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Abstract. In this paper we describe the data access features of Cω, an experi-
mental programming language based on C� currently under development at Mi-
crosoft Research. Cω targets distributed, data-intensive applications and accord-
ingly extends C�’s support of both data and control. In the data dimension it pro-
vides a type-theoretic integration of the three prevalent data models, namely the
object, relational, and semi-structured models of data. In the control dimension
Cω provides elegant primitives for asynchronous communication. In this paper
we concentrate on the data dimension. Our aim is to describe the essence of these
extensions; by which we mean we identify, exemplify and formalize their essen-
tial features. Our tool is a small core language, FCω, which is a valid subset of
the full Cω language. Using this core language we are able to formalize both the
type system and the operational semantics of the data access fragment of Cω.

1 Introduction

Programming languages, like living organisms, need to continuously evolve in response
to their changing environment. These evolutionary steps are typically quite modest:
most commonly the provision of better or reorganized APIs. Occasionally a more rad-
ical evolutionary step is taken. One such example is the addition of generic classes to
both Java [6] and C�[25].

We should like to argue that the time has come for another large evolutionary step
to be taken. Much software is now intended for distributed, web-based scenarios. It is
typically structured using a three-tier model consisting of a middle tier containing the
business logic that extracts relational data from a data services tier (a database) and
processes it to produce semi-structured data (typically XML) to be displayed in the
user interface tier.

It is the writing of these middle tier applications that we should like to address.
These applications are most commonly written in an object-oriented language such as
Java or C� and have to deal with relational data (essentially SQL tables), object graphs,
and semi-structured data (XML, HTML).

In addition, these applications are fundamentally concurrent. Because of the in-
herent latency in network communication, the more natural model of concurrency is

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 287–311, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



288 G. Bierman, E. Meijer, and W. Schulte

asynchronous. Accordingly, Cω provides a simple model of asynchronous (one-way)
concurrency based on the join calculus [12]. For the rest of this paper, we shall focus
exclusively on the data access aspects of Cω; the concurrency primitives have been dis-
cussed elsewhere [3]. Thus when we write Cω, we mean the language excluding the
concurrency primitives.

Unfortunately common programming practice, and native API support for data ac-
cess (e.g. JDBC and ADO.NET) leave a lot to be desired. For example, consider the
following fragment taken (and mildly adapted) from the JDBC tutorial to query a SQL
database (a user-supplied country is stored in variable input).

Connection con = DriverManager.getConnection(...);

Statement stmt = con.createConnection();

String query = "SELECT * FROM COFFEES WHERE Country=’"+input+"’";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString("Cof_Name");

float n = rs.getFloat("Price");

System.out.println(s+" - "+n);

}

Using strings to represent SQL queries is not only clumsy but also removes any
possibility for static checking. The impedance mismatch between the language and the
relational data is quite striking; e.g. a value is projected out of a row by passing a
string denoting the column name and using the appropriate conversion function. Per-
haps most seriously, the passing of queries as strings is often a security risk (the ‘‘script
code injection” problem—e.g. consider the case when the variable input is the string
"’ OR 1=1; --") [17].

Unfortunately API support in both Java and C� for XML and XPath/XQuery is de-
pressingly similar (even those APIs that map XML values tightly to an object represen-
tation still offer querying facilities by string passing).

Our contention is that object-oriented languages need to evolve to support data ac-
cess satisfactorily. This is hardly a new observation; a large number of academic lan-
guages have offered such support for both relational and semi-structured data (see, e.g.
[1, 2, 20, 19, 15, 4]). In spite of the obvious advantages of these languages, it appears
that their acceptance has been hampered by the fact that they are ‘‘different” from more
mainstream application languages, such as Java and C�. For example, HaskellDB [19]
proposes extensions to the lazy functional language, Haskell; and TL [20] is a hybrid
functional/imperative language with advanced type and module systems. We approach
this language support problem from a different direction, which is to extend the com-
mon application languages themselves rather than creating another new language.

Closer to our approach is SQLJ [24]. This defines a way of embedding SQL com-
mands directly in Java code. Moreover the results of SQL commands can be stored in
Java variables and vice versa. Thus SQL commands are statically checked by the SQLJ
compiler. SQLJ compilation consists of two stages; first to pre-process the embedded
SQL, and second the ‘pure Java’ compilation. Thus the embedded SQL code is not part
of the language per se (in fact all the embedded code is prefixed by the keyword #sql).
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The chief difference is that Cω offers an integration of both the XML and relational
data models with an object model.

Design Objectives of Cω. The aim of our project was to evolve an existing language,
C�, to provide first-class support for the manipulation of relational and semi-structured
data. (Although we have started with C�, our extensions apply equally well to other
object-oriented languages, including Java.)

Addressing the title of our paper, the essence of the resulting language, Cω, is
twofold: its extensions to the C� type system and, perhaps more importantly, the elegant
provision of query-like capabilities (the sub-title of our paper). Cω has been carefully
designed around a set of core design principles.

1. Cω is a coherent extension of (the safe fragment of) C�, i.e. C� programs should be
valid Cω programs with the same behaviour.

2. The type system of Cω is intended to be both as simple as possible and closely
aligned to the type system in the XPath/XQuery standard. Our intended users are
C� programmers who are familiar with XPath/XQuery.

3. From a programming perspective, the real power of Cω comes from its query-like
capabilities. These have been achieved by generalizing member access to allow
simple XPath-like path expressions.

Paper Organization. The rest of the paper is organized as follows. In §2 we give a
comprehensive overview to the Cω programming language.1 In §3.1 we identify and
formalize FCω, a core fragment of Cω. In §3.2 we detail a simpler fragment, ICω, and
in §3.4 show how FCω can be compiled to ICω. Using this compilation, we are able to
show a number of properties of FCω in §3.5, including a type soundness theorem. We
briefly discuss some related work in §4 and conclude in §5.

2 An Introduction to Cω

Our design goal was to evolve C� to provide an integration of the object, relational
and semi-structured data models. One possibility would be to add these data models to
our programming language in an orthogonal way, e.g. by including new types XML<S>
and TABLE<R>, where S and R are XML and relational schema respectively. We have
sought to integrate these models by generalization, rather than by ad-hoc specializa-
tions. In the rest of this section we shall present the key ideas behind Cω, and give a
number of small programs to illustrate these ideas. This section should serve as a pro-
grammer’s introduction to Cω. We assume that the reader is familiar with C�/Java-like
languages.

2.1 New Types

Cω is an extension of C�, so the familiar primitive types such as integers, booleans,
floats are present, as well as classes and interfaces. In this section we shall consider

1 An preliminary version of Cω was (informally) described in [22]. We have subsequently sim-
plified the language, and our chief contribution here is a formalization (§§3–4).
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in turn the extensions to the type system—streams, anonymous structs, discriminated
unions, and content classes—and for each consider the new query capabilities.

