
Deployment of a Large-scale Peer-to-Peer Social Network

Mao Yang†, Hua Chen†, Ben Y. Zhao§, Yafei Dai†, and Zheng Zhang‡
†Peking University, Beijing, China

§U. C. Santa Barbara, Santa Barbara, CA
‡Microsoft Research Asia, Beijing, China

{ym,dyf}@net.pku.edu.cn, ravenben@cs.ucsb.edu, {i-tochen,zzhang}@microsoft.com

Abstract

We present the design and architecture of the Maze file-
sharing and social network. Maze is one of the first
large-scale deployments of an academic research project,
with over 210,000 registered users and more than 10,000
users online at any time, sharing over 140 million files.
Maze includes an evolving incentive structure, and sim-
ple mechanisms for providing network locality. We out-
line the Maze architecture and describe initial results
from a measurement study.

1 Introduction

The peer-to-peer model was made popular by file-sharing
applications such as Napster [7] and Gnutella [2]. Recent
file-sharing applications such as Kazaa [9], Overnet [10]
and BitTorrent [4] provide improved scalability and per-
formance. Since then, a number of efforts have been
made to better understand their operation and the impact
of different incentives and mechanisms on performance,
scalability and user behavior [12, 13]. However, the
highly distributed indexing and querying of these pro-
tocols has limited researchers to indirect measurements
and inference at edge nodes.

To better understand the operational properties of
these systems, we describe the design, implementation
and deployment of Maze, a peer-to-peer file-sharing ap-
plication with support for network locality and evolv-
ing incentive policies. Maze is similar in structure to
Napster, with a centralized, cluster-based search engine,
augmented with a social network of peers. This hy-
brid architecture offers keyword-based search with sim-
ple locality-based download optimizations. Maze relies
on a set of incentive policies driven by direct user feed-
back from public forums such as BBSes. These policies
successfully encourage sharing between using, avoid-

ing the free-loading problem plaguing many similar net-
works. Finally, MAZE also support node authentication
and NAT-traversal, both described in more detail in [3].

Maze is designed and engineered by our academic re-
search team. With control over source code and the abil-
ity to deploy software updates, we can leverage Maze
as a large-scale measurement platform. Additionally,
the centralized query processing and metadata indexing
gives us access to information on all files stored in the
system as well as all query traffic. This allows us to pre-
cisely measure user query patterns, file metadata and size
distributions, and monitor changes in user behavior fol-
lowing mechanism and policy changes.

Maze is in its 4th major software release, and is cur-
rently deployed across a large number of hosts inside
China’s internal network. As of July 2004, Maze in-
cludes a user population of 210,000 users and supports
searches on 140 million files (20 million unique) total-
ing over 226TB of data. At any given time, there are
over 10,000 users online, and over 2700 active searches
or transfers occurring simultaneously.

The paper is structured as follows. First, we present
the motivation and design of the Maze network in Sec-
tion 2. We then discuss our deployment experiences and
some lessons learned in Section 3. Next, we present ini-
tial measurement results in Section 4. Finally, we discuss
related work in Section 5 and conclude in Section 6.

2 The Maze Network

In this section, we begin by describing the motivation
behind the Maze system and its goals. We then describe
the design of the Maze system and discuss its incentives
structure.

Maze Client Maze Servers

W
id

e−
ar

ea
 In

te
rn

et

L
o

ca
l A

re
a

N
et

w
o

rk

step 1
FileUploadServer

step 2

step 4

step 3

index servers

search servers

Figure 1: Operations in Maze: 1) Clients upload file meta-
data to a Maze server; 2) Metadata is replicated to a subset of
index servers, where they are indexed; 3) Clients send queries
to Maze search servers; and 4) Queries are resolved by index
servers.

2.1 Background

FTP servers across the high-bandwidth CERNET 1 pro-
vide a large amount of publicly accessible software and
documents to educational computing users in China. To
address the problem of locating documents across these
servers, we built a search engine called T-Net. While it
was successful and well-received, T-Net did not solve the
basic problems of FTP servers: limited bandwidth and
availability.

Feedback from T-Net users led to the design of Maze,
a peer-to-peer file-sharing application designed with four
goals in mind. First, the network should locate repli-
cas in nearby networks whenever possible for efficiency.
Next, it needs to reduce the occurrence of “free-riding,”
where users quickly log off after downloads to minimize
their contribution of resources. This requires a strong in-
centives mechanism that encourages users to share their
resources. Third, Maze should leverage social relation-
ships between users to improve efficiency of searches
and quality of results. Finally, we want to retain full con-
trol over code and deployment so that we can leverage
Maze as a platform to experiment with different designs,
incentive and security policies, and as a source of de-
tailed file-sharing measurements.

