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Abstract

We study the computational power and limitations of iterative combinatorial auctions.
Most existing iterative combinatorial auctions are based on repeatedly suggesting prices for
bundles of items, and querying the bidders for their “demand” under these prices. We prove
several results regarding such auctions that use a polynomial number of demand queries: (1)
that such auctions can simulate several other natural types of queries; (2) that they can ap-
proximate the optimal allocation as well as generally possible using polynomial communication
or computation, while weaker types of queries can not do so; (3) that such auctions can solve
linear programming relaxations of winner determination problems. We also initiate the study
of how can the prices of bundles be represented when they are not linear, and show that the
“default” representation has severe limitations.
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1 Introduction

Combinatorial auctions have recently received a lot of attention. In a combinatorial auction, a
set M of m non-identical items are sold in a single auction to n competing bidders. The bidders
have preferences regarding the bundles of items that they may receive. The preferences of bidder
i are specified by a valuation function vi : 2M → R+, where vi(S) denotes the value that bidder
i attaches to winning the bundle of items S. We assume “free disposal”, i.e., that the vi’s are
monotone non-decreasing. The usual goal of the auctioneer is to optimize the social welfare∑

i vi(Si), where the allocation S1...Sn must be a partition of the items. Applications include
many complex resource allocation problems and, in fact, combinatorial auctions may be viewed as
the common abstraction of many complex resource allocation problems. Combinatorial auctions
face both economic and computational difficulties and are a central problem in the recently active
border of economic theory and computer science. A forthcoming book [10] addresses many of the
issues involved in the design and implementation of combinatorial auctions.
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The design of a combinatorial auction involves many considerations. In this paper we focus
on just one central issue: the communication between bidders and the allocation mechanism
– “preference elicitation”. Transferring all information about bidders’ preferences requires an
infeasible (exponential in m) amount of communication. Thus, “direct revelation” auctions in
which bidders simply declare their preferences to the mechanism are only practical for very
small auction sizes or for very limited families of bidder preferences. We have therefore seen a
multitude of suggested “iterative auctions” in which the auction protocol repeatedly interacts
with the different bidders, aiming to adaptively elicit enough information about the bidders’
preferences as to be able to find a good (optimal or close to optimal) allocation.

Most of the suggested iterative auctions proceed by maintaining temporary prices for the
bundles of items and repeatedly querying the bidders as to their preferences between the bundles
under the current set of prices, and then updating the set of bundle prices according to the replies
received (e.g., [20, 11, 16, 31, 1]). Effectively, such an iterative auction accesses the bidders’
preferences by repeatedly making the following type of demand query to bidders: “Query to
bidder i: a vector of bundle prices p = {p(S)}S⊆M ; Answer: a bundle of items S ⊆ M that
maximizes vi(S)− p(S).”. These types of queries are very natural in an economic setting as they
capture the “revealed preferences” of the bidders. Some auctions, called item-price or linear-
price auctions, specify a price pi for each item, and the price of any given bundle S is always
linear, p(S) =

∑
i∈S pi. Other auctions, called bundle-price auctions, allow specifying arbitrary

(non-linear) prices p(S) for bundles.
In this paper, we embark on a systematic analysis of the computational power of iterative

auctions that are based on demand queries. We do not aim to present auctions for practical use
but rather to understand the limitations and possibilities of these kinds of auctions. Our main
question is what can be done using a polynomial number of these types of queries? That is,
polynomial in the main parameters of the problem: n, m and the number of bits t needed for
representing a single value vi(S). Note that from an algorithmic point of view we are talking about
sub-linear time algorithms: the input size here is really n(2m − 1) numbers – the descriptions
of the valuation functions of all bidders. There are two aspects to computational efficiency
in these settings: the first is the communication with the bidders, i.e., the number of queries
made, and the second is the “usual” computational tractability. Our lower bounds will depend
only on the number of queries – and hold independently of any computational assumptions like
P 6= NP . Our upper bounds will always be computationally efficient both in terms of the number
of queries and in terms of regular computation. As mentioned, this paper concentrates on the
single aspect of preference elicitation and on its computational consequences and does not address
issues of incentives. This strengthens our lower bounds, but means that the upper bounds require
evaluation from this perspective also before being used in any real combinatorial auction.1

In a companion paper ([6]) we study similar questions for the more restricted natural case of
ascending-price combinatorial auctions.

1.1 Extant Work

Many iterative combinatorial auction mechanisms rely on demand queries (see the survey in [30]).
For our purposes, two families of these auctions serve as the main motivating starting points:

1We do observe however that some weak incentive property comes for free in demand-query auctions since
“myopic” players will answer all demand queries truthfully. We also note that in some cases (but not always!) the
incentives issues can be handled orthogonally to the preference elicitation issues, e.g., by using Vickrey-Clarke-
Groves (VCG) prices (e.g., [2, 29]).
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Valuation family Upper bound Reference Lower bound Reference
General min(n,O(

√
m)) [22], Section 5 min(n,m1/2−ε) [27]

Substitutes 1 [27]
Submodular e

e−1 [14] 1+ 1
2m [27]

Subadditive 2 [15] 2-ε [12]
k-duplicates O(m1/k+1) [13],[8] O(m1/k+1) [13]
Procurement ln m [27] (log m)/2 [24, 27]

Figure 1: The best approximation factors currently achievable by computationally-efficient combinatorial
auctions, for several classes of valuations. All lower bounds in the table apply to all iterative auctions; all
upper bounds in the table are achieved with item-price demand queries.

the first is the ascending item-price auctions of [20, 16] that with computational efficiency find
an optimal allocation among “(gross) substitutes” valuations2, and the second is the ascending
bundle-price auctions of [31, 1] that find an optimal allocation among general valuations – but not
necessarily with computational efficiency. The main lower bound in this area, due to [27], states
that indeed, due to inherent communication requirements, it is not possible for any iterative
auction to find the optimal allocation among general valuations with sub-exponentially many
queries. A similar exponential lower bound was shown by [27] also for even approximating the
optimal allocation to within a factor of m1/2−ε. Several lower bounds and upper bounds for
approximation are known for some natural classes of valuations – these are summarized in Figure
1.

