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Abstract.

We consider bounds on the prediction error of classification algorithms based on
sample compression. We refine the notion of a compression scheme to distinguish
permutation and repetition invariant and non-permutation and repetition invariant
compression schemes leading to different prediction error bounds. Also, we extend
known results on compression to the case of non-zero empirical risk.

We provide bounds on the prediction error of classifiers returned by mistake-
driven online learning algorithms by interpreting mistake bounds as bounds on the
size of the respective compression scheme of the algorithm. This leads to a bound on
the prediction error of perceptron solutions that depends on the margin a support
vector machine would achieve on the same training sample.

Furthermore, using the property of compression we derive bounds on the average
prediction error of kernel classifiers in the PAC-Bayesian framework. These bounds
assume a prior measure over the expansion coefficients in the data-dependent kernel
expansion and bound the average prediction error uniformly over subsets of the
space of expansion coefficients.

1. Introduction

Generalization error bounds based on sample compression are a great
example of the intimate relationship between information theory and
learning theory. The general relation between compression and pre-
diction has been expressed in different contexts such as Kolmogorov
complexity (Vitanyi and Li, 1997), minimum description length (Ris-
sanen, 1978), and information theory (Wyner et al., 1992). As was first
pointed out by Littlestone and Warmuth (1986) and later by Floyd and
Warmuth (1995), the prediction error of a classifier A can be bounded in
terms of the number d of examples to which a training sample of size m
can be compressed while still preserving the information necessary for
the learning algorithm to identify the classifier h. Intuitively speaking,
the remaining m — d examples that are not required for training serve
as a test sample on which the classifier is evaluated. Interestingly, the
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compression bounds so derived are among the best bounds in existence
in the sense that they return low values even for moderately large
training sample size. As a consequence, compression arguments have
been put forward as a justification for a number of learning algorithms
including the support vector machine (Cortes and Vapnik, 1995) whose
solution can be reproduced based on the support vectors, that constitute
a subset of the training sample.

Prediction error bounds based on compression stand in contrast to
classical PAC/VC bounds in the sense that PAC/VC bounds assume
the existence of a fixed hypothesis space ‘H (see Cannon et al. (2002)
for a relaxation of this assumption) while compression results are in-
dependent of this assumption and typically work well for algorithms
based on a hypothesis space of infinite VC dimension or even based on
a data-dependent hypothesis space, as is the case, for example, in the
support vector machine. We systematically review the notion of com-
pression as introduced in Littlestone and Warmuth (1986) and Floyd
and Warmuth (1995). In Section 3 we refine the idea of a compression
scheme to distinguish between permutation and repetition invariant
and non permutation and repetition invariant compression schemes,
leading to different prediction error bounds. Moreover, we extend the
known compression results for the zero-error training case to the case
of non-zero training error. Note that the results of both Littlestone and
Warmuth (1986) and Floyd and Warmuth (1995) implicitly contained
this agnostic bound via the notion of side information.

We then review the relation between batch and online learning,
which has been a recurrent theme in learning theory (see Littlestone
(1989) and Cesa-Bianchi et al. (2002)). The results in Section 4 are
based on an interesting relation between online learning and compres-
sion: Mistake-driven online learning algorithm constitute non permu-
tation invariant compression schemes. We exploit this fact to obtain
PAC type bounds on the prediction error of classifiers resulting from
mistake-driven online learning using mistake bounds as bounds on the
size d of compression schemes. In particular, we will reconsider the per-
ceptron algorithm and derive a PAC bound for the resulting classifiers
from a mistake bound involving the margin a support vector machine
would achieve on the same training data. This result went so far largely
unnoticed in the study of margin bounds.

Similarly to PAC/VC results, recent bounds in the PAC-Bayesian
framework (Shawe-Taylor and Williamson, 1997; McAllester, 1998) as-
sume the existence of a fixed hypothesis space H. Given a prior measure
Py over H the PAC-Bayesian framework then provides bounds on the
average prediction error of classifiers drawn from a posterior Py z—, in
terms of the average training error and the KL divergence between prior
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and posterior (McAllester, 1999). Interestingly, tight margin bounds
for linear classifiers were proved in the PAC-Bayesian framework in
Graepel et al. (2000), Herbrich and Graepel (2002) and Langford and
Shawe-Taylor (2003). Heavily borrowing from ideas in the compression
framework, in Section 5 we prove general PAC-Bayesian results for the
case of sparse data-dependent hypothesis spaces such as the class of
kernel classifiers on which the support vector machine is based. Instead
of assuming a prior Py over hypothesis space, we assume a prior P over
the space of coefficients in the kernel expansion. As a result, we obtain
PAC-Bayesian results on the average prediction error of data-dependent
hypotheses.