Streams. The first structural type we add is a stream type; streams represent ordered
homogeneous collections of zero or more values. For example, int* is the type for
homogeneous sequences of integers. Streams in Cω are aligned with iterators, which
will appear in C� 2.0. Cω streams are typically generated using iterators, which are
blocks that contain yield statements. For example, the FromTo method:

virtual int* FromTo(int b, int e){

for (i = b; i <= e; i++) yield return i;

}

generates a finite, increasing stream of integers. Importantly, it should be noted that,
just as for C�, invoking such a method body does not immediately execute the iterator
block, but rather immediately returns a closure. (Thus Cω streams are essentially lazy
lists, in the Haskell sense.) This closure is consumed by the foreach statement, e.g.
the following code fragment builds a finite stream and then iterates over the elements,
printing each one to the screen.

int* OneToHundred = FromTo(1,100);

foreach (int i in OneToHundred) Console.WriteLine(i);

A vital aspect of Cω streams is that they are always flattened; there are no nested
streams of streams. Cω streams thus coincide with XPath/XQuery sequences which are
also flattened. This alignment is a key design decision for Cω: it enables the semantics
of our generalized member access to match the path selection of XQuery. We give
further details later.

In addition, flattening of stream types also allows us to efficiently deal with re-
cursively defined streams. Consider the following recursive variation of the function
FromTo that we defined previously:

virtual int* FromTo2(int b, int e){

if (b>e) yield break;

yield return b;

yield return FromTo2(b+1,e);

}

The statement yield break; returns the empty stream. The non-recursive call yield
return b yields a single integer. The recursive call yield return FromTo2
(b+1,n); yields a stream of integers. As the type system treats the types int* and
int** as equivalent this is type correct.

Without flattening we would be forced to copy the stream produced by the recursive
invocation, leading to a quadratic instead of a linear number of yields:

virtual int* FromTo3(int b, int e){

if (b>e) yield break;

yield return b;

foreach (int i in FromTo3(b+1,e)) yield return i;

}



The Essence of Data Access in Cω 291

Note that Cω’s flattening of stream types does not imply that the underlying stream
is flattened via some coercion; every element in a stream is yield-ed at most once. As
we will see in the operational semantics (§3.3), iterating over a stream will effectively
perform a depth-first traversal over the n-ary tree produced by the iterator.

Cω offers a limited but extremely useful form of covariance for streams. Covariance
is allowed provided that the conversion on the element type is the identity; for example
Button* is a subtype of object* whereas int* is not (as the conversion from int to
object involves boxing). This notion is a simple variant of the notion of covariance
for arrays in C�, although it is statically safe (unlike array covariance) as we can not
overwrite elements of streams.

The rationale for this is that implicit conversions should be limited to constant-time
operations. Coercing a stream of type Button* to type object* takes constant-time,
whereas coercing int* to object* would be linear in the length of the stream, as the
boxing conversion from int to object is not the identity.

A key programming feature of Cω is generalized member access; as the subtitle
suggests the familiar ‘dot’ operator is now much more powerful. Thus if the receiver
is a stream the member access is mapped over the elements, e.g. OneToHundred.
ToString() implicitly maps the method call over the elements of the stream
OneToHundred and returns a value of type string*. This feature significantly re-
duces the burden on the programmer. Moreover, member access has been general-
ized so it behaves like a path expression. For example, OneToHundred.ToString().
PadLeft(10) converts all the elements of the stream OneToHundred to a string, and
then pads each string, returning a stream of these padded strings.

Sometimes one wishes to map more than a simple member access over the elements
of a stream. Cω offers a convenient shorthand called an apply-to-all expression, written
e.{s}, which applies the block {s}, where s denotes a sequence of statements, to
each element in the stream e.2 The block may contain the variable it which plays a
similar role as the implicit receiver argument this in a method body and is bound to
each successive element of the iterated stream. (Such expressions are reminiscent of
Smalltalk do: methods.) For example, the following code first creates the stream of
natural numbers from 1 to 256, converts each of the elements to a hex string, converts
each of these to upper case, and then applies an apply-to-all expression to print the
elements to the screen:

FromTo(1,256).ToString("x").ToUpper().{ Console.WriteLine(it); };

Anonymous Structs. The second structural type we add are anonymous structs, which
encapsulate heterogeneous ordered collections of values. An anonymous struct is like
a tuple in ML or Haskell and is written as struct{int i; Button;} for example.
A value of this type contains a member i of type int and an unlabelled member of
type Button. We can construct a value of this type with the expression: new{i=42,
new Button()}.

To access components of anonymous structs we (again) generalize the notion of
member access. Thus assuming a value x of the previous type, we write x.i to ac-

2 We shall adopt the FJ shorthand [18] and write x to mean a sequence of x .
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cess the integer value. Unlabelled members are accessed by their position; for exam-
ple x[1] returns the Button member. As for streams, member access is lifted over
unlabelled members of anonymous structs. To access the BackColor property of the
Button component in variable x we can just write x.BackColor, which is equivalent
to x[1].BackColor.

At this point we can reveal even more of the power of Cω’s generalized member
access. Given a stream friends of type struct{string name;int age;}*, the ex-
pression friends.age returns a stream of integers. The member access is over both
structural types. The following query-like statement prints the names of one’s friends:

friends.name.{ ConsoleWriteLine(it);};

Interestingly, Cω also allows repeated occurrences of the same member name within
an anonymous struct type, even at different types. For example, assume the following
declaration: struct{int i; Button; float i;} z; Then z.i projects the two i
members of z into a new anonymous struct that is equivalent to new{z[0],z[2]} and
of type struct{int;float;}.

Cω provides a limited form of covariance for anonymous structs, just as for streams.
For example, the anonymous struct struct{int;Button;} is a subtype of
struct{int; Control;}. However it is not a subtype of struct{object;
Control;} since the conversion from int to object is not an identity conversion.
Cω does not support width subtyping for anonymous structs.

Choice Types. The third structural type we add is a particular form of discriminated
union type, which we call a choice type. This is written, for example, choice{int;
bool;}. As the name suggests, a value of this type is either an integer or a boolean, and
may hold either at any one time. Unlike unions in C/C++ and variant records in Pascal
where users have to keep track of which type is present, values of a discriminated union
in Cω are implicitly tagged with the static type of the chosen alternative, much like
unions in Algol68. In other words, discriminated union values are essentially a pair of
a value and its static type.

There is no syntax for creating choice values; the injection is implicit (i.e. it is
generated by the compiler).

choice{int;Button;} x = 3;

choice{int;Button;} y = new Button();

Cω provides a test, e was τ , on choice values to test the value’s static type. Thus
x was int would return true, whereas y was int would return false.

Assuming that an expression e is of type choice{τ}, the expression e was τ is true
for exactly one τ in τ . This invariant is maintained by the type system. The only slight
complication arises from subtyping, e.g.

choice{Control; object;} z = new Button();

As Button is a subtype of both Control and object, which type tag is generated
by the compiler? A choice type can be thought of as providing a family of overloaded
constructor methods, one for each component type. Just as for standard object cre-
ation in Java/C�, the best constructor method is chosen. In the example above, clearly
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Control is better than object. Thus z was Control returns true. The notion of
‘‘best” for Cω is the routine extension of that for C�.