In [27], the universal generality of demand queries is also shown: any non-deterministic com-
munication protocol for finding an allocation that optimizes the social welfare can be converted
into one that only uses demand queries (with bundle prices). In [33] this was generalized also to
non-deterministic protocols for finding allocations that satisfy other natural types of economic
requirements (e.g., approximate social efficiency, envy-freeness). However, in [28] it was demon-
strated that this “completeness” of demand queries holds only in the nondeterministic setting,
while in the usual deterministic setting, demand queries (even with bundle prices) may be expo-
nentially weaker than general communication.

Bundle-price auctions are a generalization of (the more natural and intuitive) item-price auc-
tions. It is known that indeed item-price auctions may be exponentially weaker: a nice example
is the case of valuations that are an XOR of k bundles3, where k is small (say, polynomial). La-
haie and Parkes [21] show an economically-efficient bundle-price auction that uses a polynomial
number of queries whenever k is polynomial. In contrast, [4] show that there exist valuations that
are XORs of k =

√
m bundles such that any item-price auction that finds an optimal allocation

between them requires exponentially many queries.

The organization of the rest of the paper is as follows: First, in Section 2, we present an
informal exposition that describes our new results and their context. Section 3 describes our
model. In Section 4 we discuss the power of different types of queries, and Section 5 studies the
approximability of the social welfare with a polynomial number of queries. In Section 6, we show
how demand queries enable solving linear programs for winner determination problems. Finally,

2Informally, the substitutes property means that the bidder will continue to demand an item when the prices
of some other items were raised. See exact definition in [20, 16].

3These are valuations where bidders have values for k specific packages, and the value of each bundle is the
maximal value of one of these packages that it contains.
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Section 7 studies the representation of bundle-price demand queries.

2 A Survey of Our Results

2.1 Comparison of Query Types

We first ask what other natural types of queries could we imagine iterative auctions using? Here
is a list of such queries that are either natural, have been used in the literature, or that we found
useful.

1. Value query : The auctioneer presents a bundle S, the bidder reports his value v(S) for this
bundle.

2. Marginal-value query : The auctioneer presents a bundle A and an item j, the bidder reports
how much he is willing to pay for j, given that he already owns A, i.e., v(j|A) = v(A ∪
{j})− v(A).

3. Demand query (with item prices): The auctioneer presents a vector of item prices p1...pm;
the bidder reports his demand under these prices, i.e., some set S that maximizes v(S) −∑

i∈S pi.4

4. Indirect-utility query : The auctioneer presents a set of item prices p1...pm, and the bidder
responds with his “indirect-utility” under these prices, that is, the highest utility he can
achieve from a bundle under these prices: maxS⊆M (v(S)−∑

i∈S pi). 5 We apply this query,
for example, when describing our welfare-approximation algorithm in Section 5.

5. Relative-demand query : the auctioneer presents a set of non-zero prices p1...pm, and the
bidder reports the bundle that maximizes his value per unit of money, i.e., some set that
maximizes v(S)P

i∈S pi
.6

Theorem: Each of these queries can be efficiently (i.e., in time polynomial in n, m, and the
number of bits of precision t needed to represent a single value vi(S)) simulated by a sequence of
demand queries with item prices.

In particular, this shows that demand queries can elicit all information about a valuation by
simulating all 2m−1 value queries. We also observe that value queries and marginal-value queries
can simulate each other in polynomial time and that demand queries and indirect-utility queries
can also simulate each other in polynomial time. We prove that exponentially many value queries
may be needed in order to simulate a single demand query.7

4A tie breaking rule should be specified. All of our results apply for any fixed tie breaking rule.
5This is exactly the utility achieved by the bundle which would be returned in a demand query with the same

prices. This notion relates to the Indirect-utility function studied in the Microeconomic literature (see, e.g., [23]).
6Note that when all the prices are 1, the bidder actually reports the bundle with the highest per-item price. We

found this type of query useful, for example, in the design of the approximation algorithm described in Figure 4 in
Section 5.

7It is interesting to note that for the restricted class of substitutes valuations, demand queries may be simulated
by polynomial number of value queries [3].
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Query type Upper bound Reference Lower bound Reference
General Communication min(n,O(m1/2)) [22] min(n,m1/2−ε) [27]

Demand Queries min(n,O(m1/2)) new min(n,m1/2−ε) [27]
Value Queries O( m√

log m
) [18] ) O( m

log m) new

Figure 2: Achievable approximation factors for the social welfare using polynomially many value queries,
demand queries (with item prices), and general queries (communication).

2.2 Welfare Approximation

The next question that we ask is how well can a computationally-efficient auction that uses only
demand queries approximate the optimal allocation? Two separate obstacles are known: In [27],
a lower bound of min(n,m1/2−ε), for any fixed ε > 0, was shown for the approximation factor
obtained using any polynomial amount of communication. A computational bound with the same
value applies even for the case of single-minded bidders, but under the assumption of NP 6= ZPP
[32]. As noted in [27], the computationally-efficient greedy algorithm of [22] can be adapted
to become a polynomial-time iterative auction that achieves a nearly matching approximation
factor of min(n,O(

√
m)). This iterative auction may be implemented with bundle-price demand

queries but, as far as we see, not as one with item prices. Since in a single bundle-price demand
query an exponential number of prices can be presented, this algorithm can have an exponential
communication cost. In Section 5, we describe a different item-price auction that achieves, for
the first time, the same approximation factor with a polynomial number of demand queries (and
thus polynomial communication).

