INTERSPEECH 2005

Anatomy of an extremely fast LVCSR decoder

George Saon, Daniel Povey and Geoffrey Zweig

IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598
e-mail: {gsaon, dpovey, gzweig}@us.ibm.com

Abstract

We report in detail the decoding strategy that we used for
the past two Darpa Rich Transcription evaluations (RT’03
and RT’04) which is based on finite state automata (FSA).
We discuss the format of the static decoding graphs, the
particulars of our Viterbi implementation, the lattice gen-
eration and the likelihood evaluation. This paper is in-
tended to familiarize the reader with some of the design
issues encountered when building an FSA decoder. Ex-
perimental results are given on the EARS database (En-
glish conversational telephone speech) with emphasis on
our faster than real-time system.

1. Introduction

Recent advances in decoding algorithms coupled with the
availability of ever increasing computing power has made
accurate, real-time LVCSR possible for various domains
such as broadcast news transcription [7] or conversational
telephone speech recognition [6]. One such advance is
the use of weighted finite-state transducers which allow
to efficiently encode all the various knowledge sources
present in a speech recognition system (language model,
pronunciation dictionary, context decision trees, etc). The
network resulting from the composition of these WESTs,
after minimization, can be directly used in a Viterbi de-
coder [4]. Such decoders have been shown to yield excel-
lent performance when compared to classic approaches [3].

This approach is currently so successful at IBM that
no less than five different Viterbi decoders using FSA
technology have been written, three of which were writ-
ten by the authors of this paper. While these decoders
share many common characteristics, we focus here only
on the recognizer that has been used during the past two
Darpa EARS evaluations.

2. Decoder description
2.1. Static decoding graphs

Our decoder operates on static graphs obtained by succes-
sively expanding the words in an n-gram language model
in terms of their pronunciation variants, the phonetic se-
quences of these variants and the context dependent acous-
tic realizations of the phones. The main advantage of
using static graphs is that the graphs can be heavily op-

549

timized at “compile” time (e.g. through determinization
and minimization [4]) in advance, so that minimal decod-
ing work is required at “decode” time.

The decoding graphs that we use have some distinc-
tive characteristics when compared to standard WFSTs.
The first characteristic is that they are acceptors instead
of transducers. The arcs in the graph can have three dif-
ferent types of labels:

e leaflabels (context-dependent output distributions),
e word labels and

e epsilon labels (e.g. due to LM back-off states).

Although not assumed by the decoder, it is helpful if
the word labels are always at the end of a word, i.e. right
after the sequence of corresponding leaves. This ensures
that the time information associated to a word sequence
is always correct which is not the case for WFSTs since
word labels can be shifted around. In the latter case, the
1-best word sequences or lattices have to be acoustically
re-aligned to get the correct times and scores. In addition,
the FSA representation is more compact since only one
integer per arc is required to store the label. The draw-
back of having word labels at the end is that suffixes from
different words cannot be shared anymore.

The second characteristic has to do with the types of
states present in our graphs:

o emitting states for which all incoming arcs are la-
beled by the same leaf and

e null states which have incoming arcs labeled by
words or epsilon.

This is in effect equivalent to having the observations
emitted on the states of the graph not on the arcs. The
advantage is that the Viterbi scores of the states can be
directly updated with the observation likelihoods and the
scores of the incoming arcs. It also makes the decoder
conceptually simpler: there is no need to keep track of
active arcs during the search, only of active states. It
can happen however that, after determinization and mini-
mization, arcs with different leaf labels point to the same
emitting state. In this case, the state is split into several
different states each having incoming arcs labeled by the

September, 4-8, Lisbon, Portugal

INTERSPEECH 2005

same leaf. Even when using large span phonetic context
such as cross-word septaphones, this phenomenon is rel-
atively rare and leads to only a small increase in graph
size (<10%). Finally, each emitting state has a self-loop
labeled by the leaf of the incoming arcs. Null states can
have incoming arcs with arbitrary word or epsilon labels
(but no leaf labels). An illustration of our graph format is
given in Figure 1.

