Synthesis Revisited: Generating Statechart
Models from Scenario-Based Requirements *

David Harel, Hillel Kugler and Amir Pnueli

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel
{dharel,kugler,amir}Qwisdom.weizmann.ac.il

Abstract. Constructing a program from a specification is a long-known
general and fundamental problem. Besides its theoretical interest, this
question also has practical implications, since finding good synthesis al-
gorithms could bring about a major improvement in the reliable devel-
opment of complex systems. In this paper we describe a methodology for
synthesizing statechart models from scenario-based requirements. The re-
quirements are given in the language of live sequence charts (LSCs), and
may be played in directly from the GUI, and the resulting statecharts are
of the object-oriented variant, as adopted in the UML. We have imple-
mented our algorithms as part of the Play-Engine tool and the generated
statechart model can then be executed using existing UML case tools.

1 Introduction

Constructing a program from a specification is a long-known general and funda-
mental problem. Besides its theoretical interest, this question also has practical
implications, since finding good synthesis algorithms could bring about a major
improvement in the reliable development of complex systems.

Scenario-based inter-object specifications (e.g., via live sequence charts) and
state-based intra-object specifications (e.g., via statecharts) are two complemen-
tary ways to specify behavioral requirements. In our synthesis approach we aim
to relate these different styles for specifying requirements. In [10] the first two
coauthors of this paper suggested a synthesis approach using the scenario-based
language of live sequence charts (LSCs) [7] as requirements, and synthesizing a
state-based object system composed of a collection of finite state machines or
statecharts. The main motivation for suggesting the use of LSCs as a require-
ment language in [10] is its enhanced expressive power. LSCs are an extension of
message sequence charts (MSCs; or their UML variant, sequence diagrams) for
rich inter-object specification. One of the main additions in LSCs is the notion
of universal charts and hot, mandatory behavior, which, among other things,
enables one to specify forbidden scenarios. Synthesis is considerably harder for

* This research was supported in part by the John von Neumann Minerva Center for
the Verification of Reactive Systems, by the European Commission project OMEGA
(IST-2001-33522) and by the Israel Science Foundation (grant No. 287/02-1).

LSCs than for MSCs, and is tackled in [10] by defining consistency, showing
that an entire LSC specification is consistent iff it is satisfiable by a state-based
object system. A satisfying system is then synthesized.

There are several issues that have prevented the approach described in [10]
from becoming a practical approach for developing complex reactive systems. A
major obstacle is the high computational complexity of the synthesis algorithms,
that does not allow scaling of the approach to large systems. Additional problems
are more methodological, related to the level of detail required in the scenarios to
allow meaningful synthesis, the problem of ensuring that the LSC requirements
are exactly what the user intended, and a lack of tool support and integration
with existing development approaches.

In this paper we revisit the idea of synthesizing statecharts from LSCs, with
an aim of addressing the limitations of [10] mentioned above. Our approach ben-
efits from the advances in research made since the publication of [10] — mainly
the play-in/play-out approach [13], which supplies convenient ways to capture
scenarios and execute them directly, and our previous work on smart play-out
[11], which allows direct execution and analysis of LSCs using powerful verifica-
tion techniques. We suggest a synthesis methodology that is not fully automatic
but rather relies on user interaction and expertise to allow more efficient syn-
thesis algorithms. One of the main principles we apply is that the specifier of
the requirements provide enough detail and knowledge of the design to make
the job easier for the synthesis algorithm. The algorithm tries to prove, using
verification methods, that a certain synthesized model satisfies all requirements;
if it manages to do so, it can safely synthesize the model. We have developed
a prototype statechart synthesis environment, that receives as input LSCs from
the Play-Engine tool [13] and generates a statechart model that can then be
executed by RHAPSODY [15], and in principle also by other UML tools, see e.g.,
(24, 27].

The paper is organized as follows. Section 2 describes the main challenges in
synthesizing statecharts from scenarios and the main principles we adopt to ad-
dress them. Section 3 shows how to relate the object model of LSCs as supported
by the Play-Engine tool with standard UML object models, and describes how
this is supported by our prototype tool. Section 4 addresses the notion of con-
sistency of LSCs and introduces a game view for synthesizing reactive systems.
Section 5 describes our approach to statechart synthesis, while Section 6 explains
the actual statechart synthesis using an example of a cellular phone system. We
conclude with a discussion of related work in Section 7.

2 Main challenges in synthesis

In this section we discuss some of the main challenges that need to be addressed
in order to make a method for synthesizing statechart models from scenarios
successful. The challenges are of different nature, varying from finding a scenario-
based language that is powerful and easy for engineers to learn, to dealing with

the inherent computational complexity of synthesis algorithms that must handle
large complex systems.

2.1 Appropriate scenario-based language

An important usage of scenario notations is for communicating ideas and for
documentation. For such purposes sketching an inter-object scenario on a black-
board or diagram editor can be very helpful. When our goal is synthesizing a
statechart model and eventually production code from the scenarios, we need
a powerful and expressive inter-object scenario-based language with rigorously
defined semantics. The language should still retain the simplicity and intuitive
feel that made scenario-based languages popular among engineers. In our ap-
proach we use the language of live sequence charts (LSCs) introduced in [7].
LSCs extends classical message sequence charts, which have very limited expres-
sive power. Among other things, LSCs distinguish between behaviors that may
happen in the system (existential) from those that must happen (universal).
An example of a universal chart appears in Fig. 1. A universal chart contains
a prechart (dashed hexagon), which specifies the scenario which, if successfully
executed, forces the system to satisfy the scenario given in the actual chart body.
For more details on LSCs see [7,13,14].