Theorem: There exists a computationally-efficient iterative auction with item-price demand
queries that finds an allocation that approximates the optimal welfare between arbitrary valua-
tions to within a factor of min(n,O(

√
m)).

One may then attempt obtaining such an approximation factor using iterative auctions that
use only the weaker value queries. However, we show that this is impossible:

Theorem: Any iterative auction that uses a polynomial (in n and m) number of value queries
can not achieve an approximation factor that is better than O( m

log m).8

Note however that auctions with only value queries are not completely trivial in power: the
bundling auctions of [18] can easily be implemented by a polynomial number of value queries and
can achieve an approximation factor of O( m√

log m
) by using O(log m) equi-sized bundles. We do

not know how to close the (tiny) gap between this upper bound and our lower bound. Figure 2
summarizes these upper and lower bounds.

2.3 Demand Queries and Linear Programs

The winner determination problem in combinatorial auctions may be formulated as an integer
program. In many cases solving the linear-program relaxation of this integer program is useful: for
some restricted classes of valuations it finds the optimum of the integer program (e.g., substitute
valuations [20, 16]) or helps approximating the optimum (e.g., by randomized rounding [12, 14, 5]).
However, the linear program has an exponential number of variables. Nisan and Segal [27]
observed the surprising fact that despite the exponential number of variables, this linear program

8This was also proven independently by Shahar Dobzinski and Michael Schapira.
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may be solved within polynomial communication. The basic idea is to solve the dual program
using the Ellipsoid method (see, e.g., [19]). The dual program has a polynomial number of
variables, but an exponential number of constraints. The Ellipsoid algorithm runs in polynomial
time even on such programs, provided that a “separation oracle” is given for the set of constraints.
Surprisingly, such a separation oracle can be implemented using a single demand query (with item
prices) to each of the bidders.

The treatment of [27] was somewhat ad-hoc to the problem at hand (the case of substitute
valuations). Here we give a somewhat more general form of this important observation. Let us
call the following class of linear programs “generalized-winner-determination-relaxation (GWDR)
LPs”:

Maximize
∑

i∈N,S⊆M

wi xi,S vi(S)

s.t.
∑

i∈N, S|j∈S

xi,S ≤ qj ∀j ∈ M

∑

S⊆M

xi,S ≤ di ∀i ∈ N

xi,S ≥ 0 ∀i ∈ N, S ⊆ M

The case where wi = 1, di = 1, qj = 1 (for every i, j) is the usual linear relaxation of the
winner determination problem. More generally, wi may be viewed as the weight given to bidder
i’s welfare, qj may be viewed as the quantity of units of good j, and di may be viewed as duplicity
of the number of bidders of type i.

Theorem: Any GWDR linear program may be solved in polynomial time (in n, m, and the
number of bits of precision t) using only demand queries with item prices.9

2.4 Representing Bundle Prices

Finally, we deal with a critical issue with bundle-price auctions that was side-stepped by our
model, as well as by all previous works that used bundle-price auctions: how are the bundle
prices represented? For item-price auctions this is not an issue since a query needs only to specify
a small number, m, of prices. In bundle-price auctions that situation is more difficult since there
are exponentially many bundles that require pricing. Our basic model (like all previous work
that used bundle prices, e.g., [31, 29, 1]), ignores this issue, and only requires that the prices be
determined, somehow, by the protocol. A finer model would fix a specific language for denoting
bundle prices, force the protocol to represent the bundle-prices in this language, and require that
the representations of the bundle-prices also be polynomial.

What could such a language for denoting prices for all bundles look like? First note that
specifying a price for each bundle is equivalent to specifying a valuation. Second, as noted in
[26], most of the proposed bidding languages are really just languages for representing valuations,
i.e., a syntactic representation of valuations – thus we could use any of them. This point of view
opens up the general issue of which language should be used in bundle-price auctions and what
are the implications of this choice.

Here we initiate this line of investigation. We consider bundle-price auctions where the prices
must be given as a XOR-bid, i.e., the protocol must explicitly indicate the price of every bundle

9The produced optimal solution will have polynomial support and thus can be listed fully.
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whose value is different than that of all of its proper subsets. Note that all bundle-price auctions
that do not explicitly specify a bidding language must implicitly use this language or a weaker
one, since without a specific language one would need to list prices for all bundles, perhaps except
for trivial ones (those with value 0, or more generally, those with a value that is determined by
one of their proper subsets.) We show that once the representation length of bundle prices is
taken into account (using the XOR-language), bundle-price auctions are no more strictly stronger
than item-price auctions. Our proof relies on the sophisticated known lower bounds for constant
depth circuits due to Hastad [17]. We were not able to find an elementary proof.

Define the cost of an iterative auction as the total length of the queries and answers used
throughout the auction (in the worst case).

Theorem: For some class of valuations, bundle price auctions that use the XOR-language require
an exponential cost for finding the optimal allocation. In contrast, item-price auctions can find
the optimal allocation for this class within polynomial cost.

This puts doubts on the applicability of bundle-price auctions like [1, 31], and it may justify the
use of “hybrid” pricing methods such as Ausubel, Cramton and Milgrom’s Clock-Proxy auction
([9]).

3 The Model

A single auctioneer is selling m indivisible non-homogeneous items in a single auction, and let M
be the set of these items and N be the set of bidders. Each one of the n bidders in the auction has
a valuation function vi : 2M → {0, 1, ..., L}, where for every bundle of items S ⊆ M , vi(S) denotes
the value of bidder i for the bundle S and is an integer in the range 0...L. We will sometimes
denote the number of bits needed to represent an integer in the range 0...L by t = log L. We
assume free disposal, i.e., S ⊆ T implies vi(S) ≤ vi(T ) and that vi(∅) = 0 for all bidders.