As the reader may have guessed, member access has also been generalized over
discriminated unions. Here the behaviour of member access is less obvious, and has
been designed to coincide with XPath. Consider a value w of type choice{char;
Button;}. The member access w.GetHashCode() succeeds irrespective of whether
the value is a character or a Button object. In this case the type of the expression
w.GetHashCode() is int.

However the member may not be supported by all the possible component types,
e.g. w.BackColor. Classic treatments of union types would probably consider this to be
type incorrect [23–p.207]. However, Cω’s choice types follow the semantics of XPath
where, for example, the query foo/bar returns the bar nodes under the foo node if any
exist, and the empty sequence if none exist. Thus in Cω, the expression w.BackColor
is well-typed, and will return a value of type Color?. This is another new type in Cω
and is a variant of the nullable type to appear in C� 2.0. A value of type Color? can
be thought of as a singleton stream, thus it is either empty or contains a single Color
value (when w contains a Button). Again, we emphasize that this behaviour precisely
matches that of XPath.

Cω follows the design of C� in allowing all values to be boxed and hence all value
types are a subtype of the supertype object. Thus both anonymous structs and choice
types are considered to be subtypes of the class object.

Content Classes. To allow close integration with XSD and other XML schema lan-
guages, we have included the notion of a content class in Cω. A content class is a
normal class that has a single unlabelled type that describes the content of that class,
as opposed to the more familiar (named) fields. The following is a simple example of a
content class.

class friend{

struct{ string name; int age; };

void incAge(){...}

}

Again we have generalized member access over content classes. Thus the expression
Bill.age returns an integer, where Bill is a value of type friend.

From an XSD perspective, classes correspond to global element declarations, while
the content type of classes correspond to complex types. Further comparisons with the
XML data model are immediately below, but a more comprehensive study can be found
elsewhere [21].

2.2 XML Programming

It should be clear that the new type structures of Cω are sufficient to model simple XML
schema. For example, the following XSD schema

<element name="Address"><complexType><sequence>

<choice>

<element name="Street" type="string"/>

<element name="POBox" type="int"/>
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</choice>

<element name="City" type="string"/>

</sequence></complexType></element>

can be represented (somewhat more succinctly!) as the Cω content class declaration:

class Address {

struct{

choice{ string Street; int POBox; };

string City;

};

}

The full Cω language supports XML literals as syntactic sugar for serialized object
graphs. For example, we can create an instance of the Address class above using the
following literal:

Address a = <Address>

<Street>13 Elm St</Street>

<City>Hollywood</City>

</Address>;

The Cω compiler contains a validating XML parser that deserializes the above lit-
eral into normal constructor calls. XML literals can also contain typed holes, much as
in XQuery, that allow us to embed expressions to compute part of the literal. This is
especially convenient for generating streams.

The inclusion of XML literals and the semantics of the generalized member access
mean that XQuery code can be almost directly written in Cω. For example, consider
one of the XQuery Use Cases [9], that processes a bibliography file (assume that this is
stored in variable bs) and for each book in the bibliography, lists the title and authors,
grouped inside a result element. The suggested XQuery solution is as follows.

for $b in $bs/book

return <result>{$b/title}{$b/author}<result>

The Cω solution is almost identical:

foreach (b in bs.book)

yield return <result>{b.title}{b.author}</result>;

The full Cω language adds several more powerful query expressions to those dis-
cussed in this paper. For instance, filter expressions e[e ′] return the elements in the
stream e that satisfy the boolean expression e ′. As labels can be duplicated in anony-
mous structs and discriminated unions, the full language also allows type-based selec-
tion. For example, given a value x of type struct{ int a; struct{string a;};}
we can select only the string member a by writing x.string::a.

Transitive queries are also supported in the full Cω language: the expression
e...τ::m selects all members m of type τ that are transitively reachable from e.
Transitive queries are inspired by the XPath descendant axis.
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2.3 Database Programming

Relational tables are merely streams of anonymous structs. For example, the relational
table created with the SQL declaration:

CREATE TABLE Customer (name string, custid int);

can be represented in Cω: struct{string name; int custid}* Customer;

In addition to path-like queries, the full Cω language also supports familiar SQL ex-
pressions, including select-from-where, various joins and grouping operators. Per-
haps more importantly, these statements can be used on any value of the appropriate
type, whether that value resides in a database or in memory; hence, one can write SQL
queries in Cω code that does not access a database! One of the XQuery use-cases [9]
asks to list the title prices for each book that is sold by both booksellers A and BN. Using
a select statement and XML-literals, this query can be written in Cω as the following
expression:

select <book-with-prices>

<title>{a.title}</title>

<price-A>{a.price}</price-A>

<price-BN>{bn.price}</price-BN>

</book-with-prices>

from book a in A.book, book bn in BN.book

where a.title == bn.title

Note the use of XML placeholders {a.title} and {bn.price}: when this code is
evaluated new titles and new prices are computed from the bindings of the select-
from-where clause.

So far we have shown how we can query values using generalized member and SQL
expressions, but as Cω is an imperative language, we also allow to perform updates.
This paper, however, focuses on the type extensions and generalized member access
only.

3 The Essence of Cω

In the rest of this paper we study formally the essence of Cω, by which we mean we
identify its essential features. We adopt a formal, mathematical approach and define
a core calculus, Featherweight Cω, or FCω for short, similar to core subsets of Java
such as FJ [18], MJ [5] and ClassicJava [11]. This core calculus, whilst lightweight,
offers a similar computational ‘‘feel” to the full Cω language: it supports the new type
constructors and generalized member access. FCω is a completely valid subset of Cω
in that every FCω program is literally an executable Cω program.

The rest of this section is organized as follows. In §3.1 we define the syntax and
type system for FCω. Rather than give an operational semantics directly for FCω we
prefer to first ‘‘compile out” some of its features, in particular generalized member ac-
cess. This both greatly simplifies the resulting operational semantics and demonstrates
that Cω’s features do not require extensive new machinery. Thus in §3.2 we define a
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target language, Inner Cω, or ICω, for this ‘‘compilation”. ICω is essentially the same
language, but for a handful of new language constructs and a much simpler type system.
In §3.3 we give an operational semantics for ICω programs. In §3.4 we specify the
compilation of FCω programs into ICω programs. This translation is, on the whole,
quite straightforward. We conclude the section in §3.5 by stating some properties of our
calculi and the compilation. Most important is the type-soundness property for ICω.
Space prevents us from providing any details of the proofs, but they are proved using
standard techniques and are similar to analagous theorems for fragments of Java [18, 5].

3.1 A Core Calculus: FCω

Syntax An FCω program consists of one or more class declarations. Each class decla-
ration defines zero or more methods and contains exactly one unlabelled type that we
call the content type. (We can code up a conventional C�/Cω class declaration with a
number of field declarations using an anonymous struct.) FCω follows C� and requires
methods to be explicitly marked as virtual or override. Given a program we assume
that there is a unique designated method within the class declarations that serves as the
entry point.

