix
(covariance matrix) is both available, and more easily eigendecomposed (has
fewer elements), then compute the eigenvectors for the latter, and map to the
eigenvectors of the former using the data matrix as above. Along these lines,
Williams (Williams, 2001) has pointed out that kernel PCA can itself be viewed
as performing MDS in feature space. Before kernel PCA is performed, the ker-
nel is centered (i.eP°K P¢ is computed), and for kernels that depend on the
data only through functions of squared distances between points (such as ra-
dial basis function kernels), this centering is equivalent to centering a distance
matrix in feature space. (Williams, 2001) further points out that for these ker-
nels, classical MDS in feature space is equivalent to a form of metric MDS
in input space. Although ostensibly kernel PCA gives a function that can be
applied to test points, while MDS does not, kernel PCA does so by using the
Nystrom approximation (see Section 2.1.3), and exactly the same can be done
with MDS.

The subject of feature extraction and dimensional reduction is vast. In this
review I've limited the discussion to mostly geometric methods, and even with
that restriction it's far from complete, so I'd like to alert the reader to three
other interesting leads. The first is the method of principal curves, where the
idea is to find that smooth curve that passes through the data in such a way
that the sum of shortest distances from each point to the curve is minimized,
thus providing a nonlinear, one-dimensional summary of the data (Hastie and
Stuetzle, 1989); the idea has since been extended by applying various regular-
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ization schemes (including kernel-based), and to manifolds of higher dimen-
sion (Scliblkopf and Smola, 2002). Second, competitions have been held at
recent NIPS workshops on feature extraction, and the reader can find a wealth
of information there (Guyon, 2003). Finally, recent work on object detection
has shown that boosting, where each weak learner uses a single feature, can
be a very effective method for finding a small set of good (and mutually com-
plementary) features from a large pool of possible features (Viola and Jones,
2001).
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Notes

1. For convenience we reproduce Stone’s definitions (Stone, 1982). heethe unknown regression
function, T}, an estimator of usingn samples, andb,, } a sequence of positive constants. THén } is
called a lower rate of convergence if there exists 0 such thatim,, inf;, supg P(||T, — 0] > cbn) =

1, and it is called an achievable rate of convergence if there is a sequence of estiffiatpmandc > 0
such thalimy, supy P(||T;, — ]| > ¢bn) = 0; {bs} is called an optimal rate of convergence if it is both
a lower rate of convergence and an achievable rate of convergence.

2. See J.H. Friedman’s interesting response to (Huber, 1985) in the same issue.

3. More formally, the conditions are: fer? positive and finite, and for any positive(1/m)card{;j <
m: |||x;]|? — o%d| > ed} — 0and(1/m?)card{l < j,k < m : |x; - x| > ed} — 0 (Diaconis and
Freedman, 1984).

4. The Cauchy distribution in one dimension has density:? + x2) for constant.

5. The story for evem is similar but the formulae are slightly different

6. Note that if allz; lie along a given line then so dogs

7. The principal eigenvectors are not necessarily the directions that give minimal reconstruction error
if the data is not centered: imagine data whose mean is both orthogonal to the principal eigenvector and far
from the origin. The single direction that gives minimal reconstruction error will be close to the mean.

8. Recall that Lagrange multipliers can be chosen in any way that results in a solution satisfying the
constraints.

9. Infact the method is more generai:can be any complete, normed vector space with inner product
(i.e. any Hilbert space), in which case the dot product in the above argument is replaced by the inner product.

10. Although in that simple example, the astute investigator would notice that all her data vectors have
the same length, and conclude from the fact that the projected density is independent of projection direction
that the data must be uniformly distributed on the sphere.

11. It's interesting that this can be used to perform 'kernel completion’, that is, reconstruction of a kernel
with missing values; for example, suppdsehas rank 2 and that its first two rows (and hence columns) are
linearly independent, and suppose tiiathas met with an unfortunate accident that has resulted in all of
its elements, except those in the first two rows or columns, being set equal to zero. Then the Ariginal
easily regrown using’ = B’A~1B.

12. The only proof | have seen for this assertion is due to Frank McSherry, Microsoft Research.

13. The last term can also be viewed as an unimportant shift in origin; in the case of a single test point,
so can the second term, but we cannot rely on this argument for multiple test points, since the summand in
the second term depends on the test point.