A valuation is called a k-bundle XOR if it can be represented as a XOR combination of at
most k atomic bids [25], i.e., if there are at most k bundles Si and prices pi such that for all S,
v(S) = maxi|S⊇Si

pi.10

3.1 Iterative Auctions

The auctioneer sets up a protocol (equivalently an “algorithm”), where at each stage of the
protocol some information q – termed the “query” – is sent to some bidder i, and then bidder i
replies with some reply that depends on the query as well as on his own valuation. In this paper,
we assume that we have complete control over the bidders’ behavior, and thus the protocol also
defines a reply function ri(q, vi) that specifies bidder i’s reply to query q. The protocol may be
adaptive: the query value as well as the queried bidder may depend on the replies received for
past queries. At the end of the protocol, an allocation S1...Sn must be declared, where Si∩Sj = ∅
for i 6= j.

We say that the auction finds an optimal allocation if it finds the allocation that maximizes
the social welfare

∑
i vi(Si). We say that it finds a c-approximation if

∑
i vi(Si) ≥

∑
i vi(Ti)/c

where T1...Tn is an optimal allocation. The running time of the auction on a given instance of
the bidders’ valuations is the total number of queries made on this instance. The running time
of a protocol is the worst case cost over all instances. Note that we impose no computational

10For example, consider a bidder with values of 5,3,4 for the atomic bundles abcd, ac, b, respectively. For this
valuation, v(ac) = 3, v(dcb) = 4 but v(abcd) = 5.
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limitations on the protocol or on the players.11 This of course only strengthens our hardness
results. Yet, our positive results will not use this power and will be efficient also in the usual
computational sense.

Our goal will be to design computationally-efficient protocols. We will deem a protocol
computationally-efficient if its cost is polynomial in the relevant parameters: the number of
bidders n, the number of items m, and t = log L, where L is the largest possible value of a bun-
dle. Note that all of our results give concrete bounds, where the dependence on the parameters
is given explicitly; we use the standard big-Oh notation just as a shorthand.

3.2 Demand Queries

Most of the paper will be concerned with a common special case of iterative auctions that we term
“demand auctions”. In such auctions, the queries that are sent to bidders are demand queries:
the query specifies a price p(S) ∈ <+ for each bundle S. The reply of bidder i is simply the set
most desired – “demanded” – under these prices. Formally, a set S that maximizes vi(S)− p(S).
It may happen that more than one set S maximizes this value. In which case, ties are broken
according to some fixed tie-breaking rule, e.g., the lexicographically first such set is returned. All
of our results hold for any fixed tie-breaking rule.

Note that even though in our model valuations are integral, we allow the demand query to use
arbitrary real numbers. A practical issue here is how will the query be specified: in the general
case, an exponential number of prices needs to be sent in a single query. Formally, this is not a
problem as the model does not limit the length of queries in any way – the protocol must simply
define what the prices are in terms of the replies received for previous queries. We look into this
issue further in Section 7.

Many auctions in the literature restrict the prices’ representation to item prices (or linear
prices):

Definition 1. Item Prices: The prices in each query are given by prices pj for each item j.
The price of a set S is additive: p(S) =

∑
j∈S pj .

4 The Power of Different Types of Queries

In this section we compare the power of the various types of queries defined in the introduction.
We will present computationally-efficient simulations of these query types using item-price de-
mand queries. In a companion paper [7] we show that these simulations can also be done using
item-price ascending auctions. The opposite, however, is false: we show that an exponential
number of some of these queries may be needed for simulating demand queries. Figure 3 sum-
marizes the relations between the different query types. Some parts of the following lemmas are
elementary, and some are harder. These lemmas will be used in the analysis in the rest of this
paper. All missing proofs can be found in Appendix A.

Lemma 1. A value query can be simulated by m marginal-value queries. A marginal-value query
can be simulated by two value queries.

Lemma 2. A value query can be simulated by mt demand queries (where t = log L is the number
of bits needed to represent a single bundle value).12

11The running time really measures communication costs and not computational running time.
12Note that t bundle-price demand queries can easily simulate a value query by setting the prices of all the

bundles except S (the bundle with the unknown value) to be L, and performing a binary search on the price of S.
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Value Mar-value Demand Ind-util Rel-demand
Value query 1 2 exp exp exp

Marginal-value query m 1 exp exp exp
Demand query mt poly 1 mt+1 poly

Indirect-utility query 1 2 m+1 1 poly
Relative-demand query - - - - 1

Figure 3: Each entry in the table specifies how many queries of the relevant row are needed to simulate
a query from the relevant column.

As a direct corollary we get that demand auctions can always fully elicit the bidders’ valuations
by simulating all possible 2m − 1 queries and thus elicit enough information for determining the
optimal allocation. Note, however, that this elicitation may be computationally inefficient.

The next lemma shows that demand queries can be exponentially more powerful than value
queries.

Lemma 3. An exponential number of value queries may be required for simulating a single
demand query.

Proof. We will actually show an example where a single demand query suffices for finding the
optimal allocation, but an exponential number of value queries are required for that. Consider a
player with a valuation of 2|S| for any bundle S, except for some “hidden” bundle H of size m

2
with a valuation of 2|S| + 2, and a second player with a known valuation of 2|S| + 1 for every
bundle S. The only optimal allocation gives the hidden set H to the first bidder. In a demand
query with a price of 2 + ε for every item, the first bidder demands his “hidden” set, and thus
reveals the optimal allocation.

However, consider any algorithm that uses only value queries. An adversary will answer each
value query v(S) to the first bidder with v(S) = 2|S|. As long as two sets S of size m

2 have
not been queried any of them can be the hidden set H and the optimal allocation can not be
determined. Thus, Ω(2m) value queries will be needed in the worst case.

Indirect utility queries are, however, equivalent in power to demand queries:

Lemma 4. An indirect-utility query can be simulated by mt+1 demand queries. A demand query
can be simulated by m + 1 indirect-utility queries.

