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École Polytechnique
F-91128 Palaiseau, France

Agostino Cortesi2 ,3

Dipartimento di Informatica
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Abstract

The aim of this position paper is to draw a quick overview of the main contributions in abstract
interpretation of object-oriented programs, and to draw possible lines of research in this field.
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1 Introduction

Abstract Interpretation is a theory for static analysis of software systems that
formalizes the notion of approximation and abstraction in a mathematical
setting, and which is independent of particular languages and applications.
Nevertheless, when looking at the literature produced in the last two decades
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(see the electronic version with extended bibliography of [14]), the amazingly
rich suite of problems and solutions that fit in the abstract interpretation
setting is often dependent both on the specific programming language and on
the given property to be analyzed (that might also be language dependent).
Since abstract interpretation has a very semantic-based character, it is not
surprising that language paradigms with strong semantic foundations, e.g.
functional and logic programming, have been in the past a very fertile test
bed for the development of sophisticated abstract domains and specialized fix-
point algorithms. On the other hand, when looking at the contributions in the
area of object-oriented programming, the picture is somehow still fragmented,
and this may overshadow the great potentialities of abstract interpretation on
the mainstream programming platforms where the OO paradigm is getting a
leader position.

This paper is aimed at providing a general survey of existing literature on
abstract interpretation for object-oriented languages, and draw a few hints on
how the research in this field may get further advances.

2 What has been done...

First, let us try to revisit a few interesting contributions (no claim of being
complete!) in the static analysis of object-oriented languages. They are mainly
focused on optimization issues.

2.1 Class Analysis

A class analysis computes, for each program point PP and for each variable xPP
a set of classes CxPP such that if in an execution of the program x, at program
point PP, has a runtime type C, then C ∈ CxPP . Class analysis is useful (i) for
optimization of object-oriented programs, so to statically resolve virtual calls,
and (ii) for the static construction of the control-flow graph of a program, so
to provide the first step for a further analysis. In fact, if class analysis infers
that a given program point, corresponding to a method invocation, CxPP is a
singleton, then there is no need for a look-up procedure in the class hierarchy
to determine the method to be invoked at runtime.

Several class analyses have been proposed in the literature, which consider
different values for the ratio precision/cost. For instance, the seminal work
by Palsberg and Schwartzbach, [37], presents a very precise, but also expen-
sive, analysis for untyped object-oriented languages. These results have been
improved by the same authors, [36], as well as by others, [4,18,15,45], which
consider fast, but also imprecise, class analyses for the removal of virtual func-
tion calls in C++.
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Another approach for reducing the cost of the analysis is by modularizing
it: Besson and Jensen introduced a modular class analysis based on DAT-
ALOG, [5], and Probst described an analysis to incrementally construct the
control-flow graph of Java programs, [39].

Spoto and Jensen, [44,24], provided a uniform, abstract interpretation-
based, view of such analyses. The authors define a concrete trace semantics,
and they proved how existing analyses are an abstraction of such a semantics.
Given an execution trace σ0σ1σ2 . . . σn and a function typeOf which returns
the runtime type of an object, the analysis of Palsberg and Schwartzbach is
obtained by considering an abstraction function such that

αPS(σ0σ1σ2 . . . σn) = λPP. λx. {typeOf (σi(x)) | i ∈ [0 . . . n], σi(pp) = PP}.

The fast type analysis of Bacon and Sweeney is obtained by considering a fur-
ther abstraction which collects together the types of a given variable through
all the program points:

αBS(σ0σ1σ2 . . . σn) = λx.
⋃

pp∈Program

αPS(σ0σ1σ2 . . . σn)(pp)(x).

As a corollary of their formalization, Spoto and Jensen formally relate the
relative precision of the analyses, by considering the relative precision of the
corresponding abstract domains.

2.2 Pointer Analysis

A pointer analysis computes, for each program point PP, and for each variable
x a set AxPP of heap objects, such that if in an execution of the program, at
program point PP, x points to an heap object h, then h ∈ AxPP .