Program p ::= cd

Class Definition cd ::= class c:c {τ;md}
Method Definition md ::= virtual τ m(τ x){s}

| override τ m(τ x){s}

FCω supports two main kinds of types: value types and reference types. As usual, the
distinguished type void is used for methods that do not return anything; null is only
used to type null references, as with C�. Value types include the base types bool and
int and the structural types: anonymous structs and discriminated unions. Reference
types are either class types or streams. As usual only reference types have object identity
and are represented at runtime by references into the heap. We assume a designated
special class object.

Types
τ ::= γ Value types Reference Types

| ρ Reference types ρ ::= c Classes
| void | null Void and null types | σ* Stream types

Value Types | σ? Singleton stream type
γ ::= b Base types

| struct{fd} Anonymous structs Field Definition
| choice{κ} Choice types fd ::= τ f ; Named member

Base Types | τ; Unnamed member
b ::= bool |int

We employ the shorthand κ and σ to denote any type except a choice type and
stream type (singleton or non-singleton), respectively. As Cω flattens stream types, we
have made the simplification to FCω of removing nested stream types altogether from
the type grammar. We have also simplified FCω choice types so that the members are
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unlabelled and we also exclude (for simplification) nested choice types. These can be
coded up in FCω using unlabelled anonymous structs.

FCω expressions, as for C�, are split into ordinary expressions and promotable ex-
pressions. Promotable expressions are expressions that can be used as statements. We
assume a number of built-in primitive operators, such as ==, || and &&. In the gram-
mar we write e ⊕ e, where ⊕ denotes an instance of one of these operators. We do not
formalize these operators further as their meaning is clear.

Expression
e ::= b | i Literals Promotable expression

| e ⊕ e Built-in operators pe ::= x = e Variable assignment
| x Variable | e.m(e) Method invocation
| null Null | e.{e} Apply-to-all
| (τ)e Cast Binding expression
| e is τ Dynamic typecheck be ::= f = e Named binding
| e was κ Static typecheck for choice values | e Unnamed binding
| new τ(e) Object creation
| new {be} Anonymous struct creation
| e.f Field access
| e[i] Field access by position
| pe Promotable expression

We have made a simplification in the interests of space to restrict apply-to-all ex-
pressions to contain an expression rather than a sequence of statements. This simplifies
the typing rules, but as apply-to-all expressions can be coded using foreach loops it is
not a serious restriction.

Statements in FCω are standard. As mentioned earlier we have adopted the yield
statement that will appear in C� 2.0 to generate streams.

Statement s ::= ; Skip
| pe; Promoted expression
| if (e) s else s Conditional
| τ x = e; Variable declaration
| return e; Return statement
| return; Empty return
| yield return e; Yield statement
| yield break; End of stream
| foreach (σ x in e) s Foreach loop
| while (e) s While loop
| {s} Block

In what follows we assume that FCω programs are well-formed, e.g. no cyclic class
hierarchies, correct method body construction, etc. These conditions can be easily for-
malized but we suppress the details for lack of space.

Subtyping. Before we define the typing judgements for FCω programs we need to
define a number of auxiliary relations. First we define the subtyping relation. We write
τ <: τ ′ to mean that type τ is a subtype of type τ ′. The rules defining this relation are
as follows.
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[Refl]
τ <: τ

τ <: τ ′ τ ′ <: τ ′′
[Trans]

τ <: τ ′′ [Box]
γ <: object

class c : c′
[Sub]

c <: c′

[Null]
null <: ρ

τ <: τ ′ f = f ′
[FD]

τ f <: τ ′ f ′

σ <: σ′ IdConv(σ, σ′)
[Stream]

σ*/? <: σ′
*/?

[SBox]
σ* <: object

[SSub]
σ? <: σ*

[Sing]
σ <: σ?

fd <: fd ′ IdConv(fd , fd ′)
[Struct]

struct{fd} <: struct{fd ′}
[SubChoice]

κ <: choice{κ; κ′}

[Choice]
choice{κ} <: choice{κ κ′}

Most of these rules are straightforward. The rule [Stream] contains notation (σ*/?)
that we use throughout this paper. It is uses to denote two instances of the rule, one
where we select the left of the ‘/’ in all cases (in this case σ*) and one where we select
the right in all cases. It does not include cases where we individually select left and
right alternatives. The rules [Stream] and [Struct] make use of a predicate IdConv ,
which relates two types τ and τ ′ if there is an identity conversion between them. Thus
IdConv(Button, object) but not IdConv(int, object). In this short paper we shall
not give its straightforward definition.

Generalized Member Access. As we have seen a key programming feature of Cω is
generalized member access. Capturing this behaviour in the type system can be tricky,
but we have adopted a rather elegant solution, whereby we define two auxiliary rela-
tions. The first, written τ.f : τ ′, tells us that given a value of type τ accessing member
f will return a value of type τ ′. We define a similar relation for function member ac-
cess, written τ.m(τ ′) : τ ′′. Having generalized member access captured by a separate
typing relation greatly simplifies the typing judgements for expressions. As generalized
member access is a key feature of Cω, we shall give it in detail.

The definition of this relation over stream types is as follows.

σ.f : σ′

σ*.f : σ′
*

σ.f : σ′
*/?

σ*.f : σ′
*

σ.m(τ) : σ′

σ*.m(τ) : σ′
*

σ.m(τ) : σ′
*/?

σ*.m(τ) : σ′
*

σ.m(τ) : void

σ*.m(τ) : void

The first two rules map the member access over the stream elements, making sure that
we do not create a nested stream type. The next two rules for function member access
are similar. The last rule captures the intuition that mapping a void-valued method over
a stream, forces the evaluation of the stream and does not return a value.

Before defining the rules for member access over anonymous structs, we need to de-
fine rules for member access over named field definitions. This is pretty straightforward
and as follows.

τ f .f : τ

τ.m(τ ′) : τ ′′

τ f .m(τ ′) : τ ′′
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Now we consider the rules for generalized member access over anonymous structs.
First we give the degenerate cases where only one component supports the member
access.

∃!k ∈ {1 . . .n}. fdk .f : τk

struct{fd1; . . . fdn;}.f : τk

∃!k ∈ {1 . . .n}. fdk .m(τ ′): τ ′′

struct{fd1; . . . fdn;}.m(τ): τ ′′

The non-degenerate cases are then as follows.

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p].fdSk .f : τk

struct{fd1; . . . fdn;}.f : struct{τ1; . . . τp ; }

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. fdSk .m(τ): τ ′
k

struct{fd1; . . . fdn;}.m(τ): struct{τ ′
1; . . . τ ′

p;}
Thus a subset, S , of the components support the member, and we map the member
access over these components in order. The overall return type is an anonymous struct
of the component return types.

We now consider the rules for generalized member access over choice types. Again
we consider these rules depending on how many components support the member ac-
cess. First we give the simple case when all possible components support the member
access.

∀k ∈ {1 . . .n}. κk .f : τ

choice{κ1; . . . κn;}.f : τ

∀k ∈ {1 . . .n}. κk .m(τ) : τ ′

choice{κ1; . . . κn;}.m(τ) : τ ′

We also have the case when only one of the possible components supports the mem-
ber access. These rules are as follows (we omit the nested cases).

∃!k ∈ {1 . . .n}. κk .f : σ n > 1

choice{κ1; . . . κn;}.f : σ?