Demand queries can also simulate relative-demand queries:13

Lemma 5. Relative-demand queries can be simulated by a polynomial number of demand queries.

According to our definition of relative-demand queries, they clearly cannot simulate even value
queries.

13Note: although in our model values are integral, we allow the query prices to be arbitrary real numbers, thus
we may have bundles with arbitrarily close relative demands. In this sense the simulation above is only up to
any given ε (and the number of queries is O(log L + log 1

ε
)). When the relative-demand query prices are given as

rational numbers, exact simulation is implied when log ε is linear in the input length.
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An Approximation Algorithm:
Initialization: Let T ← M be the current items for sale.

Let K ← N be the currently participating bidders.
Let S∗1 ← ∅, ..., S∗n ← ∅ be the provisional allocation.

Repeat until T = ∅ or K = ∅:
Ask each bidder i in K for the bundle Si that maximizes her
per-item value, i.e., Si ∈ argmaxS⊆T

vi(S)
|S| .

Let i be the bidder with the maximal per-item value, i.e., i ∈ argmaxi∈K
vi(Si)
|Si| ,

and set: s∗i = si, K = K \ i, M = M \ Si

Finally: Ask the bidders for their values vi(M) for the grand bundle.
If allocating all the items to some bidder i improves the social welfare
achieved so far (i.e., ∃i ∈ N such that vi(M) >

∑
i∈N vi(S∗i )),

then allocate all items to this bidder i.

Figure 4: This algorithm achieves a min{n, 4
√

m}-approximation for the social welfare, which is asymp-
totically the best worst-case approximation possible with polynomial communication. This algorithm can
be implemented with a polynomial number of demand queries.

5 Approximating the Social Welfare with Value and Demand
Queries

We know from [27] that iterative combinatorial auctions that only use a polynomial number of
queries can not find an optimal allocation among general valuations and in fact can not even
approximate it to within a factor better than min{n, m1/2−ε}. In this section we ask how well
can this approximation be done using demand queries with item prices, or using the weaker value
queries. We show that, using demand queries, the lower bound can be matched, while value
queries can only do much worse.

Figure 4 describes a polynomial-time algorithm that achieves a min(n,O(
√

m)) approximation
ratio. This algorithm greedily picks the bundles that maximize the bidders’ per-item value (using
“relative-demand” queries, see Section 4). As a final step, it allocates all the items to a single
bidder if it improves the social welfare (this can be checked using value queries). Since both value
queries and relative-demand queries can be simulated by a polynomial number of demand queries
with item prices (Lemmas 2 and 5), this algorithm can be implemented by a polynomial number
of demand queries with item prices.14

Theorem 1. The auction described in Figure 4 can be implemented by a polynomial number of
demand queries and achieves a min{n, 4

√
m}-approximation for the social welfare.

Proof. We first observe that the algorithm can be implemented by a polynomial number of value
queries and relative demand queries: querying a bidder for the bundle that maximizes his per-
item value is a relative-demand query when all the item prices are 1. Querying a bidder for his
value for the grand bundle can be done by a value query. In Section 4 we show that any value
query and any relative-demand query can be implemented by a polynomial number of demand
queries. Each bidder is asked at most m relative demand queries, and exactly one value query,
thus a polynomial number of demand queries can implement this algorithm.

Next, we prove that the algorithm achieves an approximation ratio of at least min{n, 4
√

m}.
The algorithm will clearly achieve a 1

n -approximation since we allocate the whole bundle M to
14In Figure 5 in the appendix, we show a simple implementation of this algorithm by two descending-price

auctions (where we allow removing items during the auction).
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the bidder with the highest valuation if it improves the welfare achieved. Next, we prove that
the algorithm achieves at least 1

4
√

m
of the optimal welfare.

Let OPT = {T1, ..., Tk, Q1, ..., Ql} be an optimal allocation where for every i ∈ {1, ..., k}
|Ti| ≤

√
m and for every j ∈ {1, ..., l} |Qj | >

√
m (l, k ∈ {0, ..., n}). Let ALG be the allocation

found by the algorithm, and let v(OPT ) and v(ALG) be the optimal welfare and the welfare
achieved by the algorithm, respectively. First, we analyze cases where “large” bundles contribute
most of the optimal welfare, i.e.,

∑l
i=1 vi(Qi) ≥

∑k
i=1 vi(Ti). Then,

v(OPT ) ≤ 2
l∑

i=1

vi(Qi) ≤ 2
l∑

i=1

v(ALG) = 2l · v(ALG) ≤ 2
√

m · v(ALG)

Where the first inequality holds since v(OPT ) =
∑l

i=1 vi(Qi)+
∑k

i=1 vi(Ti) and the second holds
since the last stage of the algorithm verifies that the welfare achieved by the algorithm is at least
the valuation of every player for the whole bundle M . The last inequality holds since there are
no more than

√
m bundles of size of at least

√
m.

The analysis of the case where “small” bundles contribute most of the optimal welfare (i.e.,∑l
i=1 vi(Qi) <

∑k
i=1 vi(Ti)) is more involved. Let I ⊆ {1, ..., k} be the set of bidders that receives

a “small” bundle (i.e., bundles in {T1, ..., Tk}) in OPT that does not intersect any bundle in ALG.
Consider the following sum:

k∑

i=1

vi(Ti)
|Ti| =

∑

i∈I

vi(Ti)
|Ti| +

∑

i∈{1,...,k}\I

vi(Ti)
|Ti| (5.1)

In the two claims below, we show that each of the summands in the right side of Equation 5.1
is not greater than v(ALG). This immediately derives that

∑k
i=1

vi(Ti)
|Ti| ≤ 2 · v(ALG). Since for

every i ∈ 1, ..., k, |Ti| ≤
√

m:
k∑

i=1

vi(Ti) ≤ 2
√

m · v(ALG)

Since most of the optimal welfare is contributed by “small” bundles,

v(OPT ) ≤ 2
k∑

i=1

vi(Ti) ≤ 4
√

m · v(ALG)

What is left to be proved is that both summands in Equation 5.1 are not greater than v(ALG):

Claim 1.
∑

i∈I
vi(Ti)
|Ti| ≤ v(ALG)

Proof. Consider a bidder i that receives a small bundle Ti in OPT such that Ti is disjoint to all
bundles in ALG. We observe that this bidder surely receives a non-empty bundle Si in ALG.
This holds since the items in Ti are not allocated at the end of the algorithm (they are not in
any bundle in ALG), but player i has a non-zero value for Ti.

