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1 Introduction 
Besides dictation, there are many other practical applications for speech recognition, including command 

and control, spoken dialog systems [1, 2], speech-to-speech translation [3], and multi-modal interaction [4-

6]. The success of these applications relies on the correct recognition of not only what is said, but also what 

is meant. In contrast to automatic speech recognition (ASR), which converts a speaker’s spoken utterance 

into a text string, spoken language understanding (SLU) consists in interpreting user’s intentions from their 

speech utterances. Traditionally, this has been accomplished by writing context free (CFG) or unification 

grammars (UG) by hand. The manual grammar authoring process is laborious, expensive and requires a lot 

of expertise. In recent years, many data-driven models have been proposed for this problem. The main 

purpose of this overview paper is to provide an introduction to the statistical framework common in spoken 

language understanding, which has not been widely exposed to signal processing readers in the past.  

 

SLU is closely related to natural language understanding (NLU), a field that has been studied for half a 

century. However, the problem of SLU has its own characteristics. Unlike general domain NLU, SLU is, in 

the current state of technology, focused only on specific application domains. Hence, many domain-

specific constraints can be included in the understanding model. Ostensibly, this may make the problem 

easier to solve. Unfortunately, spoken language is much noisier than written language. The inputs to a SLU 

system are not as well-formed as those to an NLU system. They often do not comply with rigid syntactic 

constraints. Disfluencies such as false starts, repairs, and hesitations are pervasive, especially in 

conversational speech, and errors made by speech recognizers are inevitable. Therefore, robustness is one 

of the most important issues in SLU. On the other hand, a robust solution tends to over-generalize and 

introduce ambiguities, leading to reduction of understanding accuracy. A major challenge to SLU is thus to 

strike an optimal balance between the robustness and the constraints that prevent over-generalizations and 

reduce ambiguities.  
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The study of SLU started in the 1970’s in the DARPA Speech Understanding Research (SUR) and then the 

Resource Management (RM) tasks. At this early stage, NLU techniques like finite state machine (FSM) and 

augmented transition networks (ATNs) were applied for SLU [7]. The study of SLU surged in the 90’s, 

with the DARPA sponsored Air Travel Information System (ATIS) evaluations [8]. Many of the SLU 

technologies developed for ATIS were used in the more recent DARPA Communicator program, which 

focused on the rapid and cost-effective development of multi-modal speech enabled dialog systems [2]. 

Multiple research labs from both academia and industry developed systems that attempted to understand 

users’ spontaneous spoken queries for air travel information (including flight information, ground 

transportation information, airport service information, etc.) and then obtain the answer from a standard 

database. 

Figure 1 shows the typical architecture of an ATIS system. The systems were evaluated, component-wise 

and end-to-end, with a common test set. Because spontaneous speech was used, robust understanding was 

the focus of the SLU study. About half a dozen robust SLU systems were developed during the evaluation 

timeframe. 
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Figure 1. A typical ATIS system consists of 1) a speech recognizer with both the acoustic model and 
language model trained with the ATIS specific data; 2) a SLU system that extracts the semantic 
representation (meaning) from the recognized text; and 3) a SQL generator that automatically generates the 
database query based on the semantic representation. 

 

Both knowledge-based and statistical systems were developed for the ATIS domain. In knowledge-based 

systems [9-11], developers write a syntactic/semantic grammar, and a robust parser analyzes the input text 

with the grammar. The major advantage of this approach is that it works without a large amount of training 

data. However, a knowledge-based system is expensive to develop for four reasons: 1) Grammar 

development is an error-prone process; 2) It takes multiple rounds to fine tune a grammar; 3) Combined 

linguistic and engineering expertise is required to construct a grammar with good coverage and optimized 
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performance, and 4) Such a grammar is difficult and expensive to maintain. Ideally, an SLU system should 

be able to automatically adapt to the real data collected after its deployment. In contrast, knowledge-based 

systems require an expert’s involvement, sometimes even the involvement of the original system designer, 

in the adaptation loop. 

 

SLU approaches based on statistical learning directly address many of the problems associated with 

knowledge-based systems. Statistical SLU systems can automatically learn from example sentences with 

their corresponding semantics. Compared with manual grammar authoring, the annotations are much easier 

to create, without the requirement of specialized knowledge. The statistical approach can adapt to new data, 

possibly via unsupervised learning. One disadvantage of such statistical approaches, however, is the data-

sparseness problem. The requirement of a large amount of training data is not very practical for real-world 

applications, which are quite different from those studied in research labs. This is the case especially at the 

early stage of system development. 

 

In the remainder of this article, we introduce a general framework for statistical SLU, and review various 

types of statistical SLU models in the literature. We assume that most readers have been exposed to HMMs 

as commonly used in speech recognition and signal processing. We start in Section 2 with an introduction 

to the representation of meanings, the pattern to be recognized based on the surface acoustic observations in 

SLU. Section 3 lays down a general pattern recognition framework of statistical SLU, and reviews several 

implementations of this general framework. In Section 4, we describe in detail a HMM/CFG composite 

model, which combines the traditional knowledge-based approach with the statistical approach, alleviating 

the data sparseness problem in statistical learning. The model not only reduces the authoring load but also 

results in lower error rates. Section 5 discusses the implementation in one or two pass ASR/SLU systems 

and issues involve.  For completeness in covering SLU, Section 6 summarizes the related research work 

which does not directly fall into the general framework discussed in this article. For the readers with a 

background in ASR, Appendix A draws analogies between key ASR and SLU terminologies, facilitating 

comparisons and contrasts between these two closely related areas of technology. Throughout this article, 
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we strive to use simple examples to illustrate major concepts and models in SLU, and to show parallel or 

contrastive concepts between SLU and ASR. 

2 Semantic Representation and Semantic Frame 
What is the goal for SLU? How can we tell whether a system’s understanding is appropriate or not? 

Ultimately, the appropriateness of the understanding can be measured by the system’s responses or by the 

actions taken by the system after it “understood” an input utterance. In the ATIS domain, for example, this 

was measured by the accuracy of the flight information returned from a system after a spoken query is 

made by a user. However, generating the final flight information results involves more than just SLU. For 

better engineering practice and scientific studies, it is desirable to modularize the end-to-end system and to 

isolate the SLU module. For this purpose, an intermediate semantic representation is introduced to serve as 

the interface between different modules. Most spoken language systems have their own semantic 

representations. However, all of them can be abstracted as the semantic frame-based representation, which 

we introduce now. 