1CERNET stands for China Education and Research Network, and
is similar to InternetII in structure and bandwidth. Bandwidth between
peers ranges from 64kb/s to 2Gb/s. More information can be found at
http://www.cernet.edu.cn/.

2.2 Maze Design

Default operation under Maze is similar to that of the
Napster file-sharing network. In general, each shared file
has a small set of associated metadata fields, including
owner ID (OID), file name, file type, size, date of cre-
ation, and a MD5 [11] hashed signature. Searches on
any combination of these fields are possible, including
wildcard searches and range queries.

A collection of index servers store information about
all files available on peer nodes, regardless of whether a
particular node is online at the moment. When clients
first come online, they send heartbeat beacons to one
of the Maze heartbeat servers, along with an update of
which files they have currently available by signature.
These are compared to those stored on index servers,
and additional metadata is sent for newly acquired files.
Metadata is partitioned via simple hashing by OID into
a subset of the index servers, where it is indexed by a
number of fields for fast searching.

Each search server receives client queries and for-
wards them to all index servers. It then filters the search
results against a list of nodes currently online and replies
to the client. The client then contacts multiple repli-
cas to perform a “swarm download,” where fragments
of the file are downloaded simultaneously from different
sources. Querying all indices means that the system re-
turns a positive search match even if only a single replica
matches. These steps are shown in Figure 1.

Maze enhances locality of search results by match-
ing the location of replicas with that of the client us-
ing IP address similarity. By default, Maze returns those
search results first where the replica location’s IP address
matches the client’s address on the first 24 or 16 bits.
This equates to preferring hosts in the same class C or
class B network, and provides a simple but effective way
of localizing file transfers within local area networks.

Maze adds NAT-traversal mechanisms to allow users
behind firewalls and NAT boxes to communicate by for-
warding through their peers [3]. In addition, users can
build a social network of “friend lists” by adding users
based on query results or user IDs. Users can browse
friends’ libraries to find files based on common inter-
ests, or forward queries on the social network using a
Gnutella-style search algorithm. Whenever a peer ac-
cepts a download request for a local file, that request is
forwarded to peers on its friends list, and the client could
swarm download across all result replicas. Finally, a peer
sends keep-alive heartbeats to each peer on its friends
list, maintaining connectivity and searching functional-
ity when the central Maze servers become unavailable.

2.3 Incentive Model

File-sharing applications have generally faced the chal-
lenge of dealing with “free-riders,” users who log on,
download their desired files and quickly log off to con-
serve their resources [1]. To enforce fairness, researchers
have examined the issue of incentives from a variety of
perspectives, ranging from game-theoretic [8] to practi-
cal application-specific [4, 5] approaches.

In Maze, we use an incentive system where users are
rewarded points for uploading, and expend points for
successful downloads. Our approach is novel in that
the algorithm for calculating “points” has evolved over
time as a result of direct feedback from the user commu-
nity. Maze has an extremely active user forum (similar in
form to a BBS), where users actively communicate with
their peers. The exact parameters of our algorithm were
agreed upon by the user community in large online dis-
cussions. The exact algorithm is as follows:

1. New users are initialized with 4096 points.

2. Uploads: +1.5 points per MB uploaded

3. Downloads: -1 point per MB downloaded within
100MB, -0.7 per additional MB between 100MB
and 400MB, -0.4/MB between 400MB and 800MB,
and -0.1 per additional MB over 800.

4. Downloads requests are ordered by:
T = requestT ime− 3 ∗ logP , where P is a user’s
point total.

5. Users with P < 512 have a download bandwidth
quota of 300Kb/s.

The incentive system was designed to give download-
ing preference to users with high scores. These users
add to their request time a negative offset whose mag-
nitude grows logarithmically with their score. In con-
trast, a bandwidth quota is applied to downloads of users
with lower scores (< 512). Additionally, while we en-
couraged uploads and deducted points for downloads,
we recognized that the majority of bytes exchanged on
Maze were large multimedia files, and made the down-
load point adjustment graduated to weigh less heavily on
extremely large files. We note that this is consistent with
our observation that a large number of users have ac-
cess to high-bandwidth links (we estimate roughly 75%
of users are inside CERNET). While bandwidth bottle-
necks between CERNET and the external network limit
connections to near-dialup rates (5KB/s), the availabil-
ity of highly sought-after files in Maze attracts and keeps
external users.