Geometric Methods for Feature Extraction and Dimensional Reduction 31

References

M.A. Aizerman, E.M. Braverman, and L.I. Rozoner. Theoretical foundations
of the potential function method in pattern recognition learnfagomation
and Remote ContrpR5:821-837, 1964.

P.F. Baldi and K. Hornik. Learning in linear neural networks: A survE£E
Transactions on Neural Networks(4):837-858, July 1995.

A. Basilevsky.Statistical Factor Analysis and Related Metho@dley, New
York, 1994.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representatiadeural Computation15(6):1373-1396, 2003.

Y. Bengio, J. Paiement, and P. Vincent. Out-of-sample extensions for LLE,
Isomap, MDS, Eigenmaps and spectral clusteringAdivances in Neural
Information Processing Systems MIT Press, 2004.

C. Berg, J.P.R. Christensen, and P. Ressatmonic Analysys on Semigroups
Springer-Verlag, 1984.

C. M. Bishop. Bayesian PCA. In M. S. Kearns, S. A. Solla, and D. A. Cohn,
editors,Advances in Neural Information Processing Systevolume 11,
pages 382-388, Cambridge, MA, 1999. The MIT Press.

I. Borg and P. Groenemlodern Multidimensional Scaling: Theory and Appli-
cations Springer, 1997.

B. E. Boser, I. M. Guyon, and V .Vapnik. A training algorithm for optimal
margin classifiers. IrFifth Annual Workshop on Computational Learning
Theory pages 144-152, Pittsburgh, 1992. ACM.

C.J.C. Burges. Some Notes on Applied Mathematics for Machine Learning. In
0. Bousquet, U. von Luxburg, and GaRch, editorsAdvanced Lectures
on Machine Learningpages 21-40. Springer Lecture Notes in Aritificial
Intelligence, 2004.

C.J.C. Burges, J.C. Platt, and S. Jana. Extracting noise-robust features from au-
dio. In Proc. IEEE Conference on Acoustics, Speech and Signal Processing
pages 1021-1024. IEEE Signal Processing Society, 2002.

C.J.C. Burges, J.C. Platt, and S. Jana. Distortion discriminant analysis for
audio fingerprintinglEEE Transactions on Speech and Audio Processing
11(3):165-174, 2003.

F.R.K. ChungSpectral Graph TheoryAmerican Mathematical Society, 1997.

T.F. Cox and M.A.A. CoxMultidimensional ScalingChapman and Hall, 2001.

R.B. Darlington. Factor analysis. Technical report, Cornell University,
http://comp9.psych.cornell.edu/Darlington/factor.htm.

V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear di-
mensionality reduction. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systemspafes 705-712.
MIT Press, 2002.



32

P. Diaconis and D. Freedman. Asymptotics of graphical projection pufsuit.
nals of Statistics12:793-815, 1984.

K.l. Diamantaras and S.Y. Kun@grincipal Component Neural Network¥ohn
Wiley, 1996.

R.O. Duda and P.E. HarPattern Classification and Scene Analysishn Wi-
ley, 1973.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the
Nystrom methodlEEE Trans. Pattern Analysis and Machine Intelligence
26(2), 2004.

J.H. Friedman and W. Stuetzle. Projection pursuit regressiournal of the
American Statistical Associatipii6(376):817-823, 1981.

J.H. Friedman, W. Stuetzle, and A. Schroeder. Projection pursuit density esti-
mation.J. Amer. Statistical Assqc79:599-608, 1984.

J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory
data analysidEEE Transactions on Computeis23(9):881-890, 1974.

G.H. Golub and C.F. Van LoaMatrix ComputationsJohns Hopkins, third
edition, 1996.

M. Gondran and M. MinouxGraphs and AlgorithmsJohn Wiley and Sons,
1984.

. Guyon. NIPS 2003 workshop on feature extraction:
http://clopinet.com/isabelle/Projects/NIPS2003/.

J. Ham, D.D. Lee, S. Mika, and B. Salkopf. A kernel view of dimensionality
reduction of manifolds. IfProceedings of the International Conference on
Machine Learning2004.

T.J. Hastie and W. Stuetzle. Principal curvésurnal of the American Statisti-
cal Association84(406):502-516, 1989.

R.A. Horn and C.R. JohnsoMatrix Analysis Cambridge University Press,
1985.

P.J. Huber. Projection pursuinnals of Statistigsl3(2):435-475, 1985.

A. Hyvarinen, J. Karhunen, and E. Ojadependent Component Analy3iéi-
ley, 2001.

Y. LeCun and Y. Bengio. Convolutional networks for images, speech and time-
series. In M. Arbib, editorThe Handbook of Brain Theory and Neural Net-
works MIT Press, 1995.

M. Meila and J. Shi. Learning segmentation by random walké&dwances in
Neural Information Processing Systemages 873—-879, 2000.

S. Mika, B. Scliolkopf, A. J. Smola, K.-R. Mller, M. Scholz, and G. &sch.
Kernel PCA and de—noising in feature spaces. In M. S. Kearns, S. A. Solla,
and D. A. Cohn, editorsAdvances in Neural Information Processing Sys-
tems 11MIT Press, 1999.



Geometric Methods for Feature Extraction and Dimensional Reduction 33

A. Y. Ng, M. |. Jordan, and Y. Weiss. On spectral clustering: analysis and an
algorithm. InAdvances in Neural Information Processing Systemdil%
Press, 2002.

J. Platt.Private Communicatian

J. Platt. Fastmap, MetricMap, and Landmark MDS are all Niystalgorithms.

In Z. Ghahramani and R. Cowell, editoaroc. 10th International Confer-
ence on Atrtificial Intelligence and Statistj@&005.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterigmerical
recipes in C: the art of scientific computinGambridge University Press,
2nd edition, 1992.

S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally lin-
ear embeddingscience290(22):2323-2326, 2000.

I.J. Schoenberg. Remarks to maurice frechet'’s arsiatda cefinition axioma-
tique d’'une classe d’espace distaggivectoriellement applicable sur I'espace
de hilbert Annals of Mathemati¢c86:724—732, 1935.

B. Scholkopf. The kernel trick for distances. In T.K. Leen, T.G. Dietterich, and
V. Tresp, editorsAdvances in Neural Information Processing Systems 13
pages 301-307. MIT Press, 2001.

B. Sclolkopf and A. SmolaLearning with KernelsMIT Press, 2002.

B. Scholkopf, A. Smola, and K-R. Muller. Nonlinear component analysis as
a kernel eigenvalue problemeural Computation10(5):1299-1319, 1998.

J. Shi and J. Malik. Normalized cuts and image segmentatitiE Transac-
tions on Pattern Analysis and Machine Intelligen22(8):888-905, 2000.

C.E. Spearman. 'General intelligence’ objectively determined and measured.
American Journal of Psychology:201-293, 1904.

C.J. Stone. Optimal global rates of convergence for nonparametric regression.
Annals of Statistics10(4):1040-1053, 1982.

J.B. Tenenbaum. Mapping a manifold of perceptual observations. In Michael I.
Jordan, Michael J. Kearns, and Sara A. Solla, editadvances in Neural
Information Processing Systemw®lume 10. The MIT Press, 1998.

M.E. Tipping and C.M. Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical SocieB1(3):611, 1999A.

M.E. Tipping and C.M. Bishop. Mixtures of probabilistic principal component
analyzersNeural Computation11(2):443—-482, 1999B.

P. Viola and M. Jones. Robust real-time object detectiorBdnond interna-
tional workshop on statistical and computational theories of vision - mod-
eling, learning, computing, and samplirg001.

S. Wilks. Mathematical Statisticslohn Wiley, 1962.

C.K.I. Williams. On a Connection between Kernel PCA and Metric Multidi-
mensional Scaling. In T.K. Leen, T.G. Dietterich, and V. Tresp, ediuls,
vances in Neural Information Processing Systemages 675-681. MIT
Press, 2001.



34

C.K.I. Williams and M. Seeger. Using the Ny&tn method to speed up ker-
nel machines. In Leen, Dietterich, and Tresp, editdidyances in Neural
Information Processing Systems, pages 682—688. MIT Press, 2001.