% | = | | Key | ‘ SEND ‘ | Chip | Memary {E\D@B
A
/ Lok | o
< Lol G i \
_____ TSN SO SR /
\ oy
F\ameveNumharﬁ,]

Mum := Memory. Mumber
3 Send]tum

::I Fieceive(Sianal
— i —
< Slgna\;ELISY ;

Fig. 1. Example of a universal LSC

2.2 Sufficiently detailed scenario-based specification

Specifying requirements of a system is a very difficult task, which must be car-
ried out in a careful and accurate manner. For this reason, it may be claimed
that requirements in general, and scenario-based ones in particular, will only

be partial and will focus on certain important properties and concepts of the
system. According to this argument it is not possible to beneficially apply a
synthesis approach for deriving a system implementation since the requirement
model provides insufficient details.

We attempt to overcome this challenge by using the play-in/play-out ap-
proach introduced in [13,14]. In play-in the user starts with a graphical rep-
resentation of the system and specifies various scenarios by interacting with
the GUI and demonstrating the required behavior. As this is being done, the
Play-Engine tool constructs the LSC that captures what was played in. Play-in
enables non-technical stake holders to participate in the requirement elucidation
phase, and to contribute to building a detailed scenario model. Our experience
in several projects [12] shows that the play-in/play-out approach enhanced to
a large extent the efficiency of this process and allowed building rich and de-
tailed scenario-based requirements, which can serve as a solid starting point for
synthesis algorithms.

2.3 Correct scenarios

As mentioned earlier, specifying requirements is a difficult job, and the user must
be sure that the property specified is exactly what is intended. In the context of
formal verification, many times when verifying a system with respect to a speci-
fied property the result shows that the system does not satisfy the property, and
then the user realizes that the property specified was not exactly the intended
one and refines it. In a synthesis approach the requirements themselves must be
accurate, otherwise even if the synthesis algorithms work perfectly the obtained
system will not be what was actually intended.

We try to address this challenge in several complementary ways. First, the re-
quirement language of LSCs, being an extension of classical MSCs, has intuitive
semantics, and allows users who are not very technical to express complex behav-
ioral requirements, while other formalisms, e.g., temporal logic, may prove to be
trickier even for advanced users. Second, play-out, the complementary process
to play-in, allows one to execute the LSCs directly, giving a feeling of working
with an executable system. This makes it possible to debug the requirements
specification and gain more confidence that what is specified is exactly what is
required.

2.4 The complexity of synthesis algorithms

Solving the problem of synthesis for open reactive systems is an inherently diffi-
cult problem. In various settings the problem is undecidable, and even in more
restricted settings when it is becomes decidable, the time and space requirements
of the synthesis algorithm may be too large to be practical for large systems.
One way we attack this problem is by applying methods from formal veri-
fication, in ways that will be discussed below. We have in mind mainly model-
checking algorithms, which in recent years — due to intensive research efforts
and tool development — have scaled nicely in terms of the size of the models

they can handle. Nevertheless, the models that can be treated even using state
of the art technologies are still limited in size and much more work is needed
here to make synthesis a practical approach.

In our current work, one of the main principles we apply is that the specifier
of the requirements provide enough detail and knowledge of the design to make
the job easier for the synthesis algorithm. The algorithm tries to prove that a
certain synthesized model satisfies all requirements; if it manages to do that it
can safely synthesize the model. This approach is not complete, since some other
model may be correct and the synthesis algorithm will fail to find it. However,
our hope is that for many interesting cases the synthesis will succeed.

2.5 Integration with existing code and System modification

In order to make a new system development approach practical, an important
requirement is that it should fit in nicely with other existing approaches. In our
context of designing complex embedded software, the synthesized statechart-
based model may need to interact with other software that was developed in
other diverse ways. By synthesizing into a UML-based framework, we attempt
to address this issue and thus to take advantage of the integration capabilities
of existing commercial UML tools.

Related to this issue is the recent work on InterPlay [3]. InterPlay is a simu-
lation engine coordinator that supports cooperation and interaction of multiple
simulation and execution tools. It makes it possible to connect several Play-
Engines to each other, and also to connect a statechart-based executable model
in RHAPSODY to the Play-Engine. A model synthesized using algorithms de-
scribed in this paper can thus be linked to the Play-Engine, allowing the sce-
narios to be monitored as they occur. It also supports an environment in which
some subsystems run a statechart or code-based model and others execute LSCs
directly, say, by play-out.

3 Transferring the Structure

Scenario-based inter-object specifications (via LSCs) and state-based intra-object
specifications (via statecharts) are two complementary ways for specifying be-
havioral requirements. In our synthesis approach we aim to relate these different
styles for specifying requirements.

According to the play-in/play-out approach the user specifies behavioral re-
quