
Building Scalable and Robust Peer-to-Peer Overlay Networks for

Broadcasting using Network Coding

Kamal Jain∗ László Lovász∗ Philip A. Chou∗

Abstract

We propose a scheme for building peer-to-peer overlay networks for broadcasting using net-
work coding. The scheme addresses many practical issues such as scalability, robustness, con-
straints on bandwidth, and locality of decisions. We analyze the system theoretically and prove
near optimal bounds on the parameters defining robustness and scalability. As a result we show
that the effects of failures are contained locally, allowing the network to grow exponentially with
server load. We also argue that adversarial failures are no more harmful than random failures.

1 Introduction

Consider a scenario where a server has content, such as a movie, that millions of clients would
like to receive over the Internet, whether by downloading the content, or by streaming and playing
the content in real time. The server has limited bandwidth. It has sufficient bandwidth to serve
tens or perhaps hundreds of nodes, but not millions. In the absense of IP multicast, one solution
is to form the server and clients into a peer-to-peer overlay network, and distribute the content
using application layer multicast [6]. In multicast, the server sends the content to a collection of
nodes, each node fowards the content to several other nodes, which in turn forward to several other
nodes, and so forth. A problem with peer-to-peer application layer multicast is that the nodes are
typically residential end-hosts, which are unreliable compared to routers, and furthermore do not
have enough outgoing bandwidth to be able to forward the content to many other nodes. Moreover,
a node has little incentive to forward the content to many other nodes. However, it is reasonable
to assume that each node has enough bandwidth and incentive to forward the content to one other
node. This would reduce the multicast distribution tree to a distribution “path”. This could be an
acceptable solution if the nodes were reliable. However, if there are a million nodes and the server
is sending content directly to only one hundred nodes (the server’s children), then there are nodes
that are getting the content through approximately ten thousands hops. Even if there is a small
probability that any particular node fails, the probability that any one of the upstream nodes fails
is significant.

There has been a fair amount of work on this problem. (See for example [4, 10] and the
references therein.) The past work suggests that a node should be getting data from a small
number of other nodes, that is, from more nodes than just a single parent, and that it should
send data to an equal number (or approximately equal number) of child nodes. This honors the
constraint of approximately equal input and output bandwidths, while allowing far shorter paths
from the server. The data may be encoded with erasure codes (e.g., Reed-Solomon codes) or
multiple description codes, so that it is not necessary for a node to get data successfully from all
its parents. This solution improves the robustness over the previous solution, but reliability still
degrades as the network gets larger if the number of connections between a node and its parents
stays fixed. Moreover the building and maintenance of the overlay network can become complex if
routing structures need to be maintained.

We propose a simple scheme for building overlay networks. Whenever a new node joins the
network, it is connected randomly with other nodes (as detailed in Section 3). This results in a

∗Address: One Microsoft Way, Redmond, WA 98052, USA, E-mail: {kamalj, lovasz, pachou}@microsoft.com.

random graph as the network topology. Intuitively, random graphs have good connectivity. If every
node has d parents, then most likely every node has connectivity d (i.e., d edge-disjoint paths) from
the server. Random graphs also have good expansion properties. So if every node has d parents,
then most likely every node will have about d2 grandparents. If a node loses one of its parents
due to a failure, then it will clearly suffer a loss of connectivity from the server. However, good
expansion implies that if a node loses one of its grandparents, then most likely it will not suffer a
loss of connectivity from the server. We show formally in Theorem 4 that if node failures are iid
with probability p, then the probability of a working node’s overall loss of connectivity from the
server is about the same as the probability of the node’s loss of connectivity from the server due to
its parents’ failures only, namely, about pd. So in effect, the impact of a node failure is localized.
If a node fails then only its immediate children — not its grandchildren or other nodes — suffer a
loss of connectivity from the server. The probability that a working node loses connectivity from
the server does not increase as the size of the network grows.

Once we have such a strong guarantee on connectivity, in theory we can use Edmonds’ matroid
partition theorem [8] to do optimal multicast using multiple multicast trees. However, this theoret-
ical solution is quite impractical to implement, though it achieves significantly better throughput
than previously proposed solutions. As with many of the previously proposed solutions, it will need
to recompute, when a node fails, the partition of the overlay network into multicast trees. This is
not feasible if the node failures are short-lived events, such as packet loss or momentary congestion.