2. Basic Learning Task and Notation

We consider the problem of binary classification learning, that is, we
aim at modeling the underlying dependency between two sets referred
to as input space X and output space ), which will be jointly referred
to as the input-output space Z according to the following definition:

Definition 1 (Input-Output space). We call
1. X the input space,
2. Y :={-1,+1} the output space, and
3. Z := X x ) the joint input-output space
of the binary classification learning problem.
Learning is based on a training sample z of size m defined as follows:

Definition 2 (Training sample). Given an input-output space Z
and a probability measure Pz thereon we call an m-tuple z € Z™

drawn IID from Pz := Pxvy a training sample of size m. Given z =
((x1,91) -+, (Tm,Ym)) we will call the pairs (z;,y;) training exam-
ples. Also we use the notation * = (z1,...,%,,) and similarly y =
(y17 s 7?/m)

The hypotheses considered in learning are contained in the hypoth-
esis space.

Definition 3 (Hypothesis and hypothesis space). Given an input
space X and an output space ) we define a hypothesis as a function

h:X—Y,
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and a hypothesis space as a subset
HCYY.

A hypothesis space is called a data-dependent hypothesis space if the
set of hypotheses can only be defined for a given training sample and
may change with varying training samples.

A learning algorithm takes a training sample and returns a hypoth-
esis according to the following definition:

Definition 4 (Learning algorithm). Given an input space X and
an output space ) we call a mapping!

A2
a learning algorithm.

In order to assess the quality of solutions to the learning problem,
we use the zero-one loss function.

Definition 5 (Loss function). Given an output space ) we call a
function

[:YxY—R*t
a loss function on ) and we define the zero-one loss function as

N 0 for y =
lo—1 (973/) ::{1 for g#z

Note that this can also be written as lo—1 (9,y) = Ij,, where I is the
indicator function.

A useful measure of success of a given hypothesis h based on a given
loss function [ is its (true) risk defined as follows:

Definition 6 (True risk). Given a loss function [/, a hypothesis space
‘H, and a probability measure Pz the functional R : H — R given by

R[h] := Exy [l (h(X),Y)],

that is, the expectation of the loss, is called the (true) risk on H. Given
a hypothesis h we also call R[h] its prediction error. For the zero-one
loss lp—1 the risk is equal to the probability of error.

The true risk or its average over a subset of hypotheses will be our
main quantity of interest. A useful estimator for the true risk is its
plug-in estimator, the empirical risk.

! Throughout the paper we use the shorthand notation A® := U;-:lAj.
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Definition 7 (Empirical risk). Given a training sample z ~ Pzm, a
loss function [ : Y x ) — R, and an hypothesis h € ‘H we call

12|

> (i), yi)

i=1

A 1
R[h,z| = —

2]
the empirical risk of h on z. An hypothesis h with R [h, z] = 0 is called
consistent with z.

Given these preliminaries we are now in a position to consider bounds
on the true risk of classifiers based on the property of sample compres-
sion.

3. PAC Compression Bounds

In order to relate our new results to the body of existing work, we will
review the unpublished work of Littlestone and Warmuth (1986) and
the seminal paper Floyd and Warmuth (1995). In addition to these two
papers, our introduction of compression schemes carefully distinguishes
between permutation and repetition invariance since it leads to different
bounds on the prediction error. This distinction will become important
when studying online algorithms in Section 4.

3.1. COMPRESSION AND RECONSTRUCTION

In order to be able to bound the prediction error of classifiers in terms of
their sample compression it is necessary to consider particular learning
algorithms instead of particular hypothesis spaces. In contrast to clas-
sical results that constitute bounds on the prediction error which hold
uniformly over all hypotheses in H (PAC/VC framework) or which hold
uniformly over all subsets of H (PAC-Bayesian framework) we are in
the following concerned with bounds on the prediction error which hold
only for those classifiers that result from particular learning algorithms
(see Definition 4). Let us decompose a learning algorithm A into a
compression scheme as follows (Littlestone and Warmuth, 1986).

Theorem 1 (Compression scheme). We define the set Iy, C {1,...,m}

as the set containing all index vectors of size d € N,

Iim = {(z’l,...,id) € {1,...,m}d} .

Given a training sample z € Z™ and an index vector i € Iy, let z; be
the subsequence indexed by i,

zi = (Ziy, -, 2iy) -
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Figure 1. Illustration of the convergence of the kernel classifier based on
class-conditional Parzen window density estimation to the nearest neighbor classifier
in X = [~1,+1]* C R% For ¢ = 5 the decision surface (thin line) is almost linear,
for 0 = 0.4 the curved line (medium line) results, and for very small o = 0.02 the
piecewise linear decision surface (thick line) of nearest neighbor results. For nearest
neighbor only the circled points contribute to the decision surface and form the
compression sample.

We call an algorithm A : Z() — H a compression scheme if and only
if there exists a pair (C,R) of functions C : 20 — U, UT; Iam
(compression function) and R : Z(>) — H (reconstruction function)
such that we have for all training samples z,

A (Z) =R (zC(Z)) .

We call the compression scheme permutation and repetition invariant
if and only if the reconstruction function R is invariant under permu-
tation and repetition of training examples in any training sample z.
The quantity |C (z)] is called the size of the compression scheme.