 

The semantic structure of an application domain is defined in terms of semantic frames. Figure 2 shows a 

simplified example of three semantic frames for the ATIS domain. Each frame contains several typed 

components called “slots.” The type of a slot specifies what kind of fillers it is expecting.  For example, the 

subject slot of the ShowFlight frame can be filled with the semantic terminal FLIGHT (expressed by words 

like “flight”, “flights”) or the FARE semantic terminal (expressed by words like “fare”, “cost”) that 

specifies what particular information a user needs. 

          <frame name=“ShowFlight” type=“Void”>
                    <slot name=“subject” type=“Subject”/>
                    <slot name=“flight” type=“Flight”/>
          </frame>
          <frame name=“GroundTrans” type=“Void”>
                    <slot name=“city” type=“City”/>
                    <slot name=“type” type=“TransType”/>
          </frame>
          <frame name=“Flight” type=“Flight”>
                    <slot name=“DCity” type=“City”/>
                    <slot name=“ACity” type=“City”/>
                    <slot name=“DDate” type=“Date”/>
          </frame>
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Figure 2. This figure illustrates three (simplified) semantic frames defined in the ATIS domain. Here DCity 
stands for “departure city” and ACity stands for “arrival city”. These two slots require objects with “City” 
type as their fillers, which can be, for example, a city name or a city code. The “Flight” frame has the type 
“Flight”, so it can be the filler of the “flight” slot of the top level frame “ShowFlight”. Often the semantic 
frame is related to and derived from the schema of the application database.  

  <ShowFlight type=“Void”>
      <subject type=“Subject”>FLIGHT</subject>
      <flight frame=“Flight” type=“Flight”>
          <DCity type=“City>SEA</DCity>
          <ACity type=“City>BOS</ACity>
      </flight>
  </ShowFlight>

ShowFlight

flightsubject

depature_city arrival_city
FLIGHT

SEA BOS
 

Figure 3. The semantic representation for “Show me flights from Seattle to Boston” is an instantiation of 
the semantic frames in Figure 2. On the right is its tree representation. The instantiation picks a frame that 
represents the meaning conveyed in the sentence and fills slots accordingly. 

 

The meaning of an input sentence is an instantiation of the semantic frames. Figure 3 shows the meaning 

representation for the sentence “Show me flights from Seattle to Boston.” Here the frame “ShowFlight” 

contains the sub-frame “Flight”. Some SLU systems do not allow any sub-structures in a frame. In such a 

case, the semantic representation is simplified as a list of attribute-value pairs, which are also called 

keyword-pairs [12] or flat concept representation (Figure 4). 

 

    (command DISPLAY) (subject FLIGHT) (DCity SEA) (ACity BOS)
 

Figure 4. Attribute-value representation is a special case of the frame representation where no embedded 
structure is allowed. Here is an attribute-value representation for “Show me the flights from Seattle to 
Boston.” 

 

The hierarchical representation is more expressive and allows the sharing of substructures. For example, 

the Flight frame in Figure 2 can be shared by both ShowFlight and CancelFlight  (not shown) frames. The 

flat concept representation is simpler and often results in a simpler statistical model. 
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3 Spoken Language Understanding as Statistical Pattern 
Recognition 

In the statistical modeling approach, NLU can be formalized as a pattern recognition problem. Given the 

word sequence W, the goal of NLU is to find the semantic representation of the meaning M that has the 

maximum a posteriori probability ( | )P M W :  

 ˆ arg max ( | ) arg max ( | ) ( )
M M

M P M W P W M P M= =  (1) 

Two separate models exist in this generative framework. The semantic prior model ( )P M assigns 

probability to an underlying semantic structure or meaning M. The lexicalization model ( | )P W M , 

sometimes called lexical generation or realization model [13], assigns probability to the surface sentence 

(i.e., word/lexical sequence) W given the semantic structure. As an example, the HMM tagging model is a 

simple-minded implementation of Eq. (1), in which a Markov chain consisting of the states that bear 

semantic meanings models the semantic prior, and the emission from the states models the lexicalization 

process. The alignment between the observations (words) and the states is hidden (Figure 5). The tagging 

model finds the Viterbi alignment between the states and the words, and the meaning associated with a 

state becomes the semantic tag of the aligned word. 
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Figure 5. An HMM tagging model for SLU. State 0 represents “command”, state 1 represents the “subject” 
slot, state 2 represents the “DCity” slot, state 3 represents the “ACity” slot. The HMM topology and the 
transition probabilities aij form the prior. The meaning of a sentence is represented by its underlying state 
sequence. The emission distributions bk of the states form the lexicalization model. On the right is a 
possible state sequence that aligns to the sentence “Show me flights from Seattle to Boston”. Theoretically, 
the state should encode the semantics of the attribute-value pair like <ACity SEA>. However, since this 
increases the state space significantly, sometimes infinitely, practical SLU systems collapse the states 
corresponding to the same attribute, and extract the value semantics from the observation aligned to the slot 
state in a post-processing step. 
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In this simple tagging model, observations (words) depend only on the states. They do not depend on the 

words in the context. This independence assumption does not work well with language: according to this 

assumption, “Show me flights” and “me Show flights” are equally likely. Most statistical SLU systems 

attempt to overcome the problem by allowing a state to emit one “segment” of multiple observations 

(words) at a time. In this case, the generative process for the observations is:  

1. Generate a set of segments 1( ,..., )nS s s=  according to the semantic structure 1,..., mM q q= .  

2. Determine the alignment 1( ,..., )nA a a= that associates each segment with a state. 

3. Determine the length 1( ,..., )nL l l=  for each segment. 

4. Generate il words for each segment is , for 1,...,i n= , assuming the words are generally 

correlated and are sensitive to temporal ordering. 

 

Since S, A and L are not observed, they are hidden variables that can be marginalized out according to 

 

 
( ) ( )

( ) ( ) ( ) ( )
, ,

, ,

| , , , |

| | , | , , | , , ,
S A L

S A L

P W M P W S A L M

P S M P A M S P L A M S P W L M S A

=

=

∑
∑

 (2) 

This type of lexicalization modeling for correlated word observation sequences is analogous to the segment 

model in acoustic modeling for ASR [14] . One main difference, however, is that in SLU the alignment 

process is more elaborated than that for ASR. This complexity arises from the syntactic constraints that 

allow generation of multiple phrases from a single state and placement of the phrases in an order that is far 

more flexible than pronunciations in a dictionary. The latter is largely coded as a left-to-right sequence as 

defined by the dictionary, which is much less variable than many different ways a fixed meaning may be 

expressed as a composite of phrases/words in varying orders. The purpose of alignment in Step 2 above is 

to account for this type of variability, which is largely absent in ASR problems. 