∃!k ∈ {1 . . . n}. κk .m(τ) : σ n > 1

choice{κ1; . . . κn;}.m(τ) : σ?

The reader will recall that the return type of this generalized member access involves
a singleton stream type. Finally we give the cases where more than one of the possible
components supports the member access.

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. κSk .f : κ′
k

choice{κ1; . . . κn;}.f : choice{κ′
1; . . . κ′

p;}?

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. κSk .m(τ) : κ′
k

choice{κ1; . . . κn;}.m(τ) : choice{κ′
1; . . . κ′

p;}?

Generalized member access over singleton streams is relatively straightforward; the
only complication being again to ensure that no nested streams are generated.

σ.f : σ′

σ?.f : σ′
?

σ.f : σ′
*/?

σ?.f : σ′
*/?

σ.m(τ): σ′

σ?.m(τ): σ′
?

σ.m(τ): σ′
*/?

σ?.m(τ): σ′
*/?

Finally we need to define rules for generalized member access over classes. Clearly
these need to reflect the standard C� semantics: function member access on classes
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searches the class hierarchy until a matching method is found. If we find a matching
method τ ′m(τ ′′) in class c, we need to check the actual types of the arguments to the
types expected by m . This behaviour is given by the following two rules.

class c:c′
{τ;md} τ ′m(τ ′′) ∈ md τ <: τ ′′

c.m(τ): τ ′

class c:c′
{τ;md} τ ′m(τ ′′) �∈ md c′.m(τ): τ ′

c.m(τ): τ ′

Next we consider the rules for generalized field access. There is a small subtlety
here concerning recursive class definitions; consider the following recursive class List
of lists of integers: class List { struct{ int head; List; } }

Given an instance xs of type List, we do not want xs.head to recursively select
all head fields in xs. However simply unfolding the content type and using the rules
given earlier for generalized access over anonymous structs that is precisely what would
happen!

There are a number of solutions, but in order to make the Cω type system as simple
as possible, we follow e.g. Haskell and SML and break recursive cycles at nominal
types. In our setting that means that we simply do not perform member lookup on
nominal members of the content of nominal types. Using these refined rules, the result
type of xs.head is int.

Formalizing this is trivial but time-consuming. We define another family of gener-
alized member access judgements, written τ • f : τ ′, which is identical to the previous
rules except they are not defined for nominal types. We elide the definitions here.

To define field access on nominal types, we first define formally the content type of
a class, written content(c) for some class c, as follows.

class c:object{τ;md}

content(c) = τ

class c : c′
{τ;md} content(c′) = τ ′

content(c) = struct{τ ′
;τ;}

The rule for generalized member access over classes simply searches for the mem-
ber f on the content type of class c, and is given by the following rule.

content(c) = τ τ • f : τ ′

c.f : τ ′

Generalized Index Access. As we mentioned earlier, elements of anonymous structs
can be accessed by position. This is captured by the following rule.

type(fdi) = τi

struct {fd1; . . . fdn;}[i]: τi

As the reader might have expected, this index access is generalized over the other types;
the rather routine details are omitted.

Typing Judgements. We are now able to define typing judgements for FCω. We de-
fine three relations corresponding to the three syntactic categories of expressions, pro-
motable expressions and statements. For all three judgements we write Γ to mean a



The Essence of Data Access in Cω 301

partial function from program identifiers to types. The judgements for expressions and
promotable expressions are written Γ � e: τ and Γ � pe: τ , respectively. These are
given in Fig. 1.

Most of these rules are routine; we shall discuss a few of the more interesting details
here. In the rule [TStruct], we have made use of a typing judgement for a binding
expression. This is defined as follows:

Γ 	 e: τ

Γ 	 f = e: τ f

The compactness of the rules [TField], [TIndex] and [TMeth] shows the elegance of
having captured generalized member access with auxiliary relations.

The rules [TAAExp1] and [TAAExp2] ensure that the return type of an apply-to-all
expression is not nested. The rule [TAAExp3] ensures the appropriate mixed flattening
of streams. The rule [TAAExp4] captures the intuition that applying a void-typed ex-
pression to a stream forces the evaluation of that stream and hence the overall type is
also void.

The typing judgement for FCω statements is written Γ ; τ � s and is intended to
mean that a statement s is well-typed in the typing environment Γ . If it returns a value
(either via a normal return or a yield return) then that value is of type τ .

The rules [TForeach1] and [TForeach2] reflect the fact that the type of the stream
elements can be cast to the type of the bound variable. This can be either via an upcast
([TForeach1]) or a downcast ([TForeach2]) (again this matches C� 2.0).

3.2 An Inner Calculus: ICω

Rather than consider further our featherweight calculus FCω, we shall in fact define
another core calculus for Cω. This inner calculus, called ICω, is intended to be similar
but lower-level than FCω; it can be thought of as the internal language of a compiler.

The chief simplification in ICω is that its type system does not support generalized
member access. The intention is that we compile out generalized member access when
translating FCω programs into ICω programs. We give some details of this compilation
in §3.4. Apart from a simplified type system, we can define quite simply an operational
semantics for ICω; this is given in §3.3.

The grammar of ICω is then a simple varianr of the grammar for FCω. Some extra
expression and statement forms are added (which reflects the lower-level nature of ICω)
and likewise a couple are removed from the grammar as they are redundant. We do not
expect these new syntactic forms to be made available to the Cω programmer (although
they could be). The extensions are as follows:

Expression
e ::= . . . Promotable expression

| new τ(s) Closure creation pe ::= . . .
| new (κ,e) Choice creation | τ({s}) Block expression
| e.Content Class content Statement
| e at κ Choice content s ::= . . .

| yield return (τ,e); Typed yield
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Γ 	 e: τ and Γ 	 pe: τ

[TInt]
Γ 	 i : int

[TBool]
Γ 	 b: bool

[TId]
Γ, x : τ 	 x : τ

[TNull]
Γ 	 null: null

Γ 	 e: τ ′ (τ ′ <: τ) ∨ (τ <: τ ′)
[TSub]

Γ 	 (τ)e: τ

Γ 	 e: τ ′ (τ ′ <: τ) ∨ (τ <: τ ′)
[TIs]

Γ 	 e is τ : bool

Γ 	 e: choice{κ′ κ; κ′′}
[TWas]

Γ 	 e was κ: bool

Γ 	 be: fd
[TStruct]

Γ 	 new {be}: struct{fd}

Γ 	 e: τ τ <: content(c)
[TNew]

Γ 	 new c(e): c

Γ 	 e: τ τ.f : τ ′
[TField]

Γ 	 e.f : τ ′

Γ 	 e: τ τ [i ] : τ ′
[TIndex]

Γ 	 e[i]: τ ′
Γ 	 x : τ Γ 	 e: τ ′ τ ′ <: τ

[TAss]
Γ 	 x=e: τ

Γ 	 e: τ Γ 	 e ′: τ ′ τ.m(τ ′): τ ′′
[TMeth]

Γ 	 e.m(e ′): τ ′′

Γ 	 e: σ*/? Γ, it : σ 	 e ′: σ′
[TAAExp1]

Γ 	 e.{e ′
}: σ′

*/?