The definition of a compression scheme is easily illustrated by three
well-known algorithms: the perceptron, the support vector machine
(SVM), and the K-nearest-neighbors (KNN) classifier, which are all
based on the data-dependent hypothesis space of kernel classifiers.
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Definition 8 (Kernel classifiers). Given a training sample z €
(X x V)™ and a kernel function k : X x X — R we define the data-
dependent hypothesis Hy, (x) by

Hy (x) = {ZL‘ — sign (i ik (x;, x))

i=1

aERm} . (1)

1. The (kernel) perceptron algorithm (Rosenblatt, 1962) is a com-
pression scheme that is not permutation and repetition invariant.
Rerunning the perceptron algorithm on a training sample that con-
sists only of those training examples that caused an update in the
previous run leads to the same classifier as before. Permuting the
order of the examples or omitting repeated examples, however, may
lead to a different classifier.

2. The support vector machine (Cortes and Vapnik, 1995) is a per-
mutation and repetition invariant compression scheme. Rerunning
the SVM only on the support vectors leads to the same classifier
regardless of their order because the expansion coefficients in the
optimal solution of the other training examples are zero and the
objective function is invariant under permutation of the training
examples.

3. The K-nearest-neighbors classifier (Cover and Hart, 1967) can be
viewed as a limiting case of kernel classifiers and can be viewed as a
permutation and repetition invariant compression scheme as well:
Delete those training examples that do not change the majority
on any conceivable test input x € &X' (consider Figure 3.1 for an
illustration for the case of K =1).

Note that mere sparsity in the expansion coefficients «; in (1) is not
sufficient for an algorithm to qualify as a compression scheme, but it
is necessary that the hypothesis found can be reconstructed from the
compression sample. The relevance vector machine algorithm presented
in Tipping (2001) is an example of an algorithm that does provide
solutions that are sparse in the expansion coefficients «; without con-
stituting a compression scheme. Based on the concept of compression
let us consider PAC-style bounds on the prediction error of learning
algorithms as described above.
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3.2. THE REALIZABLE CASE

Let us first consider the realizable learning scenario, i.e. for every train-
ing sample z there exists a classifier h such that R[h,z] = 0. Then
we have the following compression bound (note that (2) was already
proven in Littlestone and Warmuth (1986) but will be repeated here
for comparison).

Theorem 2 (PAC compression bound). Let A : Z2(®) — H be a
compression scheme. For any probability measure Pz, any m € N, and
any 6 € (0,1], with probability at least 1 — & over the random draw of
the training sample z € Z™, if R[A(2),2] =0 and d := |C (2)| then

R[A(z)] < ml—d <log (md) + log (m) + log (;)) ,

and, if A is a permutation and repetition invariant compression scheme,

then
R[A(2)] < ml—d (log (?) + log (m) + log (2)) . (2)

Proof. First we bound the probability

Pym (R[A(Z),Z]:O A RIA(Z)] >e A |C(Z)| :d)
<Pzn(Ji€lym: (RIR(Z1),2]=0 A RIR(Z1)] > €))
< > Pz (R[R(Z),Z]=0 A RIR(Z3)] > ¢) . (3)

ie]d,m

The second line follows from the property A(z) = R <ZC(2)> and
the fact that the event in the second line is implied by the event of
the first line. The third line follows from the union bound, Lemma 1
in Appendix A. Each summand in (3)—being a product measure—is
further bounded by

Ezi [Pon-ajzicg, (RIR(20).Z]=0 A R[R(z)] > )| (4)

where we used the fact that correct classification of the whole training
sample z implies correct classification of any subset z C z of it. Since
the m — d remaining training examples are drawn IID from Pz we
can apply the binomial tail bound, Theorem 7 in Appendix A, thus
bounding the probability in (4) by exp (— (m — d)&). The number of
different index vectors i € Iy, is given by m? = |Iy,,| for the case that
‘R is not permutation and repetition invariant and (Zl) in the case that
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R is permutation and repetition invariant. As a result, the probability
in (3) is strictly less than m® exp (— (m — d) €) or (7)) exp (— (m — d)¢),
respectively.

We have with probability at least 1 — d over the random draw of the
training sample z € Z™ that the proposition Ty (z,d) defined by

log (m) +log (1)

RIA(2),2]=0 A [C(2)]=d = R[A(2)] < e

holds true (with m? replaced by (") for the permutation and repetition
invariant case). Finally, we apply the stratification lemma, Lemma 1 in
Appendix A, to the sequence of propositions Yy with Pp (d) = % for
alld € {1,...,m}. O

The bound (2) in Theorem 2 is easily interpreted if we consider the
em

bound on the binomial coefficient, (")) < (% )d, thus obtaining?

RIA(2) < % (dlog (‘?) +1og (m) + log (;)) )

This result should be compared to the simple VC bound (see, e.g., Cris-
tianini and Shawe-Taylor (2000)),

2 2em 2
e(m,dyc,9) = m (dvc logy (dvc> + logy <5)> . (6)

Ignoring constants that are worse in the VC bound, these two bounds
almost look alike. The (data-dependent) number d of examples needed
by the compression scheme replaces the VC dimension dyc := VCdim (H)
of the underlying hypothesis space. Compression bounds can thus pro-
vide bounds on the prediction error of classifiers even if the classifier
is chosen from an hypothesis space H of infinite VC dimension. The
relation between VC bounds and compression schemes—motivated by
equations such as (5) and (6)—is still not fully explored (see Floyd
and Warmuth (1995) and recently Warmuth (2003)). We observe an
interesting analogy between the ghost sample argument in VC theory
(see Herbrich (2001) for an overview) and the use of the remaining m—d
examples from the sample. While the uniform convergence requirement
in VC theory forces us to assume an extra ghost sample to be able to
bound the true risk, the m—d training examples serve the same purpose
in the compression framework: To measure an empirical risk that serves
to bound the true risk.