Finally, we note that the online user community was a
key contributor to the success of our incentive model. In-
stead of fostering an environment that encouraged users

Date Registered Online Active
09/01/2003 *
10/06/2003 100 < 10
11/26/2003 600 50
01/05/2004 * 1000 100
03/01/2004 30,000 1600 250
03/20/2004 * 45,000 3400 400
04/20/2004 60,000 5000 1000
05/20/2004 80,000 6000 1500
06/04/2004 100,000 7000 2000
06/18/2004 * 120,000 10,000 2700

Table 1: The growth of the Maze online user population. * de-
notes the release of a major software revision.

to work individually to cheat the system, the virtual com-
munity encouraged active cooperation between users,
and associated a level of “prestige” with high point val-
ues. Users who shared large libraries of files were “re-
spected” and even revered for their efforts. Clients post-
ing requests for files on the forum were often inundated
with responses by users who wanted to upload their files
to obtain additional points. User vigilance also prevented
others from hacking the software to artificially inflate
their point totals, as was done in Kazaa 2.

3 Deployment Experiences

In this section, we describe some of our experiences
and lessons from deploying and running the Maze sys-
tem. We released the Maze client software in September
2003 3. Since then, Maze has gone through 3 major revi-
sions in less than a year, and gained over 100K registered
users. Our current data show over 200K registered users.

3.1 Deployment and Upgrades

As research software, Maze was initially used only by
the research team. The next group of adopters included
FTP site maintainers, who formed the initial stable core
of the user base, attracting new users with high band-
width links and large amounts of content. A BBS forum
was then formed, and attracted a large number of par-
ticipants who became the next group of adopters. Since
then, Maze has grown quickly by word of mouth, in part
due to the ability to introduce friends and establish social
links. Table 3 shows the rapid growth of Maze.

After deployment, the Maze client software was up-
graded three times to improve performance and reduce

2Kazaa uses participation level to limit the maximum range of a
user query. Kazaa-lite and other programs allowed users to perma-
nently set their PL to the maximum value of 1000.

3The Maze public release is available from http://maze.pku.
edu.cn, but is currently available only via China’s internal network.

resource utilization. Maze clients automatically detect
and download upgrades, but only perform the upgrade af-
ter querying the user. The first upgrade was necessary to
adjust heartbeat rates between outside nodes and nodes
behind NAT boxes. The team initially believed a high
frequency heartbeat (every 2 seconds) was necessary to
maintain persistent connections across the NAT bound-
ary. Later tests showed a 30 second interval between
heartbeats was sufficient. The upgrade significantly re-
duced network traffic to and from hosts behind NAT
boxes. A second upgrade fixed a bug in the client that
would cause it to flood heartbeats to the Maze servers.
Later upgrades focused on minimizing CPU and mem-
ory utilization.

Direct feedback from the user community was crucial
in identifying and diagnosing software bugs. Despite in-
ternal tests before deployment, new bugs were occasion-
ally introduced in software upgrades. In one instance, a
complete rewrite of the Maze server software made it im-
possible for a number of clients to connect. By actively
monitoring the user forum and server connections, the
team quickly identified and corrected the problem.

3.2 Misuses of the System

Users used a number of ways to improve their points
level in the Maze system. First, some users ran multi-
ple instances of Maze on a single machine, and trans-
ferred files between them to artificially boost their point
scores. Next, 20% of all users try to get around the
incentive structure by switching to new identities when
the current point level has dropped significantly follow-
ing downloads. Third, some users modified metadata on
their files to spoof new, highly popular files in the hopes
of soliciting additional downloads to boost their points.
Finally, some users embed popular search strings in the
metadata of their files to make them appear more in other
users’ search results.

3.3 Lessons Learned

Our experience with the centralized design of Maze
yielded some surprises. While centralized servers are
generally regarded as communication bottlenecks and
single points of failure, that was not an issue with Maze.
For example, a central set of servers that maintained
heartbeats with client nodes scaled well with the user
population. A dual-CPU P-III 733MHz machine only
uses 3% of its CPU time to process heartbeat messages
for 20-30K nodes, using heartbeat frequencies of 2 per
minute and small heartbeat packets (< 200 Bytes). Fur-
thermore, Maze servers did not experience any correlated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06 1e+07

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

File size (KBytes)

File Count
Total Bytes

Figure 2: CDF plotted of both the file count and total bytes by
file sizes of all files in the Maze network.

failures that significantly degraded system availability.
Instead, the main limitation of the centralized approach
was in the processing power required to update file in-
dices. Using a small number of index servers, we can
build an index of 10 million files from scratch within an
hour. As the number of files passed 150 million, how-
ever, indexing took up to 1 day. More files would imply
longer indexing times and less up-to-date file indices.

