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Abstract

While clustering is usually an unsupervised operation, there are circum-
stances in which we believe (with varying degrees of certainty) that items
A and B should be assigned to the same cluster, while items A and C
should not. We would like suchpairwise relationsto influence cluster
assignments of out-of-sample data in a manner consistent with the prior
knowledge expressed in the training set. Our starting point is proba-
bilistic clustering based on Gaussian mixture models (GMM) of the data
distribution. We express clustering preferences in the prior distribution
over assignments of data points to clusters. This prior penalizes cluster
assignments according to the degree with which they violate the prefer-
ences. We fit the model parameters with EM. Experiments on a variety
of data sets show that PPC can consistently improve clustering results.

1 Introduction

While clustering is usually executed completely unsupervised, there are circumstances in
which we have prior belief that pairs of samples should (or should not) be assigned to
the same cluster. Suchpairwise relationsmay arise from a perceived similarity (or dis-
similarity) between samples, or from a desire that the algorithmically generated clusters
match the geometric cluster structure perceived by the experimenter in the original data.
Continuity, which suggests that neighboring pairs of samples in a time series or in an image
are likely to belong to the same class of object, is also a source of clustering preferences.
We would like these preferences to be incorporated into the cluster structure so that the
assignment of out-of-sample data to clusters captures the concept(s) that give rise to the
preferences expressed in the training data.

Some work [1, 2, 3] has been done on adopting traditional clustering methods, such as K-
means, to incorporate pairwise relations. These models are based on hard clustering and
the clustering preferences are expressed ashard pairwise constraintsthat mustbe satis-
fied. While this work was in progress, we became aware of the algorithm of Shentalet al.
[4] who propose a Gaussian mixture model (GMM) for clustering that incorporates hard
pairwise constraints.

In this paper, we propose a soft clustering algorithm based on GMM that expresses cluster-



ing preferences (in the form of pairwise relations) in theprior probability on assignments of
data points to clusters. This framework naturally accommodates bothhard constraintsand
soft preferencesin a framework in which the preferences are expressed as a Bayesian prob-
ability that pairs of points should (or should not) be assigned to the same cluster. We call
the algorithm Penalized Probabilistic Clustering (PPC). Experiments on several datasets
demonstrate that PPC can consistently improve the clustering result by incorporating reli-
able prior knowledge.

2 Prior Knowledge for Cluster Assignments

PPC begins with a standard GMM

P (x|Θ) =
M∑

α=1

πα P (x|α, θα)

whereΘ = (π1, . . . πK , θ1, . . . , θK). We augment the datasetX = {xi}, i = 1 . . . N with
(latent) cluster assignmentsZ = z(xi), i = 1, . . . , N to form the familiarcomplete data
(X, Z). The complete data likelihood is

P (X,Z|Θ) = P (X|Z, Θ)P (Z|Θ). (1)

2.1 Prior distribution in latent space

We incorporate our clustering preferences by manipulating theprior probability P (Z|Θ).
In the standard Gaussian mixture model, the prior distribution is trivial:P (Z|Θ) =

∏
i πzi .

We incorporate prior knowledge (our clustering preferences) through a weighting function
g(Z) that has large values when the assignment of data points to clustersZ conforms to
our preferences, and low values whenZ conflicts with our preferences. Hence we write

P (Z|Θ, G) =
∏

i πzig(Z)∑
Z

∏
j πzj g(Z)

≡ 1
K

∏

i

πzig(Z) (2)

where the sum is over all possible assignments of the data to clusters. The likelihood
of the data,given aspecific cluster assignment, is independent of the cluster assignment
preferences, and so the complete data likelihood is

P (X,Z|Θ, G) = P (X|Z, Θ)
1
K

∏

i

πzig(Z) =
1
K

P (X,Z|Θ)g(Z), (3)

whereP (X,Z|Θ) is the complete data likelihood for astandardGMM. The data like-
lihood is the sum of complete data likelihood over all possibleZ, that is, L(X|Θ) =
P (X|Θ, G) =

∑
Z P (X, Z|Θ, G), which can be maximized with the EM algorithm. Once

the model parameters are fit, we do soft clustering according to the posterior probabilities
for new datap(α|x,Θ). (Note that cluster assignment preferences arenotexpressed for the
new data, only for the training data.)

2.2 Pairwise relations

Pairwise relations provide a special case of the framework discussed above. We specify
two types of pairwise relations:

• link : two sample should be assigned into one cluster

• do-not-link : two samples should be assigned into different clusters.