The second interesting observation about Theorem 2 is that the
bound for a permutation and repetition invariant compression scheme

2 Note that the bound is trivially true for d > ; otherwise L <2

m—d = m"
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is slightly better than its counterpart without this invariance. This
difference can be understood from a coding point of view: It requires
more bits to encode a sequence of indices (where order and repetition
matter) as compared to a set of indices (where order does not matter
and there are no repetitions).

In the proof of the PAC compression bound, Theorem 2, the strat-
ification over the number d of training examples used was carried out
using a uniform (prior) measure Pp (1) = -+ = Pp (m) = L indicating
complete ignorance about the sparseness to be expected. In a PAC-
Bayesian spirit, however, we may choose a more “natural” prior that
expresses our prior belief about the sparseness to be achieved. To this
end we assume that given a training sample z € Z™ the probability
p that any given example z; € z will be in the compression sample
Zc(z) 1s constant and independent of z. This induces a distribution
over d = |C (z)| given for all d € {1,...,m} by

Pp (d) = (i;)pd 1-p)" 7,

for which we have > ;" Pp (i) < 1 as required for the stratification
lemma, Lemma 1 in Appendix A. The value p thus serves as an a-priori
belief about the value of the observed compression coefficient p := %.
This alternative sequence leads to the following bound for permutation
and repetition invariant compression schemes,

RIA(2) <2 (plog (;) +(1-p)log (1;) + %log (;)) G

Note that the term plog (1%) + (1 —p)log (ﬁ) can be interpreted as
the cross entropy between two random variables that are Bernoulli-
distributed with success probabilities p and p, respectively. For an
illustration of how a suitably chosen value p of the expected compres-
sion ratio can decrease the bound value for a given value p of the

compression ratio consider Figure 3.2.

3.3. THE UNREALIZABLE CASE

The previous compression bound indicates an interesting relation be-
tween PAC/VC theory and data compression. Of course, data compres-
sion schemes come in two flavors, lossy and non-lossy. Thus it comes
as no surprise that we can derive bounds on the prediction error of
compression schemes also for the unrealisable case with non-zero em-
pirical risk (Graepel et al., 2000). Note that these results are implicitly
contained in Floyd and Warmuth (1995) where the authors consider the
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Figure 2. Dependency of the PAC-Bayesian compression bound (7) on the expected
value p and the observed value p of the compression coefficient. For increasing values

p= % the optimal choice of the expected compression ratio p increases as indicated
by the shifted minima of the family of curves (m = 1000, § = 0.05).

more general scenario that the reconstruction function R also gets r
bits of side-information.

Theorem 3 (Lossy compression bound). Let A : 2™ — H be a
compression scheme. For any probability measure Pz, any m € N, and
any 6 € (0,1], with probability at least 1 — & over the random draw of
the training sample z € Z™, if d = |C (z)| the prediction error of A(z)
is bounded from above by

log (m) +2log (m) + log (1)
2(m —d) 7

m

R[A(2)] < R[A(z),2] +

m—d

and, if A is a permutation and repetition invariant compression scheme,
then by

log (")) + 2log (m) + log (%)
2(m—d)
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Proof. Fixing the number of training errors ¢ € {1,...,m} and |C (2)]
we bound—in analogy to the proof of Theorem 2—the probability

Py (R[A(Z),Z] <L N RIA@) > A |C(Z)]:d>
<Y Py <R[R(Zi),2]§

iEId’m

T RIR (2 >e> (8

We have that m - R[A(2),z] < q implies (m —d)- R[A(z), z] < ¢ for
allie€ I, 4 andi:={1,...,m}\1ileading to an upper bound,

m —

Exs [Ponsjpics, (RIRG0.Z < =2 A RIRG)><)] L (9)

on the probability in (8). From Hoeffding’s inequality, Theorem 8 in
Appendix A, we know for a given sample z; that the probability in (9)

is bounded by
g \2
exp<—2(m—d) <€_m—d> ) .

The number of different index vectors i € I, is again given by m? for
the case that R is not permutation and repetition invariant and (ZZ) in
the case that R is permutation and repetition invariant.

Thus we have with probability at least 1 — § over the random draw
of the training sample z € Z™ for all compression schemes A and
maximal number of training errors ¢ that the proposition Y4, (2,06)
given by

RIA(z),21< 2L A [C(2) =d
=
RIA(2) < g+ el thsld)

holds true (with m? replaced by (ZL) for the permutation invariant case).
Finally, we apply the stratification lemma, Lemma 1 in Appendix A,
to the sequence of propositions YT, with Ppq ((d,q)) = m™2 for all

(d,q) € {1,...,m}> O

The above theorem is proved using a simple combination of Ho-
effding’s inequality and a double stratification about the number d of
non-zero coefficients and the number of empirical errors, q. From an
information theoretic point of view the first term of the right hand side
of the inequalities represents the number of bits required to explicitly
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transfer the labels of the misclassified examples—this establishes the
link to the more general results of Floyd and Warmuth (1995). Note
also that Marchand and Shawe-Taylor (2001) prove a similar result to
Theorem 3, avoiding the square root in the bound at the cost of a less
straight-forward argument and worse constants.