Γ 	 e: σ*/? Γ, it : σ 	 e ′: σ′
*/?

[TAAExp2]
Γ 	 e.{e ′

}: σ′
*/?

Γ 	 e: σ*/? Γ, it : σ 	 e ′: σ′
?/*

[TAAExp3]
Γ 	 e.{e ′

}: σ′
*

Γ 	 e: σ*/? Γ, it : σ 	 e ′: void
[TAAExp4]

Γ 	 e.{e ′
}: void

Γ ; τ 	 s

[TSkip]
Γ ; τ 	 ;

Γ ; τ 	 s
[TNest]

Γ ; τ 	 {s}

Γ 	 pe: τ
[TProm]

Γ ; τ ′ 	 pe;
[TRetV]

Γ ; void 	 return;

Γ 	 e: bool Γ ; τ 	 s
[TWhile]

Γ ; τ 	 while (e) s

Γ 	 e: bool Γ ; τ 	 s1 Γ ; τ 	 s2
[TIf]

Γ ; τ 	 if (e) s1 else s2

Γ 	 e: τ ′ τ ′ <: τ
[TRet]

Γ ; τ 	 return e;

[TYieldB]
Γ ; σ* 	 yield break;

Γ 	 e: σ′ σ′ <: σ
[TYield1]

Γ ; σ* 	 yield return e;

Γ 	 e: σ′
*/? σ′ <: σ′′ Γ, x : σ′′; τ 	 s

[TForeach1]
Γ ; τ 	 foreach (σ′′ x in e)s

Γ 	 e: σ* σ* <: σ′
*

[TYield2]
Γ ; σ′

* 	 yield return e;

Γ 	 e: σ′
*/? σ′′ <: σ′ Γ, x : σ′′; τ 	 s

[TForeach2]
Γ ; τ 	 foreach (σ′′ x in e)s

Fig. 1. Typing judgements for FCω expressions, promotable expressions and statements
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Thus ICω includes expressions to create closure and choice elements. We include an
operator e.Content to extract the content element from an object e. Given an element
e of a choice type, we add an operation e at κ to extract its κ-valued content. (If it is
of another type, this will raise an exception.) We add (typed) block expressions to ICω,
and in addition we provide a typed yield statement.

The two syntactic forms that we removed from the grammar of FCω are: (1) We
remove field accesses e.f completely; they are replaced by positional access, i.e. e[i];
and (2) We remove the untyped yield statement; all yields in ICω are explicitly
typed.

We can define typing judgements for ICω expressions and statements, which are
written Γ � e: τ and Γ ; τ � s , respectively. Most of these rules are identical to those
for FCω; we shall just give the rules for the new syntactic forms. The rules for creating
closure and choice elements are as follows:

Γ ; σ*/? � s

Γ � new σ*/?(s): σ*/?

Γ � e: κ′ κ′ <: κ

Γ � new (κ,e): choice{κ;}

The typing rules for extracting the content of content class and choice elements are as
follows:

Γ � e: c

Γ � e.Content: content(c)

Γ � e: choice{κ;κ′}

Γ � e at κ: κ

The typing rule for block expressions and yield statements are as follows:

Γ ; τ � s τ �= void

Γ � τ({s}): τ Γ ; σ*/? 	 yield break;

Γ � e: σ′ σ′ <: σ

Γ ; σ*/? � yield return (σ′
,e);

Γ � e: σ*/? σ*/? <: τ τ �= object

Γ ; τ � yield return (σ*/?,e);

3.3 Operational Semantics for ICω

In this section we formalize the dynamics of ICω by defining an operational semantics.
We follow FJ [18] and MJ [5] and give this in the form of a small-step reduction relation,
although a big-step evaluation relation can easily be defined. Hence we use evaluation
contexts to encode the evaluation strategy in the now familiar way [11]—the definition
of ICω evaluation contexts is routine and omitted. First we define the value forms of
ICω expressions and statements (where bv is the value form of a binding expression):

Expression values Statement values
v ::= b | i | null | void Basic values sv ::= ; Skip

| r Reference | return v; Return value
| new {bv} Struct value | return;

| new (κ,v) Choice value | yield return (τ,v); Typed yield value
| yield break; End of stream value

Evaluation of ICω expressions and statements takes place in the context of a state,
which is a pair (H ,R), where H is a heap and R is a stack frame. A heap is represented
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as a finite partial map from references r to runtime objects, and a stack frame is a finite
partial map from variable identifiers to values. A runtime object, as for C�, is a pair
(τ, cn) where τ is a type and cn is a canonical, which is either a value or a closure. A
closure is the runtime representation of a stream and is written as a pair (R, s)α where R
is a stack frame and s is a statement sequence. The superscript flag α indicates whether
the closure is fresh or a clone. We will explain this distinction later. In what follows we
assume that expressions and statements are well-typed.

In Fig. 2 we define the evaluation relation for ICω expressions, written S , e →
S ′, e ′, which means that given a state S , expression e reduces by one or possibly more
steps to e ′ and a (possibly updated) state S ′. (We use an auxiliary function value defined

as follows: value(f = v) def= v , value(v) def= v .) These rules are routine.
As is usual we have a number of cases that lead to a predicable error state, e.g.

following a dereference of a null object. These errors in ICω are CastX ,ChoiceX ,
NullX and NullableX . We say that a pair S , e is terminal if e is one of these errors, or
it is a value.

The evaluation relation for ICω promotable expressions is written S , pe → S ′, pe ′

and is also given in Fig. 2. The rules for method invocation deserve some explanation:
they are differentiated according to whether the method is void-returning. If it is not
then the method body is unfolded, and executed until it is of the form return v; where
v is a value. This value is then the result of the method invocation. If the method is
void-valued, then we unfold the method body and execute it until it is of the form
return;. The result is the special value void.

The evaluation relation for statements is written S , s → S ′, s ′ and in Fig. 3 we give
just some of the interesting cases, which are those dealing with foreach loops. As we
have mentioned, Cω streams are aligned with C� 2.0 iterators: there the foreach loop
is actually syntactic sugar: first of all an IEnumerator<T> is obtained from the iterator
block (which should be of type IEnumerable<T>) using the GetEnumerator method.
This is walked over using MoveNext and Current members. Semantically important
is that GetEnumerator actually copies the enumerable object. In our semantics we
faithfully encode this by tagging closures, and creating clones as appropriate. Thus
whilst iterating over a stream we update the reference in place (rules [FVC], [FSC] and
[FNC]), but every foreach creates its own copy from a fresh original (rules [FVF],
[FSF] and [FNF]). In rule [FBr] we write α to range over both clone and fresh.

Rules [FSF] and [FSC] embody the flattening of streams. To evaluate a foreach
loop we first evaluate the stream until it yields a value. If that value is itself a stream,
then we should first execute the foreach loop on this stream.

3.4 Compiling FCω to ICω

In this section we give some details of the compilation of FCω into ICω. Much of this
compilation is routine, so in the interests of space we shall concentrate only on the most
interesting aspect: generalized member access.