The weighting factor given to the cluster assignment configurationZ is simple:

g(Z) =
∏

i,j

exp(W p
ij δ(zi, zj)),

whereδ is the Kroneckerδ-function andW p
ij is the weight associated with sample pair

(xi, xj). It satisfies
W p

ij ∈ [−∞,∞], W p
ij = W p

ji.

The weightW p
ij reflects our preference and confidence in assigningxi andxj into one

cluster. We use a positiveW p
ij when we prefer to assignxi andxj into one cluster (link),

and a negativeW p
ij when we prefer to assign them into different clusters (do-not-link). The

value |W p
ij | reflects how certain we are in the preference. IfW p

ij = 0, we have no prior
knowledge on the assignment relevancy ofxi andxj . In the extreme cases where|W p

ij | →∞, theZ violating the pairwise relations aboutxi andxj have zero prior probability, since
for those assignments

P (Z|Θ, G) =

∏
n πzn

∏
i,j exp(W p

ij δ(zi, zj))∑
Z

∏
n πzn

∏
i,j exp(W p

ij δ(zi, zj))
→ 0.

Then the relations becomehard constraints, while the relations with|W p
ij | < ∞ are called

soft preferences. In the remainder of this paper, we will useW p to denote the prior knowl-
edge on pairwise relations, that is

P (X, Z|Θ,W p) =
1
K

P (X,Z|Θ)
∏

i,j

exp(W p
ij δ(zi, zj)) (4)

2.3 Model fitting

We use the EM algorithm [5] to fit the model parametersΘ.

Θ∗ = arg max
Θ

L(X|Θ, G)

The expectation step (E-step) and maximization step (M-step) are

E-step: Q(Θ, Θ(t−1)) = EZ|X(log P (X,Z|Θ, G)|X, Θ(t−1), G)

M-step: Θ(t) = arg max
Θ

Q(Θ, Θ(t−1))

In the M-step, the optimal mean and covariance matrix of each component is:

µk =

∑N
j=1 xjP (k|xj , Θ(t−1), G)

∑N
j=1 P (k|xj ,Θ(t−1), G)

Σk =

∑N
j=1 P (k|xj , Θ(t−1), G)(xj − µk)(xj − µk)T

∑N
j=1 P (k|xj , Θ(t−1), G)

.

However, the update of prior probability of each component is more difficult than for the
standard GMM, we need to find

π ≡ {π1, . . . , πm} = arg max
π

M∑

l=1

N∑

i=1

log πlP (l|xi, Θ(t−1), G)− log K(π).

In this paper, we use a numerical method to find the solution.



2.4 Posterior Inference and Gibbs sampling

The M-step requires the cluster membership posterior. Computing this posterior is simple
for the standard GMM since each data pointxi can be assigned to a cluster independent of
the other data points and we have the familiar cluster origin posteriorp(zi = k|xi, Θ).

For the PPC model calculating the posteriors is no longer trivial. If two sample points,xi

andxj participate in a pairwise relations, equation (4) tells us

P (zi, zj |X, Θ,W p) 6= P (zi|X, Θ, W p)P (zj |X, Θ,W p) .

and the posterior probability ofxi andxj cannot be computed separately.

For pairwise relations, the joint posterior distribution must be calculated over the entire
transitive closure of the “link” or “do-not-link” relations. See Fig. 1 for an illustration.

(a) (b)

Figure 1: (a) Links (solid line) and do-not-links (dotted line) among six samples; (b) Rele-
vancy (solid line) translated from links in (a)

In the remainder of this paper, we will refer to the smallest sets of samples whose posterior
assignment probabilities can be calculated independently ascliques. The posterior proba-
bility of a given samplexi in a cliqueT is calculated by marginalizing the posterior over
the entire clique

P (zi = k|X, Θ,W p) =
∑

ZT |zi=k

P (ZT |XT , Θ, W p),

with the posterior on the clique given by

P (ZT |XT , Θ, W p) =
P (ZT , XT |Θ,W p)

P (XT |Θ,W p)
=

P (ZT , XT |Θ,W p)∑
Z′

T
P (Z ′T , XT |Θ,W p)

.

Computing the posterior probability of a sample in cliqueT requires time complexity
O(M |T |), where|T | is the size of cliqueT andM is the number of components in the
mixture model. This is very expensive if|T | is very big and model sizeM ≥ 2. Hence
small size cliques are required to make the marginalization computationally reasonable.