4. PAC Bounds for Online Learning

In this section we will review the relation between PAC bounds and
mistake bounds for online learning algorithms. This relation has been
studied before and Theorem 4 is a direct consequence of Theorem 3 in
Floyd and Warmuth (1995).

In light of the relationship, we will reconsider the perceptron al-
gorithm and derive a PAC bound for the resulting classifiers from a
mistake bound involving the margin a support vector machine would
achieve on the same training data. We will argue that a large potential
margin is sufficient to obtain good bounds on the prediction error of all
the classifiers found by the perceptron on permuted training sequences
zj. Although this result is a straightforward application of Theorem 4
it went unnoticed and is, so far, missing in any comparative study of
margin bounds—which form the theoretical basis of all margin based
algorithms including the support vector machine algorithm.

4.1. ONLINE-LEARNING AND MISTAKE BOUNDS

In order to be able to discuss the perceptron convergence theorem and
the relation between mistake bounds and PAC bounds in more depth
let us introduce formally the notion of an online algorithm (Littlestone,

1988).

Definition 9 (Online learning algorithm). Consider an update
function U : Z x H — 'H and an initial hypothesis hg € H. An online
learning algorithm is a function A : Z() x [J%_, {1,...,m}(°°) X
‘H — H that takes a training sample z € Z™, a training sequence j €
- {1, ,m}(oo), and an initial hypothesis hy € H, and produces
the final hypothesis Ay (z) := hy;| of the |j|-fold recursion of the update
function U,
hi =U (ij hifl) .
Mistake-driven learning algorithms are a particular class of online

algorithms that only change their current hypothesis if it causes an
error on the current training example.
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Definition 10 (Mistake-driven learning algorithm). An online
algorithm Ay, is called mistake-driven if the update function satisfies
for all z € X, for all y € Y, and for all h € H that

y=h(z) = U(zy),h)=h.

In the PAC framework we focus on the error of the final hypoth-
esis A (z) an algorithm produces after considering the whole training
sample z. In the analysis of online-algorithms one takes a slightly dif-
ferent view: The number of updates until convergence is considered the
quantity of interest.

Definition 11 (Mistake bound). Consider an hypothesis space H, a
training sample z € Z™ labeled by a hypothesis h € ‘H and a sequence
j € {1,...,m}(oo). Denote by j C j the sequence of mistakes, i.e.,
the subsequence of j containing the indices j; € {1,...,m} for which
hi—1 # h;. We call a function M, : Z() 4 N a mistake bound for the
online algorithm Ay, if it bounds the number |j| of mistakes A;; makes
onzeZm 3
|j| < ML{ ’

for any ordering j € {1, ... 7m}(oo).

In a sense, this is a very practical measure of error assuming that a
learning machine is learning “on the job”.

4.2. FROM ONLINE TO BATCH LEARNING

Interestingly, we can relate any mistake bound for a mistake-driven
algorithm to a PAC style bound on the prediction error:

Theorem 4 (Mistake bound to PAC bound). Consider a mistake-
driven online learning algorithm Ay for ‘H with a mistake bound My, :
Z(®) — N. For any probability measure Pz, any m € N, and any
d € (0,1], with probability at least 1 — 0 over the random draw of the
training sample z € Z™ we have that the true risk R[Ay (z)] of the
hypothesis Ay (z) is bounded from above by

R (2)) < o (M (2) + Dlog (m) +10g (5) ) . (10)
Proof. The proof is based on the fact that a mistake-driven algorithm
constitutes a (non permutation and repetition invariant) compression
scheme. Assume we run A;; twice on the same training sample z and
training sequence j. From the first run we obtain the sequence of
mistakes j. Thus we have for the compression function C,

(Z(Zj):::j.
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Running A;; only on z; then leads to the same hypothesis as before,

Au (2,5) = Au ()

showing that the reconstruction function R is given by the algorithm
Ay itself. The compression scheme is in general not permutation and
repetition invariant because A;; and hence R is not. We can thus apply

Theorem 2, where we bound d from above by M;; and use ﬁ < %

for all d < 7. ]

Let us consider two examples for the application of this theorem.
The first example illustrates the relation between PAC/VC theory and
the mistake bound framework:

Example 1 (Halving algorithm). For finite hypothesis spaces H,
|H| < o0, the so-called halving algorithm A, (Littlestone, 1988) achieves
a minimal mistake bound of

My, (z) = [logy ([H[)] .
The algorithm proceeds as follows:
1. Initialize the set Vy := H and t = 0.