<epsilon>

. = emitting state O = null state
Figure 1: Example of an FSA decoding graph (with
phone labels instead of leaf labels).

2.2. Viterbi search

At a high level, the Viterbi search is a simple token pass-
ing algorithm without any context information attached
to the tokens. It can be basically written as a loop over
time frames and an inner loop over sets of active states. A
complication arises in the processing of null states, which
do not account for any observations. Because of this, an
arbitrary number of null states might need to be traversed
for each speech frame that is processed. Furthermore,
since multiple null-state paths might lead to the same
state, the nulls must be processed in topological order.

In order to recover the Viterbi word sequence, it is not
necessary to store backpointers for all the active states.
Instead one can store only the backpointer to the previ-
ous word in the sequence. More precisely, every time we
traverse an arc labeled by a word, we create a new word
trace structure containing the identity of the word, the
end time for that word (which is the current time frame)
and a backpointer to the previous word trace. We then
pass a pointer to this trace as a token during the search.
This procedure is slightly modified for lattice generation
as it will be explained later on. Storing only word traces
rather than state traces during the forward pass reduces
the dynamic memory requirements dramatically (several
orders of magnitude for some tasks). The drawback of
this technique however is that the Viterbi state sequence
cannot be recovered anymore.

550

Even though we store minimal information during the
forward pass, for very large utterances and/or wide de-
coding beams and/or lattice generation, the memory us-
age can be excessive. We implemented garbage collec-
tion of the word traces in the following way. We mark
all the traces which are active at the current time frame as
alive. Any predecessor of a live trace becomes alive itself.
In a second pass, the array of traces is overwritten with
only the live traces (with appropriate pointer changes).
When done every 100 frames or so, the runtime overhead
of this garbage collection technique is negligible.

2.3. Search speed-ups

Here we present some search optimization strategies which
were found to be beneficial. They have to do with the way
the search graph is stored and accessed and with the way
pruning is performed.

o Graph memory layout. The decoding graph is stored
as a linear array of arcs sorted by origin state, each
arc being represented by a destination state, a label
and a cost (12 bytes/arc). Each state has a pointer
to the beginning of the sequence of outgoing arcs
for that state, the end being marked by the pointer
of the following state (4 bytes/state). These data
structures are similar to the ones described in [1].

e Successor look-up table. The second optimization
has to do with the use of a look-up table which
maps static state indices (from the static graph) to
dynamic state indices. The role of this table is to
indicate whether a successor state has already been
accessed and, if yes, what entry it has in the list of
active states.

o Running beam pruning. For a given frame, only the
hypotheses whose score are greater than the cur-
rent maximum for that frame minus the beam are
expanded. Since this is an overestimate of the num-
ber of hypotheses which survived, the paths are
pruned again based on the absolute maximum for
that frame (minus the beam) and based on a max-
imum number of active states (rank or histogram
pruning). This resulted in a 10%-15% speed-up
over standard beam pruning.

2.4. Lattice generation

The role of a lattice (or word-graph) is to efficiently en-
code all the possible word sequences which have appre-
ciable likelihood given the acoustic evidence. Standard
lattice generation in (dynamic search graph) Viterbi de-
coding uses a word-dependent N-best algorithm where
multiple backpointers to previous words are kept at word
ends [5, 8]. When using static graphs however, there is
a complication due to the merges of state sequences that
can happen in the middle of words.

INTERSPEECH 2005

The strategy we adopt is to keep track of the N-best
distinct word sequences arriving at every state. This is
achieved through hashing of the word sequences from the
beginning of the utterance up to that state. More pre-
cisely, during the forward pass, we propagate N tokens
from a state to its successors. Token ¢ contains the for-
ward score of the ith-best path, the hash code of the word
sequence up to that point and a backpointer to the pre-
vious word trace. Once we traverse an arc labeled by
a word, we create a new word trace which contains the
word identity, the end time and the N tokens up to that
point. We then propagate only the fop-scoring path (to-
ken). At merge points, we perform a mergesort uniq op-
eration to get from 2N down to N tokens (the tokens are
kept sorted in descending score order). This lattice gen-
eration procedure is illustrated in Figure 2.