Looking back, we can attribute our current deploy-
ment success to a number of factors. First, software us-
ability and stability was critical to adoption of Maze by
mainstream network users. The user population acceler-
ated its growth when we released our truly stable version
in late March of 2004. Second, the virtual community of
BBS users provided a way for users to interact on a per-
sonal level. It provided a peer to peer support system, and
through personal interactions, gave additional weight to
the incentive point system. Peers with high points gained
social status in the community, and that gave users higher
motivation to share content. Finally, Maze’s distinguish-
ing features like its novel incentive structure and locality-
aware searching attracted users away from existing file-
sharing applications.

4 Measurements

Maze currently supports over 210,000 users sharing over
226 TB of data, with the average user sharing over 5
GBs. Because our servers store all file indices and re-
solve user queries, we have information on every file
stored on Maze and can potentially log all requests in
the system. Here, we present initial measurement results
on the files shared, the structure of the social network,
and the number of virtual identities per user.

Ext # of Files %TotalBytes AvgSize(KB)
RMVB 334362 21.88% 158709.68
AVI 275889 21.23% 186626.61
RM 1019203 20.23% 48149.66
MP3 4334838 6.74% 3772.86
ISO 22397 3.95% 427622.73
MPG 135591 2.37% 42428.44
DAT 1156426 2.13% 4475.89
EXE 2398703 2.07% 2091.42
RAR 288717 1.75% 14695.52
WMV 312623 1.58% 12271.59
ASF 126527 1.51% 28987.30
ZIP 626296 1.05% 4062.07
Total 13107386 89.04% 16478.78

Table 2: Files belonging to each type sorted by total size in
bytes. Only types accounting for more than 1% of all bytes
stored are shown.

Ext # of Files %ofAllFiles AvgSize(KB)
GIF 16038090 11.47% 7.21
HTML 15224072 10.89% 10.11
JPG 9762371 6.98% 141.55
BMP 8290686 5.93% 48.03
M 4555857 3.26% 3.30
MP3 4334838 3.10% 3772.86
DLL 4309781 3.08% 230.00
PDG 4160744 2.98% 30.68
none 3789285 2.71% 223.21
TXT 3184824 2.28% 26.72
WAV 3183987 2.28% 219.07
EXE 2398703 1.72% 2091.42
H 2137047 1.53% 16.24
IRC 1464441 1.05% 3.26
PDF 1331841 0.95% 1214.01
Total 84166567 60.19% 330.77

Table 3: Files belonging to each type sorted by frequency.
Only extensions accounting for near 1% of all files are shown.

We begin by quantifying the size and type of files be-
ing distributed in the Maze network. We plot the distri-
bution of file sizes and count as CDFs in Figure 2. Our
results largely confirm those from U. of Washington [12]:
a small portion of the total files contribute the large ma-
jority of bytes stored.

Unlike previous studies, we can characterize every
file stored in Maze according to file type and size. We
gather this information from file indices in the Maze in-
dex servers, and present them as Tables 4 and 4. Not
surprisingly, Table 4 shows the bulk of bytes stored
are in the form of large digital movie and music files
(AVI, RMVB, RM, and MP3 formats). But Table 4 shows
that the large majority of files are small files less than
4MBs. The largest groups of files belong to cached
webpages (HTML) and embedded graphics files (GIF,
JPG, BMP). In fact, we see that large movie files make
up less than 1% of all files (0.24% RMVB, 0.22% WMV,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

Per-node In/Out Degree

Indegree
Outdegree

Figure 3: CDF showing the in-degree and out-degree distribu-
tions of the Maze social network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

of Identities per Serial

Figure 4: CDF showing the distribution of virtual nodes across
machines in the Maze network.

0.20% AVI).
Next, we examine the structure of the Maze social net-

work. We reconstruct the social network by examining
node metadata at the heartbeat servers, and plot the dis-
tribution of in-degrees and out-degrees in Figure 3. Out-
degree counts the number of nodes in a node’s friend list,
while a node’s in-degree is the number of times it appears
in other nodes’ friend lists. The snapshot only takes into
account social links between live nodes currently in the
network. As the data shows, a large portion (60%) of all
nodes have empty friend lists while a small portion of
Maze nodes have extremely large friend lists. Overall,
66% of all users are connected via social links. We also
observe that the social network exhibits properties of a
small-world network, and has a diameter of 16 hops.

Finally, we wanted to determine how often users run
multiple Maze instances on a single physical machine.
Users can run multiple virtual nodes on a single machine

in order to deceive the incentive system and artificially
boost a user’s points (see Section 3). Users can also use
virtualization to perform a Sybil attack [6] on specific
nodes or the central Maze servers.