2. For a given input x; € X predict the class g; € V that receives the
majority of votes from classifiers h € V;,

ji = argmax [{h € V; : h(2;) = y}| .
yey

3. If a mistake occurs, that is y; # ¢;, all classifiers h € V; that are
inconsistent with z; are removed,

Vier = Vi\{h € Vi h(zi) # ui} -

4. If no more mistakes occur, return any classifier h € V;; otherwise
goto 2.

Plugging the value M1, (2) into the bound (10) gives

R [Ay, ()] < - ( (o, (D] + 1)log (m) + 1og (5 ) )

which holds uniformly over version space Vj; and up to a factor of
2log (m) recovers what is known as the cardinality bound in PAC/VC
theory.
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The second example provides a surprising way of proving bounds for
linear classifiers based on the well-known margin v by a combination
of mistake bounds and compression bounds:

Example 2 (Perceptron algorithm). The perceptron algorithm
Aperc is possibly the best-known mistake-driven online algorithm (Rosen-
blatt, 1962). The perceptron convergence theorem provides a mistake
bound for the perceptron algorithm given by

with ¢2 (z) := max,,ex ||7;] being the data radius® and

7" (2) ;== max min y; (zi,w) / [lwl],
W (z4,yi)€2

being the maximum margin that can be achieved on z. Plugging the

value Mpere (2) into the bound (10) gives

R [Aperc (2)] < % (((;(ZCZ)))Q + 1) log (m) + log (;)) )

This result bounds the prediction error of any solution found by the
perceptron algorithm in terms of the quantity ¢ (x)/v* (2z), that is,
in terms of the margin +* (z) a support vector machine (SVM) would
achieve on the same data sample z. Remarkably, the above bound gives
lower values than typical margin bounds (Vapnik, 1998; Bartlett and
Shawe-Taylor, 1998; Shawe-Taylor et al., 1998) for classifiers w in
terms of their individual margins v (w, z) that have been put forward
as justifications of large margin algorithms. As a consequence, when-
ever the SVM appears to be theoretically justified by a large observed
margin v* (z), every solution found by the perceptron algorithm has a
small guaranteed prediction error—mostly bounded more tightly than
current bounds on the prediction error of SVMs.

5. PAC-Bayesian Compression Bounds

In the proofs of the compression results, Theorem 2 and Theorem 3,
we made use of the fact that m — d of the m training examples had
not been used for constructing the classifier and could thus be used to
bound the true risk with high probability. In this section, we will make

3 Note that in this example we assume z; € RY and w € RY.
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use of similar arguments in order to deal with data-dependent hypoth-
esis spaces such as those parameterized by «a in kernel classifiers. This
function class constitutes the basis of support vector machines, Bayes
point machines, and other kernel classifiers (see Herbrich (2001) for
an overview). Note that our results neither rely on the kernel function
k to be positive definite or even symmetric nor is is relevant which
algorithm is used to construct the final kernel classifiers. For example,
these bounds also apply to kernel classifiers learned with the relevance
vector machine. Obviously, typical VC results cannot be applied to this
type of data-dependent hypothesis class, because the hypothesis class
is not fixed in advance. Hence, its complexity cannot be determined
before learning®. In this section we will proceed similarly to McAllester
(1998): First we prove a PAC-Bayesian “folk” theorem, then we proceed
with a PAC-Bayesian subset bound.

5.1. THE PAC-BAYESIAN FOLK THEOREM FOR DATA-DEPENDENT
HYPOTHESES

Suppose instead of a PAC-Bayesian prior Py over a fixed hypothesis
space we define a prior Pa over the sequence a of expansion coefficients
a; in (1). Relying on a sparse representation with |||, < m we can
then prove the following theorem:

Theorem 5 (PAC-Bayesian bound for single data-dependent
classifiers). For any prior probability distribution Pa on a countable
subset A C R™ satisfying Pa () > 0 for all o € A, for any probability
measure Pz, any m € N, and for all § € (0, 1] we have with probability
at least 1 — & over the random draw of the training sample z € Z™

that for any hypothesis h( x) € Hy (x) the prediction error R {h( 7X)]
is bounded by

]y (o (k) )

Proof. First we show that the proposition T (z,||a|y,0),

~ ! 5
T (= llallg.8):= | R[h( w.2] =0 = R[h( w] < m ’

(11)

4 A fixed hypothesis space is a pre-requisite in the VC analysis because it appeals
to the union bound over all hypotheses which are distinguishable by their predictions
on a double sample (see Herbrich (2001) for more details).
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holds for all & € A with probability at least 1—§ over the random draw
of z€ Z™. Let i€ Iym, d:= |, be the index vector with entries at
which a; # 0. Then we have for all & € A that

Pzm (R [h( 7)(),Z} =0AR {h( 7x)} > 6)
< Pzm (R [h( ’xi),Z} =0AR [h( 7)(i)] > E)

~

< Ezd {sz*d‘zd:zi (R {h( 7Xi),Z] =0 A R [h( 7Xi)i| > 6)]
<(1—e)"% <exp(—e(m—d)) .