Since the algorithm picked some Si ∈ ALG and not Ti for bidder i, vi(Ti)
|Ti| ≤ vi(Si)

|Si| . Therefore,

∑

i∈I

vi(Ti)
|Ti| ≤

∑

i∈I

vi(Si)
|Si| ≤

∑

i∈I

vi(Si) ≤
n∑

i=1

vi(Si) = v(ALG)

11



Claim 2.
∑

i∈{1,...,k}\I
vi(Ti)
|Ti| ≤ v(ALG)

Proof. For every bidder i ∈ {1, ..., k}\I, Ti intersects at least one bundle from ALG, and let F (i)
be the first bidder for which the algorithm allocates a bundle that intersects Ti. Then,

∑

i∈{1,...,k}\I

vi(Ti)
|Ti| ≤

n∑

j=1

∑

i|F (i)=j

vi(Ti)
|Ti| ≤

n∑

j=1

∑

i|F (i)=j

vi(Sj)
|Sj | ≤

n∑

j=1

|Sj |vi(Sj)
|Sj | ≤

∑

j∈ALG

vj(Sj)

Where the second leftmost inequality holds since bidder j = F (i) demands Sj ∈ ALG when all
the items in Ti are still on sale and the third inequality holds since each Sj intersects at most
|Sj | bundles from {T1, ..., Tk} (all Ti’s are disjoint).

We showed before how the theorem follows from these two claims.

We now ask how well can the optimal welfare be approximated by a polynomial number of
value queries. First we note that value queries are not completely powerless: In [18] it is shown
that if the m items are split into k fixed bundles of size m/k each, and these fixed bundles are
auctioned as though each was indivisible, then the social welfare generated by such an auction is
at least m√

k
-approximation of that possible in the original auction. Notice that such an auction

can be implemented by 2k − 1 value queries to each bidder – querying the value of each bundle
of the fixed bundles. Thus, if we choose k = log m bundles we get an m√

log m
-approximation while

still using a polynomial number of queries.
We show that not much more is possible using value queries:

Lemma 6. Any iterative auction that uses only value queries and distinguishes between k-tuples
of 0/1 valuations where the optimal allocation has value 1, and those where the optimal allocation
has value k requires at least 2

m
k queries.

Proof. Consider the following family of valuations: for every S, such that |S| > m/2, v(S) = 1,
and there exists a single set T , such that for |S| ≤ m/2, v(S) = 1 iff T ⊆ S and v(S) = 0
otherwise. Now look at the behavior of the protocol when all valuations vi have T = {1...m}.
Clearly in this case the value of the best allocation is 1 since no set of size m

2 or lower has non-
zero value for any player. Fix the sequence of queries and answers received on this k-tuple of
valuations.

Now consider the k-tuple of valuations chosen at random as follows: a partition of the m items
into k sets T1...Tk each of size m

k each is chosen uniformly at random among all such partitions.
Now consider the k-tuple of valuations from our family that correspond to this partition – clearly
Ti can be allocated to i, for each i, getting a total value of k. Now look at the protocol when
running on these valuations and compare its behavior to the original case. Note that the answer
to a query S to player i differs between the case of Ti and the original case of T = {1...m} only if
|S| ≤ m

2 and Ti ⊆ S. Since Ti is distributed uniformly among all sets of size exactly m
k , we have

that for any fixed query S to player i, where |S| ≤ m
2 ,

Pr[Ti ⊆ S] ≤
( |S|

m

)|Ti|
≤ 2−

m
k

Using the union-bound, if the original sequence of queries was of length less than 2
m
k , then with

positive probability none of the queries in the sequence would receive a different answer than for
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the original input tuple. This is forbidden since the protocol must distinguish between this case
and the original case – which cannot happen if all queries receive the same answer. Hence there
must have been at least 2

m
k queries for the original tuple of valuations.

We conclude that a polynomial time protocol that uses only value queries cannot obtain
a better than O( m

log m) approximation of the welfare. This can be immediately derived from
Lemma 6: achieving any approximation ratio k which is asymptotically greater than m

log m needs
an exponential number of value queries.

Theorem 2. An iterative auction that uses a polynomial number of value queries cannot achieve
better than O( m

log m)-approximation for the social welfare.

6 Demand Queries and Linear Programming

In this section, we show that the linear-programming relaxation of the combinatorial-auction
problem can be optimally solved using demand queries. This observation turns to be useful for
the design of approximation algorithms for combinatorial auctions and other related resource-
allocation problems (see, e.g., [12, 5, 15]).

Consider the following linear-programming relaxation for the generalized winner-determination
problem in combinatorial auctions (the “primal” program):

Maximize
∑

i∈N,S⊆M

wi xi,S vi(S)

s.t.
∑

i∈N, S|j∈S

xi,S ≤ qj ∀j ∈ M

∑

S⊆M

xi,S ≤ di ∀i ∈ N

xi,S ≥ 0 ∀i ∈ N, S ⊆ M

Note that the primal program has an exponential number of variables. Yet, we will be able
to solve it in polynomial time using demand queries to the bidders. The solution will have a
polynomial size support (non-zero values for xi,S), and thus we will be able to describe it in
polynomial time.

Here is its dual:

Minimize
∑

j∈M

qjpj +
∑

i∈N

diui

s.t. ui +
∑

j∈S

pj ≥ wivi(S) ∀i ∈ N, S ⊆ M

pi ≥ 0, uj ≥ 0 ∀i ∈ M, j ∈ N

Notice that the dual problem has exactly n + m variables but an exponential number of
constraints. Thus, the dual can be solved using the Ellipsoid method in polynomial time – if
a “separation oracle” can be implemented in polynomial time. Recall that a separation oracle,
when given a possible solution, either confirms that it is a feasible solution, or responds with a
constraint that is violated by the possible solution.
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We construct a separation oracle for solving the dual program, using a single demand query
to each of the bidders. Consider a possible solution (u, p) for the dual program. We can re-write
the constraints of the dual program as:

ui/wi ≥ vi(S)−
∑

j∈S

pj/wi

Now a demand query to bidder i with prices pj/wi reveals exactly the set S that maximizes the
RHS of the previous inequality. Thus, in order to check whether (u, p) is feasible it suffices to (1)
query each bidder i for his demand Di under the prices pj/wi; (2) check only the n constraints
ui +

∑
j∈Di

pj ≥ wivi(Di) (where vi(Di) can be simulated using a polynomial sequence of demand
queries as shown in Lemma 2). If none of these is violated then we are assured that (u, p) is
feasible; otherwise we get a violated constraint.

What is left to be shown is how the primal program can be solved. (Recall that the primal
program has an exponential number of variables.) Since the Ellipsoid algorithm runs in polyno-
mial time, it encounters only a polynomial number of constraints during its operation. Clearly, if
all other constraints were removed from the dual program, it would still have the same solution
(adding constraints can only decrease the space of feasible solutions). Now take the “reduced
dual” where only the constraints encountered exist, and look at its dual. It will have the same
solution as the original dual and hence of the original primal. However, look at the form of this
“dual of the reduced dual”. It is just a version of the primal program with a polynomial number
of variables – those corresponding to constraints that remained in the reduced dual. Thus, it can
be solved in polynomial time, and this solution clearly solves the original primal program, setting
all other variables to zero.

7 The Representation of Bundle Prices

In this section we explicitly fix the language in which bundle prices are presented to the bidders
in bundle-price auctions. This language requires the algorithm to explicitly list the price of
every bundle with a non-trivial price. “Trivial” in this context is a price that is equal to that
of one of its proper subsets (which was listed explicitly). This representation is equivalent to
the XOR-language for expressing valuations. Formally, each query q is given by an expression:
q = (S1 : p1) ⊕ (S2 : p2) ⊕ ... ⊕ (Sl : pl). In this representation, the price demanded for every
set S is simply p(S) = max{k=1...l|Sk⊆S}pk.

Definition 2. The length of the query q = (S1 : p1) ⊕ (S2 : p2) ⊕ ... ⊕ (Sl : pl) is l. The cost of
an algorithm is the sum of the lengths of the queries asked during the operation of the algorithm
on the worst case input.

Note that under this definition, bundle-price auctions are not necessarily stronger than item-
price auctions. An item-price query that prices each item for 1, is translated to an exponentially
long bundle-price query that needs to specify the price |S| for each bundle S. But perhaps bundle-
price auctions can still find optimal allocations whenever item-price auction can, without directly
simulating such queries? We show that this is not the case: indeed, when the representation
length is taken into account, bundle price auctions are sometimes seriously inferior to item price
auctions.

Consider the following family of valuations: Each item is valued at 3, except that for some
single set S, its value is a bit more: 3|S|+ b, where b ∈ {0, 1, 2}. Note that an item price auction
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can easily find the optimal allocation between any two such valuations: Set the prices of each
item to 3+ε; if the demand sets of the two players are both empty, then b = 0 for both valuations,
and an arbitrary allocation is fine. If one of them is empty and the other non-empty, allocate
the non-empty demand set to its bidder, and the rest to the other. If both demand sets are
non-empty then, unless they form an exact partition, we need to see which b is larger, which we
can do by increasing the price of a single item in each demand set.

We will show that any bundle-price auction that uses only the XOR-language to describe
bundle prices requires an exponential cost (which includes the sum of all description lengths of
prices) to find an optimal allocation between any two such valuations.

The complication in the proof stems from the fact that using XOR-expressions, the length of
the price description depends on the number of bundles whose price is strictly larger than each of
their subsets – this may be significantly smaller than the number of bundles that have a non-zero
price. (The proof becomes easy if we require the protocol to explicitly name every bundle with
non-zero price.) We do not know of any elementary proof for this lemma (although we believe
that one can be found). Instead we reduce the problem to a well known lower bound in boolean
circuit complexity [17] stating that boolean circuits of depth 3 that compute the majority function
on m variables require 2Ω(

√
m) size.

Lemma 7. Every bundle-price auction that uses XOR-expressions to denote bundle prices re-
quires 2Ω(

√
m) cost in order to find the optimal allocation among two valuations from the above

family.

Proof. Consider the protocol running on the following two valuations: the first has b = 0 (i.e. is
simply additive), and the second has b = 1 for the set S of all items. In this case the outcome
must be to allocate all to the second bidder. Let e1...et be the queries made on this input, where
each ei = E1

i ⊕E2
i ⊕ ...⊕Eli

i . Now consider what happens when the first valuation is changed so
that for some S of size exactly m/2, be get a bonus b = 2 – clearly the allocation must change so
that this S is allocated to the first player – hence one of the queries e1...et must change its answer.
We will see that the fact that this is true for every such S implies that

∑t
i=1 li is exponential.