In some circumstances it is natural to limit ourselves to the special case of pairwise relation
with |T | ≤ 2, callednon-overlapping relations. See Fig. 2 for illustration. More generally,
we can avoid the expensive computation in posterior inference by breaking large clique
into many small ones. To do this, we need to ignore some links or do-not-links. In section
3.2, we will give an application of this idea.

For some choices ofg(Z), the posterior probability can be given in a simple form even
when the clique is big. One example is when there are only hard links. This case is useful
when we are sure that a group of samples are from one source. For more general cases,
where exact inference is computationally prohibitive, we propose to use Gibbs sampling
[6] to estimate the posterior probability.



(a) (b)

Figure 2: (a) Overlapping pairwise relations; (b) Non-overlapping pairwise relations.

In Gibbs sampling, we estimateP (zi|X, Θ, G) as a sample mean

P (zi = k|X, Θ, G) = E(δ(zi, k)|X, Θ, G) ≈ 1
S

S∑
t=1

δ(z(t)
i , k)

where the sum is over a sequence ofS samples fromP (Z|X, Θ, G) generated by the
Gibbs MCMC. Thetth sample in the sequence is generated by the usual Gibbs sampling
technique:

• Pickz
(t)
1 from distributionP (z1|z(t−1)

2 , z
(t−1)
3 , ..., z

(t−1)
N , X,G, Θ)

• Pickz
(t)
2 from distributionP (z2|zt

1, z
(t−1)
3 , ..., z

(t−1)
N , X, G, Θ)

· · ·
• Pickz

(t)
N from distributionP (zN |z(t)

1 , z
(t)
2 , ..., z

(t)
N−1, X,G, Θ)

For pairwise relations it is helpful to introduce some notation. LetZ−i denote an as-
signment of data points to clusters that leaves out the assignment ofxi. Let U(i) be
the indices of the set of samples that participate in a pairwise relation with samplexi,
U(i) = {j : W p

ij 6= 0}. Then we have

P (zi|Z−i, X, Θ, W p) ∝ P (xi, zi|Θ)
∏

j∈U(i)

exp(2W p
ij δ(zi, zj)). (5)

WhenW p is sparse, the size ofU(i) is small, thus calculatingP (zi|Z−i, X, Θ,W p) is
very cheap and Gibbs sampling can effectively estimate the posterior probability.

3 Experiments

3.1 Clustering with different number of hard pairwise constraints

In this experiment, we demonstrate how the number of pairwise relations affects the per-
formance of clustering. We apply PPC model to three UCI data sets:Iris,Waveform, and
Pendigits. Iris data set has 150 samples and three classes, 50 samples in each class; Wave-
form data set has 5000 samples and three classes,33% samples in each class; Pendigits data
set includes four classes (digits 0,6,8,9), each with 750 samples. All data sets have labels
for all samples, which are used to generate the relations and to evaluate performance.

We try PPC (with component number same as the number of classes) with various number
of pairwise relations. For each relations number, we conduct 100 runs and calculate the
averaged classification accuracy. In each run, the data set is randomly split into training set
(90%) and test set (10%). The pairwise relations are generated as follows: we randomly
pick two samples from thetraining set without replacement and check their labels. If
the two have the same label, we then add a link constraint between them; otherwise, we



add a do-not-link constraint. Note the generated pairwise relations are non-overlapping,
as described in section 2.4. The model fitted on the training set is applied to test set.
Experiment results on two data sets are shown in Fig. 3 (a) and (b) respectively. As Fig.
3 indicates, PPC can consistently improve its clustering accuracy on the training set when
more pairwise constraints are added; also, the effect brought by constraints generalizes to
the test set.
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(a) on Iris data
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(b) on Waveform data
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(c) on Pendigits data

Figure 3: The performance of PPC with various number of relations

3.2 Hard pairwise constraints for encoding partial label

The experiment in this subsection shows the application of pairwise constraints onpartially
labeleddata. For example, consider a problem with six classesA,B, ..., F . The classes are
grouped into several class-setsC1 = {A, B,C}, C2 = {D, E}, C3 = {F}. The samples
are partially labeled in the sense that we are told which class-set a sample is from, but not
which specific class it is from. We can logically derive a do-not-link constraint between
any pair of samples known to belong to different class-sets, while no link constraint can be
derived if each class-set has more than one class in it.