A more practical approach is to apply the idea of network coding [1, 9, 5, 13]. Alswede et al.
showed that it is possible to broadcast information to all nodes at a rate equal to the minimum
of the nodes’ maximum rates of flow from the server, by mixing the packets of data entering each
node using random functions [1]. Li, Yeung and Cai showed further that it is sufficient to use only
random linear functions [9]. So if a node receives two packets A and B of the same size and it
needs to forward one packet, then the node picks a random linear function f and sends the packet
f(A,B) having the same default size. It is worth stressing that the possibility of broadcasting at
this maximal rate, which is implied by the theorem of Alswede et al., is not novel here, because
in our case all the nodes are receivers and an existing theorem, namely Edmonds’ theorem [8],
already proves that it is possible to broadcast at the maximal rate in this case. The novelty
here is the randomization. Chou, Wu and Jain showed how randomization can be used to obtain
practical network coding systems [5]. In their scheme, the intermediate network nodes buffer
packets, produce new packets as random linear combinations of the buffered packets, and send
within each new packet a small set of coefficients that expresses the packet as a linear combination
of an original set of packets. As each new packet carries within it the coefficients that are ultimately
needed to decode or recode the packet, packets are decodable even if the network topology changes
or components fail. Further, they showed through simulations using real network data that the
throughput obtained using practical network coding is typically close to the optimum broadcast
capacity. Finally, our collaborators Rodriguez and Gkantsidis show [13] (contemporaneously with
this paper) that network coding can be used for large scale file distribution using a practical
implementation based on [5] similar to the scheme we describe in this paper.

In this paper, we consider multicast in the overlay network from a general point of view: com-
munication of common information from a source to a set of nodes. The communication may be
realtime, or synchronous, as when broadcasting a live or pre-recorded television event to a set of
receivers at nearly the same time, or it may be non-realtime, or asynchronous, as when download-
ing a file to a set of receivers at possibly different times. Asynchronous communication can be
regarded as synchronous communication in which transmission of bits across a link can be deferred
by buffering. Otherwise they are quite similar. In this paper we choose to use the terminology
of synchronous communication with the understanding that the two types of communication have

2

corresponding concepts. For example, in synchronous communication bit rate refers to a number
of bits per second, while in asynchronous communication the corresponding concept is simply a
number of bits (per download task). Bit rate is often called bandwidth in this paper.

2 Setup and problem definition

We denote by N the number of nodes. Each node, or user has the same upload and download
bandwidths. If the download bandwidth is more than the upload bandwidth, which is true for
many DSL and cable modems, then we simply use the download bandwidth to the extent of the
upload bandwidth. (For asynchronous communication this corresponds to transmitting the same
number of bits that we receive for a file.) If the upload bandwidth is more than the download
bandwidth then it only helps our system, though for simplicity, in this case we use only the upload
bandwidth to the extent of the download bandwidth. Again for notational simplicity we assume
that all users have the same nominal bandwidth. One can easily generalize our system to the case
where different users have different nominal bandwidths. The actual bandwidths available to a user
may be temporarily reduced below its nominal bandwidth due to congestion and competing traffic.
Such bandwidth reductions can be treated as temporary failures, and will be briefly addressed
below.

We decompose the bandwidth of each user into d equal “units” of bandwidth. In terms of
this unit of bandwidth, the server bandwidth is denoted by k. (Thus the server would be able to
support bk/dc users through unicast connections.) Each user is allowed to join the system at any
time and leave the system at any time. When joining the system the user is asked to follow a hello
protocol and when leaving the user is asked to follow a good-bye protocol. Such a leave is called a
graceful leave. If a node leaves otherwise (e.g., due to a system crash or killed application) the leave
is considered a non-ergodic failure. A failure can also be due to a temporary, unannounced outage
such as packet loss, network congestion, or other processes using the communication link. Such a
temporary outage is called an ergodic failure. When failures occur, communication suffers. (For
synchronous communication the bandwidth decreases, while for asynchronous communication the
download time increases.) For non-ergodic failures, the server and the other affected nodes engage
in repairs, basically to perform the steps that the leaving node was supposed to do in the good-bye
protocol. Let p be the probability that a node fails non-ergodically within the repair interval, or
fails ergodically. We expect p to be quite small, and we will put an upper bound on p in Section 4,
when we analyze the system.

The problems are how to build and maintain the overlay network (i.e., the hello protocol, the
good-bye protocol, and the repair procedure) as well as the how to use the overlay network so
that a large amount of data can be broadcast to a large number of users with high probability of
success. We propose a solution to the former problem in this paper and we refer to the network
coding literature for the latter problem. Network coding has been shown to be a good solution
both theoretically [1, 9] and practically [5, 13]. In this paper, in addition to proposing how to
build and maintain our overlay network, we prove that our overlay network has good theoretical
properties. We believe that our network will also have good properties in practice, since we have
made no impractical assumptions while proving the theoretical results (e.g., we did not take limits).
Simulation results indicate that this will be the case [13].

3 Building and maintaining the network

We assume that the server emits (up to) k streams of unit bandwidth, and that each client node
receives d streams of unit bandwidth and sends (up to) d streams of unit bandwidth. Imagine that
the server is a curtain rod with k threads hanging, each thread representing a stream. When a

3

node joins the network it picks d threads at random and clips them together. The clip represents
the node, the threads entering the clip represent the streams entering the node, and the threads
leaving the clip represent the streams leaving the node. Packets in the stream entering the node are
mixed (using random linear combinations) and the mixed packets are sent in the streams leaving
the node. Thus streams are mixed at each clip. We assume that newly arriving nodes clip the
threads at the bottom. That is, nodes that come later in time receive streams from those nodes
that came earlier in time. When a node leaves gracefully it just unclips the threads. That means
the node basically matches each of its d children to one of its d parents. At all times there are k
threads freely hanging from the bottom of the curtain. These threads represent a pool of slots, or
unserved streams, to which a new node can connect.

A data structure maintained by the server (or some other centralized authority) mirrors the
structure of the resulting network. The data structure is a matrix M of size N ′×k, where N ′ is the
number of users currently in the system. Each row of the matrix corresponds to a node and each
column corresponds to a thread. Each row of the matrix has exactly d ones and k−d zeroes. When
a new node joins, the server creates a new row at the end of the matrix M with exactly d ones
and k − d zeroes, selecting the locations of the d ones at random. When a node leaves gracefully,
the server deletes the corresponding row from the matrix M . The network topology captured by
M is as follows. Assume that the matrix M contains an additional row at the top of the matrix,
corresponding to the server, consisting of k ones. There is an edge from node i to node j if row i
appears before row j in the matrix and there is a column containing a one in row i, a one in row
j, and zeroes in all the intervening rows. Whenever there is an edge from node i to node j we say
that i is a parent of j and j is a child of i.

So when a new node wishes to join the network, it contacts the server. The server generates
a new row at random and asks the indicated parents to begin sending streams to the new node.
When an old node wishes to leave the network, it again contacts the server. The server asks the
old node’s parents to redirect their streams to the old node’s children, and then deletes the old
node’s row. When a node fails (non-ergodically), then eventually the children of the failed node
complain to the server. The server then asks the failed node’s parents to redirect their streams
to the failed node’s children, and deletes the failed node’s row. Persistent ergodic failures such as
packet loss or network congestion can be dealt with in a similar way. However, there are usually
more appropriate ways of dealing with the situation such as reducing the failing node’s bandwidth
[11]. Section 5 deals with such failures, as well as failures from adversarial attacks, and shows how
to take more appropriate steps than simply deleting the node.

Our scheme is similar in spirit to a number of other schemes for building and maintaining
peer-to-peer overlay networks (e.g., [3, 7, 12]). For example, in BitTorrent [7], a newly arriving
node contacts the server for a random list of peers. The new node uses the list to find multiple
parent nodes, from which it can receive streams with total bandwidth d. The new node then
becomes part of the network, and may be called upon to serve streams with total bandwidth d
to later-arriving nodes. The fact that BitTorrent has been used to deliver the 1.77 GByte Linux
Redhat 9 distribution to well over a hundred thousand clients testifies to the scalability of such a
central protocol. However, it is possible also to have a distributed protocol, as in [12], which uses
a gossip mechanism for a newly arriving node to find its parents. The specifics of the protocol are
less important than the topological structure of the resulting overlay network. Our protocol is an
abstraction of the above (and similar) protocols sufficient to allow analysis of the performance of
network coding within the resulting overlay network. Yet, our protocol is also sufficiently concrete
that a practical protocol can be derived from it if the network properties must be guaranteed.

4

4 Analysis

Let us recall our notation from the previous sections. We also make some additional assumptions.
We let k be the number of threads hanging from the server, and we let d be the number of
incoming and outgoing threads for each user, where d ≥ 2. We assume k ≥ cd2, for some large
enough constant c. We let p be the probability that a user fails in the repair interval. We assume
pd ≤ δ, for some small enough constant δ. Failure is different from a graceful leave. As argued
earlier, when a user leaves gracefully we effectively remove the corresponding row from M . This
means the probability distribution of M , over all possible matrices of the same size, is the same as
if the user had not had even joined the network. This gives us the following lemma.

Lemma 1 When a node leaves gracefully then the probability distribution of the network over all
possible networks is the same as if the node had not had even joined the network.

Also as argued earlier, when a node fails, then after the repair, its corresponding row from M
is removed by the server. So the failures that have been taken care of satisfy the above lemma too.
This means that we can estimate the properties of M by building it sequentially. For the proof,
we build M top down. Intially M has one row corresponding to server. We will call an addition
of a row in M a step or a unit of time. Note that as argued earlier, M contains the complete
information about the network except for the failures. We put an additional tag on each row of
M , denoting whether the corresponding node is a failed node or a working node. So, M together
with the tag represents the complete information about the network, which we consider a directed
acyclic graph on the working nodes.

Consider a node. According to the network coding theorem [1], it can receive the broadcast
at the rate equal to its edge connectivity from the server. The connectivity should ideally be d.
Its connectivity from the server will be affected by the failures of its immediate predecessors. The
probability of failure of one of its immediate predecessors is at most dp. There is a possibility that
its connectivity is affected by the failures of other nodes too. We show that this adds negligible
probability to dp. Formally, we show that the probability that its connectivity will be affected
is (1 + ε)dp. So in essence a node essentially feels only the effect of the failures of its immediate
predecessors and is not affected by the failures of other nodes in the network.

At any point in the network there are k threads hanging. A new node picks d of them at
random. Conceptually we interchange the time ordering of two events: a node joining the network
and it failing (or not). Instead we assume that the node tosses a coin before joining and thereby
joins the network as a failed node with probability p and as a working node with probability 1− p.
When it joins it picks random a set of d hanging threads.

Let N t denote the network after t nodes have joined (including the information on which of these
are failed nodes). Let Bt

j be the number of d-tuples of hanging threads that have edge-connectivity
d−j from the server (i.e., if a new node picks this d-tuple then its edge-connectivity from the server
will be d− j). Clearly

d∑
j=0

Bt
j = A =

(
k

d

)
is the total number of d tuples of hanging threads. We are interested in the number of “total
defects” measured by Bt = 1 ·B1 +2 ·B2 + · · ·+d ·Bd. Note that the number of defective d-tuples is
Bt

1 + · · ·+Bt
d ≤ Bt. The numbers Bt are random variables, where Bt depends only on the network

N t.

Lemma 2 Suppose a new node joins at time t + 1. The probability of it picking a bad d-tuple is
the expected number of bad d-tuples after time t, i.e., E[Bt

1 + · · ·+ Bt
d]/A.

5

Proof : The probability of it picking a bad d-tuple after time t is∑
i

i

A
prob

(
Bt

1 + · · ·+ Bt
d = i

)
=
∑

i i prob
(
Bt

1 + · · ·+ Bt
d = i

)
A

=
E[Bt

1 + · · ·+ Bt
d]

A

2

Lemma 3 Suppose a new node joins at time t + 1. The expected loss in its bandwidth is E[Bt]
A .

Proof : Elementary. Follows from the network coding theorem [1]. 2

Let us give an informal description of this process. If Bt/A < pd, then Bt+1 will be larger than
Bt in expectation; if pd < Bt/A < 1− ε, then Bt+1 will be smaller than Bt in expectation; finally,
if Bt/A is close to 1, then Bt+1 will again be larger than Bt in expectation. Thus the fraction of
bad d-tuples has a drift toward the small value pd as long as it does not get to close to 1. If it gets
close to 1, it will drift to 1, and the system will collapse. Our goal will be to show that this collapse
will not happen (except with a negligibly small probability) for a time that is exponential in k/d3.
Let us also point out that such a collapse cannot be avoided: with some probability all nodes that
join for a while will fail until no thread survives. The time before this happens is exponential in k.

Theorem 4 Before the system collapses, E[Bt]
A ≤ (1 + ε)pd.

Once we prove this theorem we will need to show that the system does not collapse for time
exponential in k. More exactly,

Theorem 5 The expected number of steps before the collapse is at least 1
ξ1

e
ξ2k

d3 , where ξ1 and ξ2

are two appropriately chosen constants.

The proof of this theorem will take several lemmas and is implied by Corollary 9.
Let us focus on the arrival of the t-th node first. For notational convenience, we suppress the

superscript t, and write B = Bt, B′ = Bt+1. When a failed node arrives, B tends to increase,
and when a working node arrives B tends to decrease. Consider the t-th arriving node; suppose it
picked a d-tuple denoted by D. The following lemma puts an upper bound on the maximum effect
of this node on B.

Lemma 6

|B′ −B| ≤ d2

k
A.

This bound cannot be improved in general; it is attained by the arrival of a single failed node
at the beginning.

Proof : Let T be any d-tuple of threads with |T ∩ D| = j. Then the maximum change in the
connectivity of T (up or down) is j. The number of such d-tuples is

(
d
j

)(
k−d
d−j

)
and their effect on B

is at most j
(
d
j

)(
k−d
d−j

)
= d
(
d−1
j−1

)(
k−d
d−j

)
. Summing this over all j gives:

d
∑

j

(
d− 1
j − 1

)(
k − d

d− j

)
= d

(
k − 1
d− 1

)
=

d2

k
A.

2

If the arriving node is a failure then B can increase by at most (d2/k)A. If the arriving node
is a working node then we show that the decrease of B is substantial, at least in expectation. The
following lemma is the heart of our analysis.

6

Lemma 7 If the total defect before a given step is B, and the new node is a working node, then
the total defect after this step satisfies

E[B′] ≤ B −B
d

k

(
1− d2

k
−
(

B

A

) d−1
d

)
.

Proof : We start by noting that the defects of d-tuples do not increase. All the probabilities
below will be conditional on N t and the event that the new node is working.

Consider a d-tuple F with connectivity d− j from the server, where j ≥ 1. Consider a (d− j)-
element edge-cut separating F from the server; among all such cuts, consider one for which the side
of the cut containing F is maximum. It is well known that this maximum is unique. Let T denote
the set of hanging threads on the same side of the cut as F , and let t = |T |. Any d-tuple chosen
from these t threads will have connectivity at most d− j from the server, hence we get(

t

d

)
≤ B.

We can choose a subset X ⊂ F with |X| = j so that F \X has d− j edge-disjoint paths to the
server. F gets an additional connectivity when the arriving node picks at least one thread from X
and at least one thread from outside T . We call this event a good event and the complement of this
a bad event. A bad event is when either the threads picked are all from T or none from X. Using
inclusion-exclusion, the probability of the bad event is:(

t

d

)
(

k

d

) +

(
k − j

d

)
(

k

d

) −

(
t− j

d

)
(

k

d

)
Hence the probability of the good event is:((

k

d

)
−
(

k − j

d

))
−
((

t

d

)
−
(

t− j

d

))
(

k

d

)
Let us try to lowerbound the first term of the numerator.(

k

d

)
−
(

k − j

d

)
=

j∑
i=1

(
k − i

d− 1

)
We achieve a lowerbound on this by bounding the ratio of the i-th term with the first term on

the right hand side.

(
k − i

d− 1

)
(

k − 1
d− 1

) =
i−1∏
l=1

k − d− l + 1
k − l

≥
(

k − d− i + 2
k − i + 1

)i−1

=
(

1− d− 1
k − i + 1

)i−1

≥ 1−(i− 1)(d− 1)
k − i + 1

≥ 1− (d− 1)2

k − d + 1

7

Since we know that k ≥ d2, we can lowerbound the final term of the above inequality with
1− (d2/k). This all together yields:(

k

d

)
−
(

k − j

d

)
≥
(

1− d2

k

) j∑
i=1

(
k − 1
d− 1

)
= j

(
1− d2

k

)(
k − 1
d− 1

)
.

It is easy to show that (
t

d

)
−
(

t− j

d

)
=

j∑
i=1

(
t− i

d− 1

)
≤ j

(
t− 1
d− 1

)
.

Both together give a lower bound on the probability that the defect of F decreases:((
k

d

)
−
(

k − j

d

))
−
((

t

d

)
−
(

t− j

d

))
(

k

d

) ≥ j

(
1− d2

k

)(k − 1
d− 1

)
−
(

t− 1
d− 1

)
(

k

d

)
 .

We also know that
(

t
d

)
≤ B. Using this we want to upperbound

(
t−1
d−1

)
in terms of B. For

convenience let us upperbound the
(

t−1
d−1

)
/
(
k−1
d−1

)
in terms of B/A. We claim that(

t− 1
d− 1

)
(

k − 1
d− 1

) ≤
(

B

A

) d−1
d

. (1)

Indeed, (
t− 1
d− 1

)
(

k − 1
d− 1

) =
d−1∏
i=1

t− i

k − i
≤
(

t

k

)d−1

,

and hence
(

t− 1
d− 1

)
(

k − 1
d− 1

)

d

≤

 t

k

(
t− 1
d− 1

)
(

k − 1
d− 1

)

d−1

=

t
d

(
t− 1
d− 1

)
k
d

(
k − 1
d− 1

)

d−1

=

(

t

d

)
(

k

d

)

d−1

≤
(

B

A

)d−1

.

Using (1), the probability that the defect of F decreases can be bounded from below by

j

(
1− d2

k

)(k − 1
d− 1

)
−
(

t− 1
d− 1

)
(

k

d

)
 ≥ jd

k

(
1− d2

k
−
(

B

A

) d−1
d

)
.

Hence the expected decrease in the total defect is at least

∑
j

Bj
jd

k

(
1− d2

k
−
(

B

A

) d−1
d

)
= B

d

k

(
1− d2

k
−
(

B

A

) d−1
d

)
.

8

This proves Lemma 7. 2

Let b = B
A , b′ = B′

A . We want to compare E[b′] with b (conditioning on N t). By Lemma 7,

E[b′]− b ≤ pd2

k
− (1− p)d(k − d2)

k2
b +

(1− p)d
k

b2− 1
d .

Let f(b) denote the right hand side as a function of b. It is straightforward to check that f is convex
and has a minimum at a0 = 1−d2/k

2−1/d ≈ 1
2 . Furthermore, the minimum value of f is less than − d

8k .
We also need information about the roots of f . The above discussion implies that f has two

roots 0 < a1 < 1/2 < a2 < 1 in the interval [0, 1], and it is not hard to see that

a1 =
pd

(1− p)(1− d2

k)
(1 + ε), where 0 < ε < (2pd)1−1/d.

The other root (which is less interesting for us) satisfies

a2 = 1−
(

pd

1− d
+

d2

k

)
(1 + ε), where |ε| < 2

(
1
d

+
d2

k

)
.

The first root proves Theorem 4. Theorem 4 remains valid as long as we do keep the total defect
(i.e., Bt) less than a2A. If we get a network with total defect at least a2A then our network may
collapse. For Theorem 4 to be meaningful we should prove that the expected time for the collapse
to happen is exponentially large. Towards this goal let us solve the equation f(b) ≤ −c1, where
c1 > 0. For these values of b, B′ tends to be significantly smaller than B. Again one can show that
the equation f(b) ≤ −c1 has two roots. Let us call them b1 and b2. One can also show that the
difference between them is at least a constant, donote it by δ1, for sufficiently small c1. c1 = δ2d/k,
works for sufficiently small constant δ2.

Now let us construct an infinite graph. The node set V , of the graph are partitioned in vertices
Vt. Vt is the set of all possible networks we could encounter after t steps. We partition the node
set in two more ways. One V = U0 ∪ U1 ∪ · · · ∪ UA, where Ui is the set of all networks with
total defect i. Two, V = W ∪ X ∪ Y ∪ Z, where W = U0 ∪ · · · ∪ Ubb1Ac,X = Udb1Ae ∪ · · · ∪
Ub(b1+(d2/k))Ac, Y = Ud(b1+(d2/k))Ae ∪ · · · ∪ Ubb2Ac and Z = Udb2Ae ∪ · · · ∪ UA. For convenience put
b = b2 − (b1 + (d2/k)). We put an edge from a node u to v, if the network corresponding to u can
become a network corresponding to v by the arrival of a single node. The weight of the edge is the
corresponding probability of u becoming v in one step. Now we start a random walk from a node
in U0 corresponding to the network with one node and i.e., server. Let us compute the expected
number of steps to reach a node in Z. Since Lemma 6 put a bound on the maximum jump this
random walk can make, it is sufficient to estimate the probability of crossing Y .

Lemma 8 Start a new random walk at some node in X. The probability that the random walk

reaches Z before reaching X or W is at most ξ1e
− ξ2k

d3 , where ξ1 and ξ2 are appropriately chosen
constants.

Proof : Our random walk is not a martingale but it resembles a submartingle if we follow the
subscript of U ’s. Our proof also resembles the proof of Azuma’s inequality in martingales. Let Xi

be a random variable, which measures the change in the subscript of U ’s in the i-th step. Lemma
6 tells us that Xi < (d2A)/k. Let t be a positive integer. We want to find:

prob (X1 + X2 + · · ·+ Xt ≥ bA) = prob
(
e(β(X1+X2+···+Xt)−βbA) ≥ 1

)
9

≤ E
[
e(β(X1+X2+···+Xt)−βbA)

]
= e−βbAE

[
eβ(X1+X2+···+Xt)

]
= e−βbAE

[
eβ(X1+X2+···+Xt−1)E

[
eβXt

]]
.

Here β is some positive constant to be optimized later. The first inequality follows by Markov’s
inequality. The nested expectation is conditioned on the network obtained after the t − 1 steps.
Note that we terminate our random walk if we reach Z. We also terminate our random walk if we
are in X or W after the start. So we are in Y . For networks in Y , we know that E[Xt] ≤ −(Aδ2d)/k.
We also know the maximum change. Using this and convexity of ex we get:

E
[
eβXt

]
≤ d + δ2

2d
e−

βd2A
k +

d− δ2

2d
e

βd2A
k .

We choose β so that e
βd2A

k =
√

(d + δ2)/(d− δ2). With some simplifications this gives:

prob (X1 + X2 + · · ·+ Xt ≥ bA) ≤

(√
1− δ2

d

1 + δ2
d

) kb
d2
(√

1− δ2
2

d2

)t

.

This implies that the probability that the random walk reaches Z before returning back to W
or X is bounded above by: (√

1− δ2
d

1+
δ2
d

) kb
d2

1−
√

1− δ2
2

d2

.

Choosing two new constant ξ1 and ξ2 we can upperbound the above by

ξ1e
− ξ2k

d3 .

2

Corollary 9 The probability of collapse within t steps is at most tξ1e
− ξ2k

d3 .

Lemma 9 implies the Theorem 5. We start the random walk in W . We do not count the number
of steps until it reaches some node in X. Once it reaches X, we count it one megastep when the
random walk starting from X returns back to X or W or reaches Z. We call a megastep a success if
it reaches Z. We know that the probability that a megastep is a success is exponentially small. So
the random walk must make exponentially many megasteps before it has a reasonable probability
of success. This proves Theorem 5.

5 Adversarial and other kinds of failures

In earlier sections we assume that a node fails with probability p. Such models are usually based on
theoretical assumptions made to prove a practical scenario. We would like to avoid this assumption.
Instead we would like to say that fraction p of the nodes can fail. This then also covers the case
when adversaries join the overlay network with an aim to ruin the system. An adversary can ruin
the system in two ways, first by injecting an incorrect data packet and second by not doing its
share of forwarding data to other nodes. We do not deal with the first scenario in this section and
assume that such behavior can be handled by either hardware security (tamper proof hardware
distributed to users), software security (an incorrect data packet cannot be authenticated) and/or
legal security (user signs a contract to not engage in such behavior). On the other hand the second

10

scenario cannot be handled by security means. The reason is that the second scenario can happen
naturally, e.g., due to congestion or real failures. So a set of adversaries may try to ruin the system
by intentionally failing, perhaps simultaneously. For example, a set of adversaries may join the
system, cut-off the power from their hardware at the same time, and later claim that it was only a
coincidence.

Suppose the adversaries do not have any control over their arrival time, i.e., they cannot join
together at the same time hoping to be logically close to each other in the overlay network. Precisely,
let us assume an adversary joins the network at a random time. In other words, the set of adversaries
is a uniformly chosen random subset of users of cardinality at most the p-fraction of users. This
scenario is almost the same as the scenario when a user is an adversary with probability p (with
high probability that at most fraction p+ ε of users will fail). So the proofs and claims in Section 4
remain valid.

So the only thing we need to enforce is the random ordering of the arrival times of users. We
can achieve the equivalent of this by slightly modifying the system defined in section 3. On the
arrival of new user, the server will not append a corresponding row at the end of the matrix M but
instead will insert the corresponding row randomly into the matrix M .

A facility to insert rows into the matrix will also allow us to handle other situations like con-
gestion. Suppose a node becomes congested on either its incoming or outgoing links and would
like to reduce its load. The node picks a child and a parent and joins them directly. Of course for
logistical reasons the node must contact the server too. When the node sees that its congestion is
gone for a sufficient length of time, it tries to increase its rate of obtaining data. It contacts the
server, which makes one of the zeroes in the corresponding row in matrix M into a one at random.

The last point we would like to make is that the proofs assume equal bandwidth for all the
nodes. However, the design of the system does not use this fact anywhere. This allows us to
have users with heterogeneous network connections, e.g., some users could have DSL connections
and others could have T1 connections. The ability to handle heterogeneous users allows priority
encoding transmission [2] or other means for users with higher bandwidth connections to get higher
resolution broadcasts. Priority encoding transmission also allows graceful degradation of quality
with network failures, as described in [5].

6 Delay vs cycles

The scheme proposed by our paper for constructing and maintaining the overlay network ensures
that as users join and leave the network its topology remains acyclic. A consequence of this invariant
is that for network coding there will be no loss of throughput due to delay spread [5]. On the other
hand, the resulting delay will be linear in the number of users. If we are willing to suffer a small
loss of throughput, by tolerating cycles we can reduce the delay to a logarithmic factor, either by
using a topology such as that induced by the union of trees constructed in [10, 4] or by using a
random graph topology. In the latter case, each new user selects d random edges in the existing
network, and inserts itself at these edges. Random graphs are expanders with high probability, so
the delay will be logarithmic. Moreover, since the graph is an expander, the load on the server can
be reduced by supplying directly only a few child nodes, supporting the entire population through
these nodes. In fact in the file download scenario it may be possible eventually for the server
to disconnect itself completely from the network after the content has been delivered to a small
fraction of the population. In the random graph model we do not even need to assume that the
upload bandwidth of a node is the same as its download bandwidth, though we would want to
assume that the average upload bandwidth is no less than the average download bandwidth.

11

7 Discussion and open issues

Our scheme for building peer-to-peer overlay networks for broadcasting is based on network coding.
Network coding has been shown to be an optimal broadcasting scheme when we are given a network.
It has not been clear whether network coding would be as useful when we have the option of
designing the network topology as well. This paper shows that when we use network coding, which
is a more general way to broadcast than routing, we can simplify the design of the network itself.
In particular, we show that effective peer-to-peer overlay networks can be designed and maintained
with a very small data load on the server. In our scheme the server and clients follow a very simple
hello, good-bye, and repair protocol. In corresponding practical schemes (e.g., [12]), the role of the
server can be decreased still further or even eliminated.

Lemma 3 and Theorem 4 show that the expected loss in connectivity for any user is about
pd. Note that pd is essentially the best possible here, because every node has d parents and the
expected loss of connectivity from each parent is p. We further show that this remains true until
the number of nodes in the system is exponential in k/d3 (Theorem 5). We believe that well before
this limit is reached, the system may be self-sustaining (without requiring bandwidth connectivity
all the way from the source) if the scenario is a download scenario and each node is required to
reliably transmit as many bytes as it consumes. This possibility is an open issue for further study.

Our theorems hold for d ≥ 2. For distribution of content at a fixed bandwidth, the bandwidth
is divided into d equal units of bandwidth. As d increases, the bandwidth carried on each thread
decreases inversely with d. Hence the expected fraction of bandwidth lost is essentially p, indepen-
dent of d. Thus all choices of d are essentially equivalent in terms of expected loss of bandwidth.
It is an open issue to show that the variance of the fraction of bandwidth lost decreases inversely
with d. This would imply that if one wants a more consistent bandwidth (e.g., for Internet radio
or video on demand), then a larger d would be a better choice. If one cares only about expected
bandwidth over the long term (e.g., for long file downloads), then d = 2 would be sufficient.

Note that given a fixed server bandwidth, k is proportional to d, so the number of nodes we
can add into the system is exponential in the server bandwidth divided by d2. We do not believe
that this is the best possible exponent. One approach to finding a better exponent is to bound the
second moment of the loss in connectivity. In this paper, we estimate only the probability of losing
1 thread of connectivity, which we find to be about the same as the probability of losing a parent.
We conjecture that the probability of losing κ << d threads of connectivity must be about the same
as the probability of losing κ parents. This would truly imply that the effect of failures is locally
contained. An approach to tackle this conjecture could be to handle Bt

1, B
t
2, · · · , Bt

d separately.
Another open issue is how to guard against certain kinds of malicious attacks. As mentioned

in Section 5, our system is fairly robust to failure attacks by malicious users who join the system
in order to fail. Our system is also fairly robust, at least in the short term, to entropy destruction
attacks by malicious users who join the system in order to simply pass on trivial linear combina-
tions of packets. (In the longer term, entropy destruction attacks are worse than failure attacks
because they are more difficult to detect.) However, our system is not robust to jamming attacks
by malicious users who join the system in order to inject random information into the system by
randomly corrupting packets. This attack is particularly serious because the random packets have
the potential, after network coding, of contaminating almost every packet that almost every user
receives, thus jamming the system. The standard way to prevent an attack by a malicious user
injecting bad data into the system is to require that valid senders sign their packets cryptograph-
ically. Assuming no mixing occurs in the network, the invalid packets can then be immediately
detected and discarded. The difficulty is that, in network coding, the packets are mixed in the
network by the user nodes, none of which can be trusted. Thus, to prevent a jamming attack

12

in an open system that uses network coding, one would need a signature scheme such that the
signature of a mixed packet can be easily derived from the signatures of the packets contributing
to the mixture. It is an open problem whether such a scheme is possible. If such a scheme were
available for use in network coding, then a malicious user would not be able to inject a random
packet without immediate detection.

8 Acknowledgement

We would like to thank Jeong Han Kim for a discussion about Azuma’s inequalities.

References
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, Network information flow, IEEE

Trans. Information Theory, IT-46 (2000), pp. 1204–1216.

[2] A. Albanese, J. Blömer, J. Edmonds, M. Luby, and M. Sudan, Priority encoding
transmission, IEEE Trans. Information Theory, 42 (1996), pp. 1737–1744.

[3] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, Informed content delivery
across adaptive overlay networks, in Proc. SIGCOMM, Pittsburg, PA, Aug. 2002, ACM.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,
Splitstream: High-bandwidth content distribution in a cooperative environment, in Proc. Int’l
Workshop on Peer-to-Peer Systems, Feb. 2003.

[5] P. Chou, Y. Wu, and K. Jain, Practical network coding, in Proc. Allerton Conf. Commu-
nications, Control, and Computing, Monticello, IL, Oct. 2003.

[6] Y. Chu, S. G. Rao, and H. Zhang, A case for end system multicast, in Joint Int’l Conf.
Measurement and Modeling of Computer Systems (SIGMETRICS), June 2000.

[7] B. Cohen, Incentives build robustness in BitTorrent. http://bitconjurer.org/BitTorrent/-
bittorrentecon.pdf, May 2003.

[8] J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms, R. Rustin, ed., Aca-
demic Press, NY, 1973, pp. 91–96.

[9] S.-Y. R. Li, R. W. Yeung, and N. Cai, Linear network coding, IEEE Trans. Information
Theory, IT-49 (2003), pp. 371–381.

[10] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, Resilient peer-to-peer streaming, in
Proc. Int’l Conf. Network Protocols, Atlanta, GA, Nov. 2003.

[11] , Supporting heterogeneity and congestion control in peer-to-peer multicast streaming, in
Proc. Int’l Workshop on Peer-to-Peer Systems, San Diego, CA, Feb. 2004.

[12] R. Rejaie and S. Stafford, A framework for architecting peer-to-peer receiver-driven over-
lays, in Proc. Int’l Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), Kinsale, Ireland, June 2004.

[13] P. Rodriguez and C. Gkantsidis, Revolutionising content distribution, in Proc. Conf.
Computer Communications (INFOCOM), Miami, FL, USA, Mar. 2005, IEEE. Submitted.

13