A precise and scalable pointer analysis is a basic requirement for an effec-
tive static analysis of object-oriented programs. In fact, in real-world object-
oriented languages, objects are heap-allocated and they are unequivocally
identified by their heap address. As a consequence, a precise determination
of the addresses a variable may point to allows one to have a precise infor-
mation on the objects a program is made of. Furthermore, pointer analysis
implies class analysis. In fact, given a result AxPP of a pointer analysis, the
set of classes x can evaluate to at program point PP is given by an abstraction
function αL, which collects the types of the heap objects whom address is in
AxPP :

αL(AxPP) = {typeOf (heap(h)) | h ∈ AxPP} = CxPP .

The first attempts for an effective pointer analysis of object-oriented language
focused on modifications/adaptations of existing pointer analyses for C. For
instance, Rountev, Milanova, and Ryder proposed a pointer analysis for Java,
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[41,34], that adapts the Anderesen’s pointer analysis for C [3]; and Rama-
lingam et al . presented an analysis for inferring the local heap structure of
Java containers, [40], which uses TVLA [25]. More recently, Pollet, Le Char-
lier, and Cortesi introduced two abstract domains to express type, structural,
and sharing information about dynamically created objects, [38]; and Chang
and Leino presented an algebra of abstract domains that is essentially the
reduced product of a precise alias analysis for heap-allocated objects and a
generic abstract domain (parameter of the algebra), [9].

2.3 Escape Analysis

Escape analysis determines whether the lifetime of an object oversteps its
static scope. If PP is the exit point of a method, then an escape analysis
computes the set EPP of the heap-allocated objects at PP. Escape analysis
is useful for program optimization, and in particular for (i) stack-allocating
objects and (ii) removing synchronization. Escape analysis is strictly related
to pointer analysis. In fact, if A is the information computed by a pointer
analysis, for all the program points and variables, then

αB(A) =
⋃

x∈Vars

APPx
= EPP.

Gay and Steensgaard apply a very fast, but imprecise, escape analysis to the
stack allocation in Java, [21]; Bogda and Höltz addressed the problem of syn-
chronization elimination in concurrent Java programs, through the use of a
more precise analysis [8]; Blanchet developed an escape analysis for the full
Java whom soundness proof relies on a pointer analysis [7,6]. The analysis of
Blanchet is precise and efficient enough to be applied to boost stack alloca-
tion and synchronize removal tasks. Several others escape analyses have been
developed, with different values of the precision/cost ration. We recall the
Whaley-Rinard and Viven-Rinard analyses, based on points-to escape graphs,
[47,46]; the Choi et. al analysis, based on connection graphs, [10]; the Ruf
analysis, which exploits static fields, [42].

2.4 Inference of Class Invariants

Class invariants represent the basis of good software engineering of object-
oriented programs, [33]. A class invariant is a property of a class valid before
and after the execution of any method of the class. It can be characterized as
an abstraction of the trace semantics, where just the states corresponding to
the entry points and exit points of method invocations of instances of a class
are retained, [30,29].
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Fig. 1. The parallel between abstract domains and class hierarchies.

Automatic-inferred class invariants are useful for modular software ver-
ification of classes, for optimization, for code documentation and for com-
piler designing. Ghemawat, Randall, and Scales [22] and subsequently Ag-
garwal and Randall [1] presented a static analysis for the removal of checks
on array bounds, that essentially computes a class invariant in the form of
a == null ∨ 0 ≤ b ≤ a.length. Detlefs was interested in inferring correct
explicit deallocation of elements of long-lived data structures [16]. Flanagan
and Leino developed Houdini, a tool based on ESC/Java, for the inference of
invariants, [20]. Ernst designed Daikon, a tool for the inference of pseudo-class
invariants, [19]. Logozzo introduced a generic framework for the inference of
class invariants, which takes into account inheritance, polymorphism, mutu-
ally recursive classes, [32,28,26,27].