The key is that the classifier b ) does not change over the random
draw of the m — d examples not used in its expansion. Finally, apply
the stratification lemma, Lemma 1 in Appendix A, to the proposition
T (2, |aly,06) with Pa (c). O

Obviously, replacing the binomial tail bound with Hoeffding’s in-
equality, Theorem 8, allows us to derive a result for the unrealisable
case with non-zero empirical risk. This bound then reads

A log (#) + log (m)
Rl 0] = g R ) N 2ol

Remark 1. Note that both these results are not direct consequences of
Theorem 2 and 3 since in these new results the bound depends on both
the sparsity |||, and the prior Pa () of the particular hypothesis
h( x) as opposed to only the sparsity d of the compression scheme
that produced h in Theorem 2 and 3. Note that any prior Pa over
a finite subset of a’s is effectively encoding a prior over infinitely
many hypotheses {h( x) |z € X Pa(ar) > 0}. It is not possible to

incorporate such a prior into both Theorem 2 or 3 using the union
bound.

Example 3 (1-norm soft margin perceptron). Suppose we run the
(kernel) perceptron algorithm with box-constraints 0 < a; < C' (see,
e.g., Herbrich (2001)) and obtain a classifier h( ) with d non-zero
coefficients «;. For a prior
1
Pa (o) := (12)
m(;"),) 2C + Dl o

over the set {&d € R™ |a € {-C,...,0,...,C}"™} we get the bound

. log (") 4 dlog (2C 4 1) + log (™
R[h( x| gmfde[h( ’X)MJ og () + Ozg(m_d) og((s)’
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which yields lower values than the compression bound, Theorem 3,
for non-permutation and repetition invariant compression schemes if
(2C' +1) < d. This can be seen by bounding log (d!) by dlog(d) in
Theorem 3 using Stirling’s formula, Theorem 10 in Appendix A.

5.2. THE PAC-BAYESIAN SUBSET BOUND FOR DATA-DEPENDENT
HYPOTHESES

Let us now consider a PAC-Bayesian subset bound for the data-dependent
hypothesis space of kernel classifiers (1). In order to make the re-
sult more digestible we consider it for a fixed number d of non-zero
coeflicients.

Theorem 6 (PAC-Bayesian bound for subsets of data-dependent
classifiers). For any prior probability distribution Pa, for any prob-
ability measure Pz, for any m € N, for any d € {1,...,m}, and for
all 6 € (0,1] we have with probability at least 1 — 6 over the random
draw of the training sample z € Z™ that for any subset A, Pa (A) > 0,
with constant sparsity d and zero empirical risk, Voo € A : ||y =

dAR {h( x) (z)} = 0, the average prediction error Epjaca [R {h(A’X)H
is bounded by

log (PAI(A)) + 2log (m) + log (%) +1

Eajaca [R |:h(A7X):|:| < m—d

Proof. Using the fact that the loss function lg—; is bounded from above
by 1, we decompose the expectation at some point € € R by

Eajaca [R [h(A,x)H <
e-Pamea (B [hax)] <) +1-Panca (B [hiax] > ) (13)

As in the proof of Theorem 5 we have that for all « € A and for all
d € (0,1],

Pznja= (Y (Z,d,0)) >1-9,
where the proposition T (z,d,0) is given by (11). By the quantifier
reversal lemma, Lemma 2 in Appendix A, this implies that for all 3 €
(0, 1) with probability at least 1—¢ over the random draw of the training
sample z € Z™ for all v € (0, 1],

PA\Zm:z (“T/_\ (Z,d, (’yﬂ(S)ﬁ)) < v
Pajzm=; (R [h(A,x),z} =0AR [h(A,x)} > s(y,ﬁ)) <
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with
1
log (575)
(I=p)(m—d)
Since the distribution over « is by assumption a prior and thus inde-
pendent of the data, we have Pajzm—, = Pa and hence

£(v,B) =

Pa (A €cAAR [h(A,X)] > (v, ﬂ))
Pa (4)

Pajaca {R [h(A,x)] >e (%ﬁ)} =

< Y
~ Pa(4)
because by assumption o € A implies R [h( X)> z} = 0. Now choosing

v = Pal4) 4nd B = L we obtain from (13)

m m

Eajaca [R [h(A,X)H < e(h) <1 ; PAV(A)) - PA’y(A)

log ( oty ) + 2log (m) + log (§) 1
m—d

5|

< ﬁ completes the proof. O

Exploiting that %
Again, replacing the binomial tail bound with Hoeffding’s inequality,
Theorem 8, allows us to derive a result for the unrealisable case with

non-zero empirical risk.

Example 4 (1-norm soft margin permutational perceptron sam-
pling). Continuing the discussion of Example 3 with the same prior
distribution (12) consider the following procedure: Learn a l-norm
soft margin perceptron with box constraints 0 < «; < C for all 7 €
{1,...,m} and assume linear separability. Permute the compression
sample z;_, and retrain to obtain an ensemble A := {a,...,an} of N
different coefficient vectors a;;. Then the PAC-Bayesian subset bound
for data dependent hypotheses, Theorem 6, bounds the average predic-
tion error of the ensemble of classifiers {h( x) € A} corresponding
to the ensemble A of coefficient vectors.

6. Conclusions

We derived various bounds on the prediction error of sparse classifiers
based on the idea of sample compression. Essentially, the results rely on
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the fact that a classifier h( ) resulting from a compression scheme (of
size d) is independent of the random draw of m — d training examples,
which—if classified with low or zero empirical risk by h( x)—serve to
ensure a low prediction error with high probability.

Our results in Section 4 relied on an interpretation of mistake-driven
online learning algorithms as compression schemes. The mistake bound
was then used as an upper bound on the size of the compression sample
and thus lead to bounds on the prediction error of the final hypothesis
returned by the algorithm. This procedure emphasizes the conceptual
difference between our results and typical PAC/VC results: PAC/VC
theory makes statements about uniform convergence within particular
hypothesis classes H. In contrast, compression results rely on assump-
tions about particular learning algorithms A. This idea (which is carried
further in Herbrich and Williamson (2002)) is promising in that it leads
to bounds on the prediction error that are closer to the observed values
and that take into account the actual learning algorithm used.

We extended the PAC-Bayesian results of McAllester (1998) to data-
dependent hypotheses that are represented as linear expansions in terms
of training inputs. The theorems are thus applicable to the class of
kernel classifiers as defined in Definition 8, ranging from support vector
to K-nearest-neighbors classifiers. Empirically, the bounds given yield
rather low bound values and have low constants in comparison to VC
bounds or bounds based on the observed margin. In summary, they
are widely applicable and rather tight. The formulation of a prior over
expansion coefficients a that parameterize data-dependent hypotheses
appears rather unusual. No contradiction, however, arises because the
prior cannot be used to “cheat” by adjusting it in such a way as to
manipulate the bound values. The reason is that the expansion (1) does
not contain the labels y;. Instead the prior serves to incorporate a-priori
knowledge about the representation of classifiers in terms of training
inputs. Of course, there exist many non-sparse classifiers with a low
prediction error as well. It remains a challenging open question how
we can formulate and prove PAC-Bayesian bounds for data-dependent
hypotheses that are dense, i.e., that have few or no non-zero coefficients.
Note that the PAC-Bayesian results in Langford and Shawe-Taylor
(2003) only apply to a fixed hypothesis space by the assumption of
a positive definite and symmetric kernel ensuring a fixed feature space.
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Appendix
A. Basic Results

As a service to the reader we provide some basic results in the appendix
for reference. Proofs using a rigorous and unified notation consistent
with this paper can be found in Herbrich (2001).

A.1. TaIiL BouNnDs

At several points we require bounds on the probability mass in the tails
of distributions. Assuming the zero-one loss, the simplest such bound
is the binomial tail bound.

Theorem 7 (Binomial tail bound). Let Xy,..., X, be independent
random variables distributed Bernoulli (1). Then we have that

Pxn (Z X; = 0) — (1 — )™ < exp (—np) .
=1

For the case of non-zero empirical risk, we use Hoeffding’s inequal-
ity (Hoeffding, 1963) that bounds the deviation between mean and
expectation for bounded IID random variables.

Theorem 8 (Hoeffding’s inequality). Given n independent bounded
random variables Xq, ..., X, such that for all i Px, (X; € [a,b]) = 1,
then we have for all e > 0

n n 2
Pxn (:l ZXZ — Ex [X] > 6) < exp (—(;}) .

=1 -

A.2. BINOMIAL COEFFICIENT AND FACTORIAL

For bounding combinatorial quantities the following two results are
useful.

Theorem 9 (Bound on binomial coefficient). For all m,d € N

with m > d we have
m em
< -
log(d> _dlog( d)

Theorem 10 (Simple Stirling’s approximation). For all n € N
we have
n (log(n) — 1) < log (n!) < nlog (n)
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A.3. STRATIFICATION

In order to be able to make probabilistic statements uniformly over a
given set we use a generalization of the so-called union bound, which
we refer to as the stratification or multiple testing lemma.

Lemma 1 (Stratification). Suppose we are given a set {Y1,..., s}
of s measurable logic formulae T : 2™ x (0,1] — {true, false} and a
discrete probability measure Py over the sample space {1,...,s}. Let us

assume that
Vie{l,...,s}:VmeN:Vée (0,1]: Pzm (Y;(Z,0)) >1-9.
Then, for all m € N and ¢ € (0,1],

Pzm </\ Y:(Z,6P (1))) >1-34.

=1

A.4. QUANTIFIER REVERSAL

The quantifier reversal lemma is an important building block for some
PAC-Bayesian theorems (McAllester, 1998).

Lemma 2 (Quantifier reversal). Let X and Y be random variables
with associated probability spaces (X,X,Px) and (),Y,Py), respec-
tiely, and let § € (0,1]. Let T : X x Y x (0,1] — {true, false} be
any measurable formula such that for any x and y we have

{6 €(0,1]| T (2,y,9) } = (0, dmax]
for some dmax € (0,1]. If
Vee X: Ve (O, 1] : PY\X:J; (T(IE,Y,(S)) >1 —5,

then for any B € (0,1) we have Yo € (0,1] that

Py (Ya € (0,1]: Pyy—, (T (X5, (aﬁa)ﬁ)) >1-0a)>1-4.
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