To quantify virtualization, we need to identify Maze
nodes running on the same distinct host. Identification by
IP address would be insufficient, since a significant por-
tion of hosts are sharing IP addresses behind NAT boxes.
Our solution uses a windows API call that reads and re-
ports the serial number of the local machine’s harddrive.
This serial number uniquely identifies a machine, regard-
less of its position in the network.

As shown in Figure 4, the level of node virtualization
is relatively low. 74% of all Maze nodes run on unique
machines. Other machines run a small number of vir-
tual nodes, enough to locally boost user points, but not
enough to perform serious attacks on nodes or servers.

5 Related Work

File-sharing applications first brought attention to peer-
to-peer systems. Napster [7] used centralized servers to
index available files on its application nodes. Kazaa [9]
uses a two-level hierarchical structure, where supernodes
stores indices of files shared by nearby clients. Maze dif-
fers from these systems in that it supplements the normal
network structure with a social network, and uses incen-
tives as a key part of its resource allocation and download
scheduling policies.

Mojonation [14] used a virtual currency (mojos) to
provide incentive for cooperative sharing. In contrast,
Maze uses a community discussion board to actively so-
licit feedback on the incentive structure from the user
population. BitTorrent [4] enforces a modified version
of the pair-wise tit-for-tat data sharing model for clients
performing simultaneous downloads. However, it only
targets clients who are actively downloading the same
document.

Maze also differs from existing protocols in using
an explicit IP address scoping mechanism to provide
locality-aware search results to the end user, resulting in
faster downloads and lower bandwidth consumption. Fi-
nally, Maze is completely designed, developed, and de-
ployed by an academic research project.

6 Conclusion

Maze is a file-sharing application designed and imple-
mented by an academic research project and currently
used by over 210,000 users. In addition to server based
file indices, peers connect to each other using a social

network, and can rely on friends to resolve queries and
forward traffic between hosts behind NAT boxes. Maze
uses IP address matching to recognize network locality
and encourage downloads from nearby replicas. In addi-
tion, Maze leverages an active user forum to determine
and encourage the use of an incentive policy.

We are currently working on embedding additional
measurement hooks into future client software updates.
These updates will give us more insight into client be-
havior, and will also allow us to use Maze nodes as a
distributed measurement platform.

Acknowledgments

The authors would like to thank Yang Zhao and Hanyu
Liu for their work on the Maze system, and Professor
Xiaoming Li for his guidance.

References

[1] ADAR, E., AND HUBERMAN, B. Free riding on gnutella. First
Monday 5, 10 (Oct. 2000).

[2] ANONYMOUS. What is gnutella? http://www.
gnutellanews.com/information/what_is_
gnutella.shtml.

[3] CHEN, H., YANG, M., HAN, J., DENG, H., AND LI, X. Maze:
a social peer-to-peer network. In Proc. of CEC’04-East (Sept.
2004), IEEE.

[4] COHEN, B. Incentives build robustness in bittorrent. In Proc. of
1st Workshop on Economics of Peer-to-Peer Systems (June 2003).

[5] COX, L. P., AND NOBLE, B. D. Samsara: Honor among thieves
in peer-to-peer storage. In Proc. of SOSP (Bolton Landing, NY,
Oct. 2003).

[6] DOUCEUR, J. R. The Sybil attack. In Proc. of IPTPS (Mar 2002),
pp. 251–260.

[7] FANNING, S. Napster. http://www.napster.com.

[8] GOLLE, P., LEYTON-BROWN, K., AND MIRONOV, I. Incentives
for sharing in peer-to-peer networks. In Proc. of the 3rd ACM
conference on Electronic Commerce (2001).

[9] KaZaa media desktop. http://www.kazaa.com. Using
Fasttrack: http://www.fasttrack.nu.

[10] Overnet. http://www.overnet.com.

[11] ROBSHAW, M. J. B. MD2, MD4, MD5, SHA and other hash
functions. Tech. Rep. TR-101, RSA Laboratories, 1995. v. 4.0.

[12] SAROIU, S., GUMMADI, K. P., DUNN, R. J., GRIBBLE, S. D.,
AND LEVY, H. M. An analysis of internet content delivery sys-
tems. In Proc. of OSDI (Dec 2002), ACM.

[13] SAROIU, S., GUMMADI, P. K., AND GRIBBLE, S. A measure-
ment study of peer-to-peer file sharing systems. In Multimedia
Computing and Networking (2002).

[14] WILCOX-O’HEARN, B. Experiences deploying a large-scale
emergent network. In Proc. of IPTPS (Mar 2002).