2.5 Other Analyses

Among the other analyses that have been designed for object oriented lan-
guages, we recall the one of Christensen, Møller, and Schwartzbach, that ap-
proximates the result of string expressions, [11]; the one of Distefano, Katoen
and Rensik, who present a temporal logic for object-oriented programs and the
corresponding model-checking algorithm, [17]; the one of Owen and Watson,
who present an analysis to remove unnecessary box/unboxing operations, [35];
the one of Zee and Rinard, which allows one to remove write barriers, [48];
the one of Alur, Cerny, Madhusudan, and Nam, which synthesises interface
specifications for Java classes, [2]; and the one of Salcianu and Rinard, which
checks if a Java method is pure or not, [43].
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3 ... and what could be done

In the previous survey we have seen how abstract interpretation is an effective
technology for the analysis, the verification and the optimization of object-
oriented languages. We think that it can be used also for the formalization
and the description of object-oriented systems.

In fact, there are similarities between abstract interpretation theory and
class hierarchies. A basic result in abstract interpretation theory is that, if
the concrete domain is a complete lattice, then the set of all its abstractions
is a complete lattice too, [13].

Let D be a lattice of abstractions, and let H a class hierarchy. The order
on D is the relative precision of the abstract domains, i.e., D1 � D2 iff D1

is an abstraction of D2. Intuitively, this means that D1 captures at least all
the information of D2, i.e., D2 is a refinement of D1, [23]. On the other hand,
the order on H is the subclass relation, i.e., C1 ≤ C2 iff C1 is a subclass of
C2. Intuitively, it means that the class C1 is a specialization, or a refinement,
of the class C2. Stated differently, C2 is a class more abstract than C1. As
a consequence, (i) �D, the greatest element of D, is the the most abstract
domain; and (ii) Object, the common superclass to all the classes in H, is the
most abstract class of the hierarchy.

Exploiting such a parallel between the two concepts, lattices of abstract
domains and class hierarchies, we can say that the H-counterpart for the
meet operation on D is multiple inheritance. In fact, the meet operation of
two abstract domains D1 and D2 is the reduced product, i.e., the most abstract
domain D3, which contains all the information of D1 and D2, [13]. On the other
hand, if C3 is a subclass of both C1 and C2, then it contains all the fields of, and
it may behave as, its superclasses. Furthermore, abstract domain refinement
and the extension of classes are related concepts, too. In fact, the refinement of
a given abstract domain is a domain that captures all the properties captured
by the refined domain plus some others (specific to the refinement). On the
other hand, the extension of a given base class is a class that inherits all
the behaviors of the ancestor, plus some others (consider, e.g., the classical
2DPoints and 3DPoints classes, [12]).

We think that the analogies between the two concepts, that are summa-
rized in Figure 1, deserve to be further studied, thus yielding to a cross-porting
of results. For instance, which are the counterpart (i) in class hierarchies for
the reduce cardinal power; and (ii) in abstract domains for interfaces and
for polymorphism? We have begun a study in which we apply abstraction
interpretation techniques to the definition and the manipulation of class hier-
archies, [31], and the first results are very encouraging.
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Future research in Abstract Interpretation for OO languages might con-
sider the issue of validating the whole Object-oriented software engineering
process: analysis (OOA), design (OOD) and implementation (OOI). Namely,
it might be interesting to investigate how abstract interpretation can provide
an alternative formal approach to requirement specifications (which are just
abstractions of the behavior of the desired system), as well as a guideline for
the software design (by exploiting class invariants), its implementation (by
exploiting object invariants), and system integration (by a suitable abstract
representation of non functional requirements).

4 Conclusions

In this position we drew a quick overview of the main contributes in abstract
interpretation of object-oriented languages, and we sketched some analogies
between two core concepts of the two fields, respectively abstract domains and
class hierarchies.
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