We employ a ‘‘coercion” technique, in that we translate the implicit generalized
member access of FCω into an explicit ICω code fragment. This can be expressed as
an inductively defined relation, written |τ.f : τ ′| � g and |τ.m(τ ′): τ ′′| � g for mem-
ber and function member access respectively. A judgement |τ.f : τ ′| � g is intended to
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Expressions

(H ,R), x → (H ,R),R(x )

H (r) = (τ ′, cn) τ ′ <: τ

(H ,R), (τ)r → (H ,R), r

H (r) = (τ ′, cn) τ ′ �<: τ

(H ,R), (τ)r → (H ,R),CastX

H (r) = (τ ′, cn) τ ′ <: τ

(H ,R), r is τ → (H ,R), true

H (r) = (τ ′, cn) τ ′ �<: τ

(H ,R), r is τ → (H ,R), false S , new (κ, v) was κ → S , true

κ �= κ′

S , new (κ, v) was κ′ → S , false

r �∈ dom(H )

(H ,R), new c(v) → (H [r �→ (c, v)],R), r

r �∈ dom(H )

(H ,R), new σ*/?(s) → (H [r �→ (σ*/?, (R, s)fresh)],R), r

H (r) = (c, cn)

(H ,R), r.content → (H ,R), cn S , null.content → S ,NullX

0 ≤ i ≤ n

S , new {bv0, .., bvn}[i] →
S , value(bvi)

S , new (κ, v) at κ → S , v

κ �= κ′

S , new (κ, v) at κ′ →
S ,ChoiceX

Promotable expressions

(H ,R), x = v → (H ,R[x �→ v ]), v

(H ,R), s →∗ (H ′,R′), return v ; s ′

(H ,R), τ({s}) → (H ′,R′), v

S , null.m(v) → S ,NullX

H (r) = (c, ) method(m, c) = τ ′(τ x ){s} τ ′ �= void

(H , [ ]), {c this = r;τ x = v;s} →∗ (H ′,R′), return v ′;s ′

(H ,R), r.m(v) → (H ′,R), v ′

H (r) = (c, ) method(m, c) = void (τ x ){s}
(H , [ ]), {c this = r;τ x = v;s} →∗ (H ′,R′), return ;s ′

(H ,R), r.m(v) → (H ′,R), void

Fig. 2. Evaluation rules for ICω expressions and promotable expressions

mean that if invoking a member f on an element of type τ returns an element of type
τ ′, then g is the ICω coercion that encodes the explicit access of the appropriate mem-
ber. In Fig. 4 we give some details of the compilation of generalized member access
(GMA) for members, i.e. the |τ.f : τ ′| � g relation. (The version for function members
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[FNull]
S , foreach (σ x in null)s → S , ;

H (r) = (τ ′, (R′, s ′)α) (H ,R′), s ′ →∗ (H ′,R′′), yield break ;s ′′
[FBr]

(H ,R), foreach (σ x in r) s → (H ′,R), ;

H (r) = (τ ′, (R′, s ′)fresh) r ′ �∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′, v);s ′′ v �= null

[FVF]
(H ,R), foreach (σ x in r) s →
(H ′[r ′ �→ (τ ′, (R′′, s ′′)clone)],R), {{σ x = v ; s} foreach (σ x in r ′) s}

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′, v);s ′′ v �= null

[FVC]
(H ,R), foreach (σ x in r) s →
(H ′[r �→ (τ ′, (R′′, s ′′)clone)],R), {{σ x = v ; s} foreach (σ x in r) s}

H (r) = (τ ′, (R′, s ′)fresh) r ′ �∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′*, v);s ′′ v �= null

[FSF]
(H ,R), foreach (σ x in r) s →
(H ′[r ′ �→ (τ ′, (R′′, s ′′)clone)],R), {foreach (σ x in v) s foreach (σ x in r ′) s}

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′*, v);s ′′ v �= null

[FSC]
(H ,R), foreach (σ x in r) s →
(H ′[r �→ (τ ′, (R′′, s ′′)clone)],R), {foreach (σ x in v) s foreach (σ x in r) s}

H (r) = (τ ′, (R′, s ′)fresh) r ′ �∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (τ, null);s ′′

[FNF]
(H ,R), foreach (σ x in r) s →
(H ′[r ′ �→ (τ ′, (R′′, s ′′)clone)],R), foreach (σ x in r ′) s

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (τ, null);s ′′

[FNC]
(H ,R), foreach (σ x in r) s → (H ′[r �→ (τ ′, (R′′, s ′′)clone)],R), foreach (σ x in r) s

Fig. 3. Evaluation rules for ICω foreach loops

(methods) is similar and omitted.) In the definition we have employed a function-like
syntax for coercions, although they are really contexts, and we have dropped the types
from various block expressions. We have used the shorthand yield return′(τ,e);
to mean the statement sequence yield return(τ,e);yield break; and have also
used two functions: Value that returns the element of a singleton stream or raises an
exception if it empty, and HasValue that returns a boolean depending on whether the
singleton stream has an element or not. These can be coded directly and their definitions
are omitted.
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Compiling GMA over streams

|σ.f : σ′| � g

|σ*.f : σ′
*| � z �→ z.{g(it)}

Compiling GMA over anonymous structs

∃S ⊆ {1 . . .n}.|S | ≥ 2. ∧ p = |S | ∧ ∀k ∈ [1..p]. |fdSk .f : τk | � gk

|struct{fd1; . . . fdn;}.f : struct{τ1; . . . τp ; }| � z �→ new{g1(z[1]), . . . ,gp(z[p])}

∃!k ∈ {1 . . .n}. |fdk .f : τk | � g

|struct{fd1; . . . fdn;}.f : τk | � z �→ g(z[k])

Compiling GMA over choice types

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. |κSk .f : κ′
k | � gk

|choice{κ1; . . . κn;}.f : choice{κ′
1; . . . κ′

p;}?|
� z �→

({if(z was κS1)

{return new choice{κ′
1; . . . κ′

p;}?(yield return′(κS1,new(κS1,g1(z at κS1))););}
· · · if(z was κSp)

{return new choice{κ′
1; . . . κ′

p;}?(yield return′(κSp,new(κSp,gp(z at κSp ))););}
else return null;})

|κk .f : τ | � gk ∀k .1 ≤ k ≤ n

|choice{κ1; . . . κn;}.f : τ | � z �→ ({ if(z was κ1) return g1(z at κ1); · · ·
if(z was κn) return gn(z at κn);})

∃!k ∈ {1 . . .n}. |κk .f : σ| � g n > 1

|choice{κ1; . . . κn ; }.f : σ?|
� z �→ ({if(z was κk) return new σ?(yield return′(σ,g(z at κk )););

else return null;})

Compiling GMA over singleton streams

|σ.f : σ′| � g

|σ?.f : σ′?| � z �→ ({if (HasValue(z)) return new σ′?(yield return′(σ′,g(Value(z))););
else return null;})

|σ.f : σ′
*/?| � g

|σ?.f : σ′*/?| � z �→ ({if (HasValue(z)) return g(Value(z));
else return null;})

Fig. 4. Compilation of Generalized Member Access



308 G. Bierman, E. Meijer, and W. Schulte

For example, we can compile an instance of member access in FCω, e.f , as follows:
we first compile the expression e into ICω, yielding e ′, and also generate a coercion,
g , corresponding to the member access. The result of the compilation of e.f is then
simply g(e ′). We write the compilation of, e.g. an expression, e, as |Γ � e: τ | � e ′.