Fig. 4 (a) is a 120x400 region from Greenland ice sheet from NASA Langley DAAC. This
region is partially labeled into snow area and non-snow area, as indicated in Fig. 4 (b).
The snow area can be ice, melting snow or dry snow, while the non-snow area can be bare
land, water or cloud. Each pixel has attributes from seven spectrum bands. To segment the
image, we first divide the image into 5x5x7 blocks (175 dim vectors). We use the first 50
principal components as feature vectors.

For PPC, we use half of data samples for training set and the rest for test. Hard do-not-link
constraints (only on training set) are generated as follows: for each block in the non-snow
area, we randomly choose (without replacement) six blocks from the snow area to build
do-not-link constraints. By doing this, we achieve cliques with size seven (1 non-snow
block + 6 snow blocks). Like in section 3.1, we apply the model fitted with PPC to test
set and combine the clustering results on both data sets into a complete picture. A typical
clustering result of 3-component standard GMM and 3-component PPC are shown as Fig.
4 (c) and (d) respectively. From Fig. 4, standard GMM gives a clustering that is clearly
in disagreement with the human labeling in Fig. 4 (b). The PPC segmentation makes far
fewer mis-assignments of snow areas (tagged white and gray) to non-snow (black) than
does the GMM. The PPC segmentation properly labels almost all of the non-snow regions
as non-snow. Furthermore, the segmentation of the snow areas into the two classes (not
labeled) tagged white and gray in Fig. 4 (d) reflects subtle differences in the snow regions
captured by the gray-scale image from spectral channel 2, as shown in Fig. 4 (a).



Figure 4: (a) Gray-scale image from the first spectral channel 2. (b) Partial label given by
expert, black pixels denote non-snow area and white pixels denote snow area. Clustering
result of standard GMM (c) and PPC (d). (c) and (d) are colored according to image blocks’
assignment.

3.3 Soft pairwise preferences for texture image segmentation

In this subsection, we propose an unsupervised texture image segmentation algorithm as
an application of PPC model. Like in section 3.2, the image is divided into blocks and
rearranged into feature vectors. We use GMM to model those feature vectors, hoping
each Gaussian component represents one texture. However, standard GMM often fails
to give a good segmentation because it cannot make use of the spatial continuity of image,
which is essential in many image segmentation models, such as random field [7]. In our
algorithm, the spatial continuity is incorporated as the soft link preferences with uniform
weight between each block and its neighbors. Thecompletedata likelihood is

P (X,Z|Θ,W p) =
1
K

P (X, Z|Θ)
∏

i

∏

j∈U(i)

exp(w δ(zi, zj)), (6)

whereU(i) means the neighbors of theith block. The EM algorithm can be roughly in-
terpreted as iterating on two steps: 1) estimating the texture description (parameters of
mixture model) based on segmentation, and 2) segmenting the image based on the texture
description given by step 1. Gibbs sampling is used to estimate the posterior probability in
each EM iteration. Equation (5) is reduced to

P (zi|Z−i, X, Θ,W p) ∝ P (xi, zi|Θ)
∏

j∈U(i)

exp(2w δ(zi, zj)).

The image shown in Fig. 5 (a) is combined from four Brodatz textures1 . This image is
divided into 7x7 blocks and then rearranged to 49-dim vectors. We use those vectors’ first
five principal components as the associated feature vectors. For PPC model, the soft links

1Downloaded from http://sipi.usc.edu/services/database/Database.html, April, 2004



with weightw are added between each block and its four neighbors, as shown in Fig. 5
(b). A typical clustering result of 4-component standard GMM and 4-component PPC with
w = 2 are shown in Fig. 5 (c) and Fig. 5 (d) respectively. Obviously, PPC achieves a better
segmentation after incorporating spatial continuity.

Figure 5: (a) Texture combination. (b) One block and its four neighbor. Clustering result of
standard GMM (c) and PPC (d). (c) and (d) are shaded according to the blocks assignments
to clusters.

4 Conclusion and Discussion
We have proposed a probabilistic clustering model that incorporates prior knowledge in
the form of pairwise relations between samples. Unlike previous work in semi-supervised
clustering, this work formulates clustering preferences as a Bayesian prior over the assign-
ment of data points to clusters, and so naturally accommodates both hard constraints and
soft preferences. For the computational difficulty brought by large cliques, we proposed a
Markov chain estimation method to reduce the computational cost. Experiments on differ-
ent data sets show that pairwise relations can consistently improve the performance of the
clustering process.
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