 

Eq. (2) has been implemented in several different SLU systems. We will discuss this topic of lexicalization 

modeling in detail in Section 3.2 after surveying semantic-prior modeling first. 
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3.1 Semantic Priors in Understanding Models 

In statistical SLU that models cross-word contextual dependency, each state represents a slot in a semantic 

frame. For the systems that use the flat concepts for semantic representation, such as AT&T’s CHRONUS 

[12] and IBM’s fertility model [15], the topology of the model is a fully connected network (Figure 6). 

Unlike the topology in Figure 5, there is no self loop on a state because it is already modeling a segment of 

words with the length information already encoded. 

 

Show me

a41
1

a31a13

a12

a21

a24 a42

a43

a34

a32

a23

  a14

 

+"⁄ ⊗⁄

 µε

a1f 

       a3f 

       a4f 

   a2f 
flights

to Bostonfrom Seattle

2:subject

3:depart_city 4:arrival_city

1:command

 

Figure 6. The topology of the statistical model that adopts the flat concept semantic representation. Each 
state represents a concept. States are fully interconnected. The initial state distribution ( )i P iπ =  and the 
state transition distribution ( | )ija P j i= comprise the semantic prior of the model. (The final state f = 
“</s>” is not shown in the topology.) The thicker lines illustrate the state transitions for the sentence “Show 
me flights from Seattle to Boston.” The example sentence is also aligned to the states. 

 

The prior probability of the semantic structure underlying the representation in Figure 4, i.e., the flat-

concept sequence “command subject DCity ACity” can be calculated as the product of the probabilities of 

the marked transitions in Figure 6: 

 
( ) ( ) ( ) ( ) ( )

1 12 23 34 4

( ) | | | | |P M P P P P P
a a a a f

command <s> subject command ACity subject ACity DCity </s> ACity
π
=
=

(3) 

where <s> represents the start of the semantic concept list and </s> represents the end of the flat-concept 

list.  

 

For models that use hierarchical semantic structures, including BBN’s Hidden Understanding Model [13] 

and Microsoft Research’s HMM/CFG composite model [16], the semantic prior is a natural extension of Eq. 
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(3). Figure 7 shows the topology of the underlying states for the semantic frames in Figure 2. The left part 

of the diagram shows the top level network topology, and the right part shows a zoomed-in sub-network for 

state 2, which represents the embedded Flight frame. The initial state probabilities 1 (ShowFlight)Pπ = and 

5 (GroundTrans)Pπ = comprise the prior distribution over the top level semantic frames. The transitional 

weights 12a and 13a comprise the initial slot distribution for the “ShowFlight” frame. The transitional 

weights 56a and 57a comprise the initial slot distribution for the “GroundTrans” frame, and the transitional 

weights C9a , CAa and CBa in the sub-network comprise the initial slot distribution for the Flight frame. 

a67 a76

<s> </s>

1  ShowFlightInit

3  Subjecta13 a34

1

a12

4  ShowFlightFinal

a24

a23 a32

5  GroundTransInit

7  TransTypea57 a78

a56 6  City

8  GroundTransFinal

a68

2  Flight

  a9B

C: FlightInit A: DCityaCA aAD

aC9
9:ACity

D: FlightFinal

a9D

aAB

aBA

B: DateaCB aBD

a9A  aA9

aB9

 

Figure 7. Hierarchical model topology for the semantic frames in Figure 2. On the left is the top level 
network structure. On the right is the sub-network of the semantic frame “Flight.” Since the semantic 
frames are defined in a finite state language, the sub-network can substitute for state 2. Substitutions by the 
same sub-network may share the parameters of the sub-network. 

 

Given this topology, the semantic prior for the semantic structure underlying the meaning representation in 

Figure 3 is the product of the Markov transitional probabilities across the different levels in the semantic 

hierarchy (The marked path in Figure 7): 
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( ) ( ) ( ; ) ( )
( ) ( )
( ) (

P M P ShowFlight P ShowFlight P ShowFlight
P Flight P Flight
P Flight P ShowFlight

= Subject | <s> Flight | Subject; 
              DCity | <s>; ACity | DCity; 
              </s> | ACity; </s> | Flight; 

1 13 32 24

)
a a a a a aπ= CA A9 9D         

 (4) 

Generally,  

 ( ) ( )
| | 1

1

( ) ( ) | ( 1) ( )
M

M M
i

P M P C i C i P M i
+

=

= −∏  (5) 

Here |M| is the number of the instantiated slots in M. ( )MC i is the name of the i-th slot in M, ( (0)MC =<s> 

and ( 1)MC M + =</s> stand for the beginning and the end of a frame, respectively) and ( )M i  is the sub-

structure that fills the i-th slot in M.  Eq. (5) recursively calculates the prior probabilities of the sub-

structures and includes them in the prior probability of the parent semantic structure. 

 

Cambridge University’s Hidden Vector State model [17] shows another way to model the semantic prior 

with hierarchical structures. Named the hidden vector states, the states in the Markov chain represent the 

stack status of the pre-terminal nodes (the nodes immediately above the terminal words) in a semantic tree, 

as illustrated in Figure 8. The hidden vector states encode all the structure information about the tree, so the 

semantic tree structure (without the terminal words) can be reconstructed from the hidden vector state 

sequence. The model imposes a hard limit on the maximum depth of the stack, so the number of the states 

becomes finite, and the prior model becomes the Markov chain in an HMM. The difference from the earlier 

examples in Figure 6 and Figure 7 is that the state transition in this Markov chain is now modeled by the 

stack operations that transform one stack vector state to another. The stack operations include 1) Pop(n) 

that pops the top n elements from the stack; and 2) Push(C) that pushes a new concept C into the stack. For 

example, the transition from the state represented by the fifth block in Figure 8 can be made with two 

operations: Pop(2) and Push(ON). The pop operation depends on the stack contents of the state from which 

the transition exits, and the push operation depends on the stack contents right before the element is pushed 

in. Hence the probability of the transition from the fifth block is 

 (2 | <CITY TOLOC RETURN SS>) (ON | <RETURN SS>)pop pushP P  (6) 
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Figure 8. In the Hidden Vector State model, the states (illustrated by the blocks) represent the stack status 
of the pre-terminal nodes (the parent node of the terminal words) in the semantic tree.  

 

Let S  denote the depth of the stack S. Given the stack vector states 1tS −  and tS , 1 1t tS S− − + elements 

have to be popped from 1tS −  in order to transform 1tS − to tS . Thus the semantic prior is the product of the 

transition probabilities in the Markov chain: 

 
( )

( ) ( ) ( )

1
1

1 1 1 1
1

( ) |

1 | TOP[ ] | POP[1, ] POP[ 1, ], POP[1, ]

M

t t
t

M

pop t t t push t t t t t t
t

P M P S S

P S S S P S S S S S Sδ

−
=

− − − −
=

=

= − + − +

∏

∏
(7) 

Here M is the number of stack vector states in M, including the sentence end state MS . 0S  is the 

sentence initial state. TOP[ ]S  is the top element of the stack S, and POP[ , ]n S  is the new stack after the top 

n elements are popped out of the stack S. ( ), 1x yδ =  if ( ), 1x yδ =  , otherwise ( ), 0x yδ = . It guarantees 

that 1t tS S− → is a legal transition by restricting that all the elements in the two stacks are the same, except 

for those popped out of 1tS −  and the one pushed into tS . 

 

The decomposition of the transition probability into Ppop and Ppush enables different transitions to share the 

parameters. Therefore, it can potentially reduce the number of parameters in the prior model. 
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It is important to note that the prior model does not have to be static. It can change depending on the 

context, for example, at a dialog state when the system asks users for the departure city information, the 

probability for the DCity slot can be significantly boosted. The prior model can also be personalized [18]. 

3.2 Lexicalization Models 

In this section we review the lexicalization models under the general framework of Eq.(2), which captures 

dependency and temporal ordering for the observed words within the same state. 

 

3.2.1 N-gram Lexicalization Model 

The first lexicalization model, used by both CHRONUS [12] and the Hidden Understanding Model  [13], 

assumes a deterministic one-to-one correspondence between model states and the segments, i.e., there is 

only one segment per state, and the order of the segments follows the order of the states. This effectively 

gets rid of the hidden variables S and A in Eq. (2): 

 ( ) ( ) ( ) ( )
1 1

1 1
1,..., ,...,

| , | ,..., | ,..., |
m m

m

m m i i
iL

P W M P W L q q P q q P q
π ϕ ϕ π ϕ ϕ

π ϕ
== =

= = ≈∑ ∑ ∑ ∏  (8) 

Here the joint event (W, L) corresponds to a partition 1,..., mπ ϕ ϕ= of W: 1ϕ  is the first 1l  words of W, 2ϕ  

is the next 2l words of W, etc., and the concatenation of the substrings 1,..., mϕ ϕ equals W. 

 

Both CHRONUS [12] and the Hidden Understanding Model  [13] exploited state specific n-grams to model 

( | )P qϕ . Let’s use the flat-concept semantic structure in Figure 6 as an example. It illustrates a 

partition show me, flights, from Seattle, to Bostonπ = . The probability of the surface sentence under this 

partition is: 

 

( Show me, flights, from Seattle, to Boston | ) =
       (Show | <s>; ) (me | Show; ) (</s> | me; )

(flights | <s>; ) (</s> | flight; )

command,subject,DCity, ACity
command command command
subject subject

P M
P P P
P P
P

π = =

(from | <s>; ) (Seattle | from; ) (</s> | Seattle; 
       (to | <s>; ) (Boston| to; ) (</s> | Boston; )

)DCity DCity DCit
ACity ACity ACity

yP P
P P P

 (9) 
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In Eq. (9), cross-state lexical dependency is not modeled. A word at a state only depends on the history that 

belongs to the same state (or on the context cue “<s>” if it is the first word emitted from a state). One can 

opt to model the cross-state lexical dependency too. In this case, instead of depending on “<s>”, the initial 

words from a state may depend on the last few words (actual number determined by the n-gram order) from 

the previous state. 

 

3.2.2 Fertility Lexicalization Model 

IBM’s fertility model [15] is another implementation of Eq. (2). It is based on their statistical machine 

translation work. Similar models were proposed in [19]. The generative process of the model can be 

illustrated by the following example: : let the semantic structure be the flat sequence of four states, 

“DISPLAY FLIGHTS TO ARRIVAL_CITY”. The model first picks the number of segments for each state, 

for example, (2, 1, 1, 1). This results in five segments, which are permutated to form the ordered sequence 

DISPLAY FLIGHTS TO ARRIVAL_CITY DISPLAYSEG , SEG , SEG , SEG , SEG >.S =<  Each permutation corresponds to an 

alignment. The permutation in the example corresponds to the alignment A=(1 2 3 4 1), where each element 

points to the state that gives rise to the segment. Since there are (5!/2!1!1!1!) different permutations, each 

possible alignment has the uniform probability 2!/5!. The model then picks the length in each segment, (2, 

2, 1, 1, 1), and accordingly generates two words “I want” for the first segment, “to fly” for the second 

segment, one word “to” for the third segment, “Boston” for the fourth segment, and “please” for the last 

segment. This produces the final surface sentence “I want to fly to Boston please.” As illustrated by this 

example, a state in this model can emit non-consecutive word sequences. 

 

The fertility model makes the following assumptions in the aforementioned process: 

1. ( )1 1 1
| ,..., ( | ) !i i

i

qm m n
m i i q ii i

P S M q q f n q e nλ λ−

= =
= ≈ =∏ ∏ , i.e., each state iq  generates 

in segments according to a Poisson distribution called the fertility model. Here m M=  is the 

number of states in M, 
1

m
ii

n n S
=

= =∑  is the total number of segments generated from the m 

states. 
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2. The alignment model ( )1 1 1,..., | ,..., , ,...,n m nP A a a M q q S s s= = = follows a uniform distribution. 

Here ja is the index of the state in M that the j-th segment is aligned to.  In other words, according 

to A, segment js is aligned to the state
jaq . 

3. ( )1 1 1 1
1

,..., | ,..., , ,..., , ,..., ( | )
j

n

n n m n j a
j

P L l l A a a M q q S s s n l q
=

= = = = ≈∏ , i.e., the length of a 

segment only depends on the state it is aligned to. 

4. ( )
1 1

| , , , ( | )
j

j

ln

jk a
j k

P W L M S A p w q
= =

≈∏∏ , i.e., each word in a segment is generated with the 

dependency on the state which the segment is aligned to; here jkw is the k-th word in segment js , 

which has length jl . 

Given the above assumptions,  

 ( ) ( ) ( ) ( ) ( ), , , | | | , | , , | , , ,P W S A L M P S M P A M S P L M S A P W M S A lL aaaaa=   (10) 

 ( ) ( ) ( )
| | | |

1 1 1 1

1 ! | |
!

, ,
!

, |
qi i j

i

j j

n lM M n
q

i j a jk a
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In Eq. (11) , the second factor is the permutation (alignment) probability, which is the inverse of the 

multinomial coefficient.  Eq. (13) distributes the λ’s inside the second product. In (14), 

( )
1

( , | ) | ( | )
l

q jk
k

r l s q n l q p w qλ
=
∏ is proportional to the probability that a segment 1,...,j jls w w=  is 

generated from the state q.  In this form, one can sum over all possible alignments A in polynomial time: 
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The last step above can be shown by algebraic operations. 

The Expectation-Maximization (EM) algorithm is used to estimate the parameters in the model, and a 

dynamic programming algorithm is applied to search for the meaning according to 

 
,

ˆ arg max ( | ) ( ) argmax ( , , | ) ( )
M M S L

M P W M P M P W S L M P M= = ∑  (16) 

with marginalization over all possible segment sequences S and the length for the segments, L. 

3.3 Model Training 

Maximum likelihood (ML) estimation can be used to estimate parameters in both the semantic prior model 

and the lexicalization model. In supervised training, if each word is labeled with the state it belongs to, as 

in CHRONUS in [12] and the Hidden Understanding Model in [13], then both Markov transition 

probabilities and the state-conditioned n-gram models can be directly estimated from the data by simply 

counting the relative frequencies. In Section 4.2, we will demonstrate how the ML estimation is applied 

when only strictly-semantic partial annotation is available. In such a case, many word/state alignments are 

hidden, and the Expectation-Maximization algorithm is used to estimate the parameters.   

4 Statistical Learning Assisted by Domain/Linguistic Knowledge 
One disadvantage of purely data-driven, statistical SLU is the requirement of a large amount of training 

data. To overcome this problem, many systems utilize a preprocessing step to identify the “superwords” 

from the input stream with pattern matching. This step includes (1) replacing the words in a semantic class 

with the class name; e.g., “Seattle” and “Boston” are replaced with the superword “_cityname”; and (2) 

replacing a word sequence that matches a regular expression with a superword; e.g., “one hundred twenty 

five” is replaced with the superword “_number”. 

 

Two problems arise, however, with this traditional solution. First, as it will be discussed in section 5, it is 

beneficial to use the SLU model as the language model for speech recognition.  However, with actual 

words being replaced by the superwords, many of these are modeled with complicated CFGs instead of a 

word list as in class-based language models [20], the model can no longer be used for speech recognition. 

Second, the “superword” solution does not handle ambiguities gracefully. Although a sophisticated 
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preprocessor can produce a lattice that includes ambiguous tagging of the superwords, they are not fairly 

evaluated by the understanding model. For example, in “Schedule a meeting tomorrow ten to eleven”, the 

phrase “ten to eleven” may be ambiguously tagged as “_time” as in the interpretation “10:50” or “_time to 

_time” as in the interpretation “from 10:00 to 11:00”. Since the phrase is treated as one superword in the 

first interpretation but three words in the second interpretation, only one transition and one emission 

probability need to be applied for the first interpretation, while multiple transition and emission 

probabilities have to be applied for the second one. Therefore, the SLU model will be biased towards the 

first interpretation.  

4.1 HMM/CFG Composite Model 

Both problems mentioned above can be attributed to the fact that the preprocessing step is not modeled 

statistically as an integral part of the SLU model. The lack of information about the preprocessing model 

makes the statistical SLU model unable to predicate the words for speech recognition, and it prohibits the 

model from properly normalizing the probabilities because the actual length of the segment replaced by the 

superword is unknown to the SLU model. An HMM/CFG composite model has been introduced in [16], 

which we review here, to aim at solving these problems. This model uses the same semantic prior for 

hierarchical Markov topology as in Eq. (5). The underlying state corresponding to a slot in the semantic 

frame is expanded into a preamble-filler-postamble three state sequence (Figure 9). The preamble and 

postamble serve as the contextual clue for the identity of the slot, while the slot filler decides its value. The 

lexicalization model follows Eq. (8), similar to CHRONUS and the Hidden Understanding model. The 

difference here is that it uses either n-gram models or probabilistic context-free grammars (PCFGs) for 

( | )P qϕ . If q is a state corresponding to a slot filler, a PCFG is used for ( | )p qϕ . The PCFG embeds 

domain-specific and domain-independent knowledge, like a city-name list and a date grammar. The CFG 

rules can be populated with database entries or pre-built in a grammar library for domain-independent 

concepts (e.g., date and time). The lexicalization of other states is modeled with n-grams. Figure 9 shows 

the state alignment for an example phrase according to the network topology in Figure 7. Note the 

introduction of the preamble and postamble states does not change the semantic prior model, because the 

transition probabilities from the preambles and to the postambles are always 1.0. 
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City DatePreDCity PostDCity PreDate PostDate DaCA 1.0 1.0 aBD1.0 1.0aABC

ondeparting from Boston Christmas Eve

A B

: n-gram    :PCFG

 

Figure 9. State alignment for the phrase “departing from Boston on Christmas Eve” according to the 
topology in Figure 7. The original states A and B are expanded to three states.  

 

Formally, the lexicalization probability in this composite model is 

 
1 1

1
,..., ,..., 1

( | ) ( | ,..., ) ( | )
i

m m

m

m q i i
i

P W M P q q P q
π ϕ ϕ π ϕ ϕ

π ϕ
= = =

= =∑ ∑ ∏  (17) 

Here qP is an n-gram model if q is a preamble or a postamble state, or a PCFG if q is a slot filler. It is 

possible that for some , q rq r P P≠ = . For example, the PCFG for “cityname” are shared by the fillers for the 

DCity and ACity slots.  

 

4.2 Parameter Estimation 

The composite model can be formalized as (Σ, A, G), where Σ is a finite set of states, A is the state 

transition probability distributions, and G is a set of emission grammars associated with the states.  Σ is 

determined by the semantic frame. Parameters of A and the n-gram parts of G have to be estimated from the 

training data. Figure 10 illustrates the process of estimating those parameters. The estimation requires 

manually annotated data, an example of which is shown in step . To make the annotation simple and easy 

to perform, only semantic level information, i.e., frames and slot fillers, is marked. Given an annotation, its 

state sequence is fixed in the model topology (the path denoted by thick arrow lines in step ). The counts 

of state transitions can be collected from the state sequence, and ML estimation is applied for the state 

transition probabilities . Here a prior count c is used to smooth the transition distributions. The parameter 

can be optimized with held-out data. To estimate the lexicalization parameters, one possibility is to extend 

the Forward-Backward algorithm used in discrete HMM training [21]. Note that in discrete HMM training, 

the posterior  
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can be calculated with the Forward-Backward algorithm. And the emission probability can be then 

estimated by: 
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When a segment of words can be generated from a single state and n-gram is used to model this generation 

process, the Forward-Backward algorithm can be extended. Using bigram as an example, the posterior 
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can also be calculated with the Forward-Backward algorithm. There are several differences from the 

standard HMM training here. First, the emission probability now depends on 1( , , )th q r w − , the history of the 

previous word  from the same state or the context cue “<s>” for the initial word in a segment. Second, in 

the segment model there is no self-loop transition at a state. The generative process stays at the same state 

unless the end of the segment is predicted by the bigram model for the state. This segment ending 

probability must be included in the transition probability 1( , , )tt q r w − when a state transition is made.  The 

computation of the forward and backward probabilities,  ( )t qα  and ( )t qβ , should be changed accordingly. 

With the posterior ( , )t q rξ  defined, the bigram probability can be obtained by 
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−= = = = =
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for <s>w ≠ , and  

 ( ) ( )<s> 1 1 12, . . 2
( | ) ( ) ( , ) ( , ) ( ) ( , )

t

T T
q t tr q t s t W v r q t

P v q w v r q q r qγ δ ξ γ ξ
≠ = = ≠ =

= + +∑ ∑ ∑ ∑  (22) 

This solution is complicated to implement, given all the boundary conditions in 1( , , )th q r w −  and ( , , )t q r w , 

especially with higher order n-grams. One simpler solution, given the fact that many n-gram training and 

smoothing implementations are already available, is to obtain all the strings ϕ  that state q can generate, 
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obtain the count ( , )N q ϕ , i.e., the number of times that q generates ϕ , and then compute the bigram 

probability with the standard ML estimation: 

 
1 ;
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1 1;
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 (23) 

Here ( ; )C ω ϕ  is the number of times that word sequence ω occurs in ϕ . 

 

When training samples are fully annotated, i.e., every word is marked with its aligned state, ( , )N q ϕ  can 

be obtained by simple counting. When only partial annotation is available, as illustrated by the example in 

step , ( , )N q ϕ  can be viewed as the expected count the state q  generate the string ϕ . Notice that the 

annotation pegs the slot fillers to the slot states in step  in Figure 10, which restricts the alignments of the 

remaining words and states, so a subsequence of the observation W (e.g., W =“that flies to”) can only align 

to a state subsequence Q (e.g., Q =“PostSubject PreFlight PreACity”), as shown in . The counts of these 

subsequence alignments, ( , )c Q W ,  can be collected from all the annotated training examples. From this 

statistics, Expectation-Maximization (EM) algorithm is applied to estimate the n-gram parameters for each 

state q . In E-step , ( , )N q ϕ  is computed with the current model parameters (initially based on the 

uniform distribution).  In M-step , Eq. (23) is applied to estimate the n-gram probability (with proper 

smoothing such as deleted interpolation [22]).  The calculation of ( , )N q ϕ  is illustrated in Figure 11. 
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<s> </s>

1: ShowFlightInit

3: Subject

4: ShowFlightFinal

GrandTransNet

  a9B

C: FlightInit A: DCity
aCA aAD

aC9
9:ACity

D: FlightFinal

a9D

aAB aBA

B: DateaCB aBD

a9A  aA9

aB9

a23

a12 a24

Seattle

a32

flight

Boston

 <ShowFlight>
           <Subject>flight</Subject>
                    <ACity>Boston</ACity>
           </Flight>
 </ShowFlight>

Show me the flight that flies to Boston

Transition Probability Estimation

N(0,1) := N(0,1)+1;   N(1,3) := N(1,3)+1;
N(3,2) := N(3,2)+1;   N(C,9) := N(C,9)+1;
N(9,D) := N(9,D)+1; N(2,4) := N(2,4)+1;   
N(4,F) := N(4,F)+1;

    

a13 a34

1=a01

5=a05

a4F

( )
+=
+∑

( , )
( , )ij

j

N i j c
a

N i j c

CityPreACity

Bostonthat flies toShow me the

ShowFlightInit PreSubject Subject PostSubject PreFlight

flight

State N-gram Estimation:
    

    c(“ShowFlightInit,PreSubject”, “Show me the”) :=  c(“ShowFlightInit,PreSubject”, “Show me the”) +1 
    c(“PostSubject PreFlight PreACity”, “that flies to”) :=  c(“PostSubject PreFlight PreACity”, “that flies to”) +1

Expectation/Maximization Estimation 

Expectation Step: Using initial n-gram parameters, collect the 
expected counts for all possible sentences for each state

Maximization Step: using all the possible sentences and their 
expected counts, re-estimate the n-gram parameters for each state

N(ShowFlightInit, “<s></s>”)=0.12
N(ShowFlightInit, “<s>Show</s>”)=6.98
N(ShowFlightInit, “<s>Show me</s>”)=49.87
N(ShowFlightInit, “<s>Show me the</s>”)=8.22
N(PreSubject, “<s></s>”)=1.1
N(PreSubject, “<s>the</s>”)=11.25
……...
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Figure 10. An example giving detailed illustration of the various steps involved in estimating the transition 
probability and n-gram lexicalization probability in the HMM/CFG composite model based on partially 
annotated training data. See text for details. 

 

 

 

 

 

 



21 

The expected count for state q to generate segment ϕ is
,
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m
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sequence 1,..., kW w w= in training data as in . π is a partition that breaks W into m non-overlapping 
segments, each segment corresponds (aligns) to a state in Q . The segment may be an empty string. 
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Rearranging Eq. (24), we obtain  
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On the left of (25) is the summation that occurs in the expected count. On the right there is no summation at 

all. The problem now becomes how to compute ( , )P Q Wφ  and 
( , )

( | )

P Q W

P q

φ

φ ϕ

∂

∂
 efficiently. For that purpose, define 

1( ) Pr( , ..., )|and  ..., ;ik m ki w W Qα π ϕ ϕ ϕ= = =  to be the probability of all the segmentations π  that align the 

end of kq  in Q to the i-th word in W , and 1( ) ( , ..., ...; )|and  ik m ki P w W Qβ π ϕ ϕ ϕ= = =  to be the probability 
of all the segmentations that align the beginning of kq  to the i-th word in W . Then 
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According to (26),  
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Combining Eqs. (25), (26) and (27), the expected count 
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( )k iα and ( )k iβ can be computed efficiently with dynamic programming according to Eq. (29): 
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Here ( , ..., )|i jP w w qφ  can be obtained according to the n-gram (initially with the uniform distribution) 

specific to state q. When ,r i= 1( , ..., ) ( )</s> <s>| | ;r iP w w Pq qφ φ+ =  is the probability to generate an empty 
string from q. 
 
Figure 11 . Derivation for the computation of the expected count ( ),N q ϕ . 
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4.3 The performance of the HMM/CFG Composite Model 

 

The HMM/CFG composite model balances the tradeoff between robustness and the constraints on over-

generalizations/ambiguities with the different models for the preambles/postambles and the slot fillers. The 

CFG model imposes a relatively rigid restriction on the slot fillers, which are more crucial for correct 

understanding and less subject to the disfluencies because they are semantically coherent units. The fillers 

are often domain specific and can be obtained from the application database, like the city names and airport 

names in the ATIS domain; or they are common domain-independent concepts like phone number, date, 

time, which are already modeled  in a grammar library; or they can be automatically generated according to 

some high level description like a regular expression for an alphanumeric concept [23]. The non-slot states 

serve as the “glue” that sticks different slot fillers together. This type of inter-concept language is normally 

domain dependent, hard to pre-build a model for, and subject to more disfluencies. It varies significantly 

across different speakers. The n-gram model is more robust and thus suitable for this sub-language. 

Furthermore, the knowledge introduced by the CFG sub-model greatly compensates for the data sparseness 

problem (e.g., it is very unlikely to see all city names occur in all context in training data).  

 

We conducted the end-to-end experiment illustrated by Figure 1, with the manual transcription used instead 

of using speech recognition as the first step. The vocabulary contains around 1000 words. The database 

query results were compared with the reference using the standard ATIS evaluation tool. Figure 12 plots 

the slot error rate of the HMM/CFG composite model with the ATIS 93 category A test set (utterances 

whose interpretation is independent of the context), with respect to the amount of the training data it used. 

Here the accuracy of the model trained with half of the 1993 ATIS3 training data is close to that of the 

model trained with all the 1993 data (~1700 sentences). With all the training data, the end-to-end error rate 

is 5.3%, which is comparable to the best manually developed grammar, and better than the best data-driven 

statistical model that used all the ATIS2 and ATIS3 training data (over 6000 sentences). The inclusion of 

domain knowledge in the statistical model reduced the training requirement. 
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Figure 12. ATIS end-to-end system error rate on text input vs. training set size for the HMM/CFG 

composite model..  

 

5 Use of Understanding Models for Speech Recognition  

5.1 Sub-optimality of Two-pass SLU 

Eq. (1) assumes that the sentence or word sequence W is the observation. This is true for typed-in language. 

However, for spoken language understanding, the observation is the acoustic observation sequence O. 

Hence the optimal meaning for a speech utterance O is  

 

 ˆ arg max ( | ) arg max ( | ) ( )
M M

M P M O P O M P M= =  (30) 

Often, Eq. (30) is implemented with a two-pass approach. In the first pass, a “pseudo” word observation 

sequence ˆ arg max ( | ) arg max ( | ) ( )
W W

W P W O P O W P W= = is obtained with maximum a posteriori 

probability by ASR. In the second pass, meaning M̂ is extracted from Ŵ by plugging Ŵ into Eq. (1): 
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 (31) 
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An alternative to this two-pass solution is shown in Eq. (32): 
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Here the understanding model ( | ) ( )P W M P M , which can be considered as meaning-specific “language 

model”, is directly used in place of the generic language model in ASR. 

 

The two-pass solution is simpler from engineering point of view, and it runs faster because there is no need 

to keep separate search paths with the same prefix strings but different semantic structures in speech 

decoding. However, it is a sub-optimal solution because the dependency link between O and M via W is 

broken. Instead, O is generated via a different language model ( )P W  and acoustic model ( | )P O W  that 

have nothing to do with M. In an extreme case we may have ( ) 0P W =  whenever ( | ) 0P W M ≠ , so no 

optimal solution  can be found at all. In research spoken dialog systems, this problem has often been 

heuristically addressed by performing SLU on the n-best outputs from a recognizer. Another disadvantage 

of the two-pass solution lies in the difficulty to adapt to changes. If new cities are added into a database, or 

a new type of services is introduced, the language model in a two-pass system has to be retrained unless a 

class-based language is used.  

   

5.2 Using Understanding Model as the LM for Speech Recognition  

For a knowledge-based system that uses CFG for SLU, it may appear to be easy to use the SLU model for 

ASR since many speech recognizers take PCFGs directly as the language model. Even with a non-CFG 

formalism like the unification grammar, they can be converted to a CFG for ASR [24, 25]. However, 

simplicity remains only at the engineering level. A fundamental problem is that the knowledge-based 

models are generally not robust to disfluencies in spontaneous speech and recognition errors. They depend 

on the robust mechanism of the parser in the understanding component to deal with the inputs not covered 

by the model. This robust mechanism is not available in speech recognizers.  
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In statistical SLU, robustness is built into the model itself through proper smoothing. The remaining 

problems have more of an engineering nature --- how can a statistical model like the HMM/CFG composite 

model be converted into a format that a recognizer can take. In [26] the HMM/CFG composite model is 

converted to a CFG as follows: the backbone Markov chain is basically a statistical finite state machine, 

which is a sub-class of the PCFG. The efficient conversion of the n-gram observation model follows the 

work in [27], and the CFG observation model is used directly. The composite model, in the format of 

PCFG, was applied under the framework of Eq. (32), and the results were compared with the two-pass 

recognition/understanding paradigm under the framework of Eq. (31), where a domain-specific trigram was 

used as the language model ( )P W in speech recognition and the HMM/CFG composite model was used for 

the second pass understanding.  

 

Table 1 shows the findings with a commercial decoder and a research decoder. For the commercial decoder, 

even though the composite model’s word error rate is over 46% higher than the trigram model, its SLU 

error rate (again measured as the slot insertion-deletion-substitution rate) is 17% lower. With the research 

decoder that is less aggressive in pruning, the word error rate of the HMM/CFG model is about 27% higher 

than the trigram model. However, the SLU error rate is still marginally lower. 

 

Decoder Trigram   HMM/CFG    Transcription 

WER 8.2% 12.0% --- Commercial 

Decoder SLUER 11.6% 9.8% 5.1% 

WER 6.0% 7.6% --- Research 

Decoder SLUER 9.0% 8.8% 5.1% 

Table 1. The ASR word error rate and the SLU error rate (slot ins-del-sub) of the trigram model (2-passes) 
and the HMM/CFG composite mode (1-pass). “Transcription” column shows the SLU error rate on the true 
text input. Both automatic and manual transcriptions were sent to the same HMM/CFG model for a second-
pass SLU. 

 

The results clearly demonstrate the sub-optimality of separating the models for ASR and SLU. In this 

approach, the trigram is trained to optimize the likelihood of the training sentences. If the test data is drawn 

from the same distribution, the trigram model assigns higher likelihood to the correct transcriptions and 

hence reduces the word error rate. On the other hand, the objective of the HMM/CFG composite model 
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training is to maximize the likelihood of the observed semantic representations. Thus the correct semantic 

representations of the test sentences will be assigned higher probability. It is important to note that the 

trigram model used all the ATIS2 and ATIS3 training data, while the HMM/CFG composite model only 

used the 1993 ATIS3 training data. Although the comparison is not fair to the HMM/CFG composite model, 

it is informative because unannotated training data is much easier to obtain than the annotated data. When 

only the 1700 training samples were used for LM training, the two-pass system had 10.4% WER and 

13.1% SLUER with the commercial recognizer, and 7.5% WER and 10.2% SLUER with the research 

recognizer. 

 

The results from other research work also provide evidence for the importance of keeping the dependency 

link between acoustic links and semantics. In [28], a language model that interpolated the word n-gram 

with n-grams containing semantically salient phrases was used for an automatic call-routing (ACR) task. A 

slight word accuracy improvement from the new language model resulted in a disproportionately 

substantial improvement in understanding. In [29], a single pass ASR/ACR system, in which the ACR 

statistical model was used as the language model for ASR as well, resulted in worse word error rate but 

better call classification accuracy. In [30], a concept decoder that adopted a model similar to the 

HMM/CFG model also yielded better understanding results. 

6 Other Statistical Spoken Language Research 
Although the majority of the SLU work falls into the general framework of Eq. (1), which we have focused 

on in this article, some other noteworthy research in SLU is based on different frameworks.  For 

completeness of covering SLU, we briefly review such research in this section. The first class of such work 

is that described in [31] and [32], where semi-automatic grammar induction for SLU was developed based 

on statistical clustering techniques. The grammars obtained from these purely bottom-up data-driven 

grammar induction algorithms require manual post-processing for practical use. 

 

Another class of SLU problems which are solved by a different framework from Eq. (1) is automatic call 

routing (ACR). The goal of ACR is to classify and then route a user’s call to one of several possible 

destinations through an interactive voice response system (IVR). Typically, there is little limitation on what 
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a user can say, and it maps free-form language robustly to a simple semantic space, namely a small set of 

routing destinations for incoming phone calls. Some call routing systems can optionally identify key 

concepts, but concept identification is not the major focus of research in ACR. Therefore ACR is mainly a 

classification problem. Many, if not all, systems use statistical classifications instead of developing a 

semantic grammar [33-35], and the classifiers are often trained with discriminative technologies instead of 

Maximum Likelihood training. The work described in [36] in this special issue provides an overview of one 

of the most well-known call routing systems. 

 

With the availability of (overwhelmingly) large multimedia contents including speech information, the 

understanding and organization of such content becomes a critical research topic for efficient use of the 

information.  In this case, the understanding is no longer limited to a small domain. The work described in 

[37] in this special issue is an introduction to the research in this area. 

 

Since the late 90’s, there has been  increasing interest in data-driven statistical parsing, based on the model 

learned from manually annotated tree-banks [38, 39]. While the research focused on general syntactic 

parsing for NLP, they potentially can be applied to SLU when a large corpus is available. Details of that 

research are beyond the scope of this article. 

7 Summary and Conclusion 
This article is intended to serve as an introduction to the field of statistical spoken language understanding, 

based on the mainstream statistical modeling approach that shares a similar mathematical framework with 

many other statistical pattern recognition applications such as speech recognition. SLU-specific key 

concepts are outlined in this approach, and examples in the ATIS application domain are given to illustrate 

the use of the statistical models for accomplishing the SLU task. In particular, we formulate a number of 

statistical models for SLU in the literature as extensions to HMMs as segment models, where a multiple-

word block (segment) with word dependency is generated from each underlying Markov state 

corresponding to each individual semantic slot defined from the application domain.  
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In the past, due partly to its nature of symbolic rather than numeric processing, the important field of SLU 

in human language technology has not been widely exposed to the signal processing research community. 

However, many key techniques in SLU, as we have reviewed in this article, originated from statistical 

signal processing. And because SLU is becoming increasingly important, as one major target application 

area of ASR which has been dear to many signal processing researchers, we contribute this article to 

provide a natural bridge between ASR and SLU in their methodological and mathematical foundation. It is 

our hope that when the mathematical basis of SLU becomes well known through this introductory article, 

more powerful techniques established by signal processing researchers may contribute in the future to 

further advancement of SLU that forms a solid application area making speech technology a successful 

component for intelligent human-machine communication. 
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Appendix A: An analogous view of SLU and ASR terminologies 

 

This Appendix provides a list of key concepts in SLU (column one) and their corresponding counterparts in 

ASR (column two) in the following table. The correspondence is based on their respective roles in the 

common general framework described in Section 3. The analogies may not be interpreted literally in other 

contexts, but we have strived to highlight their commonality to our best ability our specific context of 

Section 3. And where differences arise, we provide comments on the third column. 

 

SLU ASR Comments 

Semantic prior model Language model Both are the prior model in the Bayesian pattern 

recognition framework. Semantic prior models 

regulate the recognized meaning representation; 

language models regulate the recognized text. 

Lexicalization model Acoustic model Both model the generative process for the 

observations. The lexicalization model depicts the 

process of generating a word sequence from an 

underlying meaning representation (semantics); the 

acoustic model delineates the process of generating 

the acoustic feature vector sequences from an 

underlying word (sequence). 

Context-dependent 

lexicalization model 

Segment model Both are specific types of the observation 

generation model that capture the dependency 

among the observations. While the segment models 

often represent the segment length explicitly, the 
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context dependent lexicalization model 

characterizes the duration implicitly according to 

the expected probability of observing the sentence 

end symbol “</s>” in an n-gram model. 

Semantic schema Dictionary Both contain a list of all legitimate items to be 

recognized. Semantic schema contains a list of 

semantic frames; dictionary contains a list of 

pronunciations. 

Semantic frame Pronunciation Both define the legitimate composition of the items 

to be recognized. While pronunciation generally 

uses linear phoneme or allophone sequence(s) to 

model words, semantic frames typically model the 

meaning hierarchically. And there is greater 

flexibility in the temporal ordering of the 

constitutes in the semantic frame (slots and phrases) 

than the constituents in the pronunciation (phones).  

Typed slot Phoneme Both are the units in constructing the items to be 

recognized. Slots are the building blocks of the 

semantic frames; phonemes are the building blocks 

of word pronunciations. The difference is that a slot 

may have embedded structures. 

Slot filler Allophone Both are the different realizations of the abstract 

building units. Slot fillers are the instantiations of 

the slots, while allophones are the phonetic variants 

of a phoneme. 

Parser Decoder The apparatus that takes the observation as input 

and maps it to the recognized item by using the 

models.   
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Meaning representation Recognized words The target of pattern recognition. 
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