Incoherence by Design. Java and C� are by design incoherent [7]. Both languages use
a notion of ‘‘best” conversion when there is more than one conversion between two
types. If there does not exist a best conversion, a compile-time error is generated. In
compiling FCω to ICω we use this notion of a best conversion when dealing with rules
that use subtyping. We do not formalize this notion of ‘‘best” here; both the Java and
C� language specifications give precise details. The new types in Cω do not complicate
this notion greatly: For example, there are two conversions between int and object:
one using the rule [Box], the other using the rules [SubChoice] and [Box] along with
[Trans] (i.e. int <: choice{int;string;} <: object). It is clear that the first
conversion is better. The other critical pairs are similarly easy to resolve.

3.5 Properties of FCω and ICω

In this section we briefly mention some properties of FCω and ICω and the compilation.
We do not give any details of the proofs, as they are standard and follow analogous
theorems for Java [18, 5]; details will appear in a forthcoming technical report.

Our main result is that ICω is type-sound, which is captured by the following prop-
erties. (We use generalized judgements, e.g. Γ � (S , e): τ to mean that the expression e
is well-typed and also that the state S is well-formed with respect to Γ , in the familiar
way. As is usual [18] we also need to add ‘‘stupid” typing rules for the formal proof.)

Theorem 1 (Type soundness for ICω).

1. If Γ � (S , e): τ and (S , e) → (S ′, e ′) then ∃τ ′ such that Γ � (S ′, e ′): τ ′ and
τ ′ <: τ .

2. If Γ ; τ � s and (S , s) → (S ′, s ′) then ∃τ ′ such that Γ ; τ ′ � (S ′, s ′) and τ ′ <: τ .
3. If Γ �(S , e): τ then either (S , e) is terminal or ∃S ′, e ′ such that (S , e) → (S ′, e ′).
4. If Γ ; τ �(S , s) then either (S , s) is terminal or ∃S ′, s ′ such that (S , s) → (S ′, s ′).

We can also prove that our compilation of FCω to ICω is type-preserving, i.e. if
an FCω expression e in environment Γ has type τ , then there is a compilation of e
resulting in an ICω expression e ′, such that e ′ in Γ also has type τ .

Theorem 2 (Type preservation of compilation).

1. If Γ � e: τ then ∃e ′ such that |Γ � e: τ | � e ′ and Γ � e ′: τ .
2. If Γ ; τ � s then ∃s ′ such that |Γ ; τ � s| � s ′ and Γ ; τ � s ′.

4 Related Work

Numerous languages have been proposed formanipulating relational andsemi-structured
data. For reasons of space we focus here only on those for semi-structured data (some
of the languages for relational data were cited in §1).
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A number of special-purpose functional languages [15, 4, 10] have been proposed
for processing XML values. This stands in contrast to our approach, which aims at
extending an existing widely-used object-oriented programming language.

The languages most similar to Cω are XJ [14] and Xtatic [13]. XJ adds XML and
XPath as a first-class construct to Java, and uses logical XML classes to represent XSDs.
In this way XJ allows compile time checking of XML fragments; however since the
impedance mismatch between XML and objects is quite large, it does not deal with a
mix of data from the the object and the XML world. One consequence is, for example,
that XPath queries are restricted to work on XML data only.

Xtatic extends C� with a separate category of regular expression types [16]. Subtyp-
ing is structural. While this gives a lot of flexibility this neither conforms with XML
Schema, where subtyping is defined by name through restrictions and extensions, nor
does it allow a free mix of objects and XML. Further, Xtatic uses pattern matching
for XML projections, which fits well with the chosen type system but lacks first-class
queries.

In contrast to XJ and Xtatic, Cω does not treat XML as a distinct and separate class.
Its ingenuity lies in the uniform integration of the new stream, choice and struct types
into the existing types and the generalization of member access— ‘‘the power is in
the dot”. In fact, generalized member access in Cω achieves many of the benefits that
other type systems try to solve. For example, a long standing problem is how to write a
query over data that comes from two sources that are similar, modulo some distribution
rules, but not the same [8]. The type algebra of regular expression types often allows
a factorization which makes this scenario possible. Generalized member access, on the
other hand, handles this problem itself, without the need for distribution rules at the
type level.

Another popular approach to deal with XML in an object-oriented language is by
using so called data-bindings. A data-binding generates some strongly typed object
representation from a given XML schema (XSD). JAXB for Java and xsd.exe in the
.NET framework generate classes from a given XSD. However, it is often impossible to
generate reasonable bindings, since the rich type system of XSDs cannot adequately be
mapped onto classes and interfaces. As a consequence the resulting mappings are often
weakly typed.

Cω takes a different but simpler view: XML is considered to be a serialization syntax
for the rich type system of Cω. We are not tied to a particular XML data model. While
Cω by design doesn’t support the entirety of the full XML stack, in our experience Cω’s
type system and language extensions are rich enough to support realistic scenarios. We
have written a large number of applications, including the complete set of XQuery Use
Cases, several XSL stylesheets, and a substantial application (50KLOC) to manage TV
listings.

5 Conclusions and Future Work

In this paper we have considered the problem of manipulating relational and semi-
structured data within common object-oriented languages. We observed that existing
methods using APIs provide poor support for these common application scenarios.
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Therefore, we have proposed a series of elegant extensions to C� that provides type-
safe, first-class access to, and querying of, these forms of data. We also have built a full
compiler that implements our design. In this paper we have studied these extensions
formally.

This work represents an industrial application of formal methods; on the whole,
we found the process of formalizing our intuitions extremely useful, and indeed we
managed to trap a number of subtle design flaws in the process. (In addition we had to
formalize a fragment of C�, which was a little subtle in places. For example, we believe
that this paper gives the first formal operational semantics for iterators.) That said, we
also found it useful to be simultaneously developing a compiler. On a small number of
occasions we found that our formalization was too high-level, in that it failed to capture
some lower-level issues. Also whilst FCω is small enough to prove theorems about by
hand, we should have liked to formalized a larger fragment of the language. At the
moment, this seems unrealistic without more highly developed machine assistance.

One aspect of this project that we should like to consider further is the compilation.
The Common Type System (CTS) for the Common Language Runtime (CLR) whilst
general, lacks support for structural types. As our current compiler targets .NET 1.1,
this means that the choice and anonymous structs types have to be ‘‘simulated”. In
future work, we plan to study extending the CLR with structural types. This would also
enable more effective compilation of other languages that offer structural types, such
as functional languages. It would also be interesting to study whether the lightweight
covariance of Cω could be added to the CTS and other languages.

Implementation Status. A prototype Cω compiler is freely available. It covers the
entire safe fragment of C� and includes all the data access features described in this
paper (and more) and also the ‘‘polyphonic” concurrency primitives [3]. (Available
from http://research.microsoft.com/comega.)
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