First note that if in ei there exists some set of size m/2 + 1 that has price zero, then the
answer will not change as this set will give a surplus of at least 3m/2 + 3 as opposed to at most
3m/2 + 2 that S gives. Let us focus at an ei that does not have such a set. We build a boolean
DNF formula from this expression as follows: the variable set will be x1...xm – a variable for each
item. Consider a term (atomic bid) Ej

i = (Bj
i , p

j
i ) in ei. We call this term essential if there exists

some bundle of size exactly m/2 + 1 whose price in ei is exactly pj
i . For every essential term

(Bj
i , p

j
i ) in ei we build a conjunction of the variables in it (ignoring the price for this bundle). We

then take the disjunction of all of these conjunctions. First notice that this DNF must accept all
inputs with more than m/2 1’s in the input – since otherwise consider a set that is not accepted
by this expression, and the value of this set in ei must be zero.

Now notice that if an input with 1’s in exactly the set S of size exactly m/2 is accepted by
this formula, then the answer to query ei will not change. The reason is that an accepted set S
contains some essential bundle Bj

i , and thus its price in ei would be at least pj
i . However, since

the bundle is essential, there exists some set of size m/2 + 1 that is priced at exactly pj
i – this

set would clearly be preferable to S – the only set whose value has changed. Since for every set
S of size exactly m/2 the answer to one of the queries must change, at least one of the formulas
constructed must reject the input with 1’s exactly in S.

We now take the conjunction of all boolean expressions built for all i. This formula accepts
all inputs with exactly m/2 + 1 1’s, and rejects all inputs with exactly m/2 1’s. Note that this
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formula is a conjunction of disjunctions of conjunctions of variables – a, so called, monotone
depth 3 formula. Since it is a monotone formula, it computes the majority function. Its size is
clearly bounded from above by the total length of all expressions ei. We are now ready to invoke
the well known lower bound by Hastad [17] that states that a depth 3 formula for majority must
have size at least 2Ω(

√
m).
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A Missing Proofs

Proof for Lemma 1:

Proof. The simulation of a marginal value query by is value queries is direct from the definition:
v(j|S) = v(S ∪{j})− v(S). The simulation of a value query S by |S| ≤ m marginal value queries
is given by the equation v(S) =

∑
j∈S v(j|{j′ ∈ S|j′ < j}).

Proof for Lemma 2:

Proof. We will show that demand queries can simulate any marginal value query v(j|S) using t
queries, and then invoke the previous lemma. Set the prices of all the items in S to zero, and
the prices of all other items (except j) to ∞. Then, we perform a binary search on pj to find its
lowest value for which the bidder demands v(S). It is straightforward to see that this price is
indeed the marginal value of item j: at this price, the utilities from the bundles S and S ∪ {j}
are equal, thus v(S)− 0 = v(S ∪ {j})− pj and the claim follows.

A binary search makes t demand queries, and m marginal value queries are needed to simulate
a single value query thus v(S) can be simulated by mt demand queries.

Proof for Lemma 4:

Proof. An indirect-utility query with prices −→p can be answered by first querying for the demand
D under these prices and then simulating the value query v(D).

The following algorithm uses m + 1 indirect-utility queries to simulate a demand query with
some price vector −→p :
Initialization: start with the price vector −→p for which the player answers some utility x.
Repeat: for every item i = 1, ..., m, raise the price of item i by some ε ∈ (0, 1). If the answer to
the indirect-utility query now is other than x, we decrease its price back by ε in all future queries.
If the answer was x, we use the new price for i in all future queries.
Finally: After all the m + 1 indirect-utility queries are done, return the bundle of all items for
which the answer was changed when we increased their prices.

In the algorithm above, if we raised the price of some item i, and the reported maximal-utility
did not change, then there would clearly be utility-maximizing bundles that do not contain i,
thus we can ignore this item. If the maximal-utility changed, then any utility-maximizing bundle
under the current prices clearly contains i, thus we include it in our answer. Leaving the price
of item i (of the first kind) at pi + ε, ensures that any bundle that contains it will not be output
(but we are guaranteed to have other utility-maximizing bundles).

Proof for Lemma 5:

Proof. For any ε > 0, we simulate RD(−→p ) by the following binary search (up to an ε, see below):
Initialization: start with a price vector c−→p (c > 0).
Binary search: find with a binary search the value c∗ ∈ <+ for which the bidder has a non-empty
demand for the price vector c∗ · −→p and the bidder demands the empty set for (c∗ + ε) · −→p .
Finally: return the bundle S demanded under the price vector c∗ · −→p .

Now we show that for the price vector −→p , every other bundle T has a smaller weight than S
(up to ε), i.e.,

v(S)
p(S)

≥ v(T )
p(T )

− ε. (A.1)
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An auction with two (almost) descending trajectories:
Stage 1:

Initialization: set all item prices to L.
Repeat: At each stage, decrease all prices by ε < δ

m2 . When some bidder
i demands some bundle S, provisionally allocate the items in S to i.
Remove the items in S from the auction, and continue similarly without
bidder i until all items are provisionally allocated.

Stage 2:
Initialization: set all item prices to L.
Repeat: At each stage, decrease the price of one item by δ, in a round-robin fashion.
Finally: Compute the valuation of each bidder for the whole bundle M
according to the data collected by this auction (see [7]).
Allocate the whole bundle to the bidder with the highest valuation for it
if it improves the welfare.

Figure 5: This is an item-price demand-query implementation of the approximation algorithm described in
Theorem 1 using two descending-price auctions (in one of them, we remove sold items during the auction).

Denote c∗ = εt for some t ∈ <+. The bundle S was demanded under the prices εt·−→p , therefore
v(S) − εtp(S) ≥ 0. Thus, v(S)

p(S) ≥ εt. Assume that inequality A.1 does not hold, then it follows

that v(T )
p(T ) − ε > εt, or v(T ) > ε(t + 1)p(T ). But for the price vector (c∗ + ε)−→p = ε(t + 1)−→p no

bundle achieved a positive utility. Contradiction.
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