TIME { { 1
| | | |
I I I
AcAT |3 THE CAT | 6 [Aﬁs] ‘THECAT‘ ATE[9 |
o ! ACAT | 4 : ‘
AD ! ® ' ‘ ATE :‘ 3 .‘
|
THE CAT | 4 |!
|
ONECAT|1 |1

@ = Word trace

Figure 2: N-best lattice generation (N=2). Here arcs carry
word labels and scores (higher scores are better). Word
sequences are represented by hash codes.

In Table 1, we report the link density (number of arcs
in the lattice divided by the number of words in the refer-
ence) as a function of N for the same pruning parameter
settings. We normally use N=5 to achieve a good balance
between lattice size and lattice quality.

10
1709.7

N-best degree 2 5
Lattice link density | 29.4 | 451.0

Table 1: Lattice link density as a function of N.

Table 2 shows the word error rates for three different
test sets of the EARS database obtained after language
model rescoring and consensus processing of the lattices
at the speaker adapted level. The language model used to
generate the lattices has 4.1M n-grams while the rescor-
ing LM is significantly larger with 100M n-grams (please
refer to [9] for details on how these language models were
trained).

2.5. Likelihood computation

In [6], we have presented a likelihood computation strat-
egy based on a hierarchical Gaussian evaluation which is
decoupled from the search. Here, we contrast this tech-
nique with “on-demand” likelihood computation in the

551

RTO03 | DEV04 | RT04
Speaker-adapted decoding | 17.4 14.5 16.4
LM rescoring + consensus | 16.1 13.0 15.2

Table 2: Word error rates for LM rescoring and consensus
processing on various EARS test sets.

sense that we evaluate the Gaussians only for the states
which are accessed during the search as suggested in [7].
A further refinement is achieved by combining the two
approaches. This works as follows: first, we perform
a top-down clustering of all the mixture components in
the system using a Gaussian likelihood metric until we
reach 2048 clusters (Gaussians). At runtime, we evalu-
ate the 2048 components for every frame and, for a given
state accessed during the search, we only evaluate those
Gaussians which map to one of the top N clusters for
that particular frame. Figure 3 shows the word error rate
versus run-time factor (including search) for the three
different likelihood schemes: ‘hierarchical decoupled”
(pre-computation and storage of all the likelihoods), “on-
demand” and “hierarchical on-demand” (computing on-
demand only those Gaussians which are in the most likely
clusters). For both on-demand techniques, we use a like-
lihood batch strategy which computes and stores the like-
lihoods for eight consecutive frames into the future, as
described in [7].

32

T
on-demand ——
hierarchical decoupleg Rt

315 hierarchical on-deman

31

30.5

30

29.5

WER (%)

29

28.5

‘.* N
28 RN ™

275

26.5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Real-time factor (cpu time/audio time)

Figure 3: Word error rate versus real time factor for var-
ious likelihood schemes (EARS RT’04 speaker indepen-
dent decoding). Times are measured on Linux Pentium
IV 2.8GHz machines and are inclusive of the search.

3. Experimental setup

We study the behaviour of the LVCSR decoder on our
EARS 2004 evaluation submission in the one times real-
time (or 1xRT) category. The architecture we propose
uses an extremely fast initial speaker-independent decod-
ing to estimate VTL warp factors, feature-space and model-

INTERSPEECH 2005

space MLLR transformations that are used in a final speaker-

adapted decoding [6]. The decoding graphs for the two
decoding passes are built using identical vocabularies,
similarly sized 4-gram language models, but very dif-
ferent context decision trees. For the compilation of the
phonetic decision trees into FSTs, we applied an efficient
incremental technique described recently in [2]. Table 3
shows various decoding graph statistics. The maximum
amount of memory used during the determinization step
was 4GB.

SI SA
Phonetic context +2 +3
Number of leaves 79K | 21.5K
Number of words 329K | 329K
Number of n-grams | 3.9M | 4.2M
Number of states 18.5M | 26.7M
Number of arcs 44.5M | 68.7M

Table 3: Graph statistics for the speaker-independent and
speaker-adapted decoding passes. The number of arcs in-
cludes self-loops.

The drastic runtime constraints for the 1XRT submis-
sion forced us to choose quite different operating points
for the speaker-independent and speaker adapted decod-
ing. Thus, the SI decoding was allotted a runtime fraction
of only 0.14xRT, whereas the SA decoding ran at a more
“leisurely pace” of 0.55xRT. This had an influence on the
number of search errors as can be seen from Table 4. In
the same table, we indicate the error rates and various de-
coding statistics for the two passes. The test set consists
of 36 two-channel telephone conversations (72 speakers)
totaling 3 hours of speech and 37.8K words. Times were
measured on a Linux Pentium I'V 3.4 GHz machine (with-
out hyperthreading).

SI SA
Word error rate 28.7% | 19.0%
Search errors 2.2% 0.3%
Likelihood/search ratio 60/40 | 55/45
Avg. number of Gaussians/frame | 7.5K | 43.5K
Max. number of states/frame 5.0K | 15.0K

Table 4: Error rates and decoding statistics on RT’04 for
the 1xRT system.

Lastly, we discuss the memory requirements for the
speaker adapted decoding, which is by far the most re-
source consuming. The memory usage can be summa-
rized as follows: 1.2Gb of static memory divided into
932Mb for the decoding graph and 275Mb for 850K 40-
dimensional Gaussians and 133Mb of dynamic memory
(220Mb with lattice generation).

552

4. Conclusion

In this paper we explored some of the design issues en-
countered in FSA-based decoding. Specifically, we dis-
cussed: (a) the choice of acceptors instead of transduc-
ers as static decoding graphs with observations emitted
on states instead of arcs (b) the use of word traces for
traceback information (c) a lattice generation procedure
based on N-best distinct word sequences and (d) an on-
demand hierarchical likelihood computation. Using these
techniques, we showed that it is possible to perform very
accurate LVCSR decoding under tight time constraints.

5. Acknowledgment

The authors wish to thank Stanley Chen for the work
on decoding graph construction and Miroslav Novak for
suggesting the graph memory layout and the use of word
traces.

6. References

[1] D. Caseiro and I. Trancoso. Using dynamic WEST
composition for recognizing broadcast news. In IC-
SLP’02, Denver, CO, 2002.

[2] S.Chen. Compiling large-context phonetic decision
trees into finite-state transducers. In Eurospeech’03,

Geneva, Switzerland, 2003.

S. Kanthak, H. Ney, M. Riley and M. Mohri. A
comparison of two LVR search optimizations tech-
niques. In ICSLP’02, Denver, CO, 2002.

M. Mohri, F. Perreira and M. Riley. Weighted finite
state transducers in speech recognition. In ISCA
ITRW ASR’00, Paris, France, 2000.

J. Odell. The use of context in large vocabulary
speech recognition. PhD thesis. University of Cam-
bridge, United Kingdom, 1995.

(3]

(4]

(5]

[6] G. Saon, G. Zweig, B. Kingsbury, L. Mangu and
U. Chaudhari. An architecture for rapid decoding
of large vocabulary conversational speech. In Eu-

rospeech’03, Geneva, Switzerland, 2003.

[7] M. Saraclar, M. Riley, E. Bocchieri and V. Gof-
fin. Towards automatic closed captioning: low la-
tency real-time broadcast news transcription. In IC-

SLP’02, Denver, CO, 2002.

[8] R. Schwartz and S. Austin. Efficient, high-
performance algorithms for n-best search. In Darpa
Workshop on Speech and Natural Language, Hid-

den Valley, PA, 1990.

[9] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G.
Saon, and G. Zweig. The IBM 2004 conversa-
tional telephony system for rich transcription. In

ICASSP’05, Philadelphia, PA, 2005.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Daniel Povey

	lh549:
	rh549:
	pg549:
	rf549:
	lh550:
	rh550:
	pg550:
	lh551:
	rh551:
	pg551:
	lh552:
	rh552:
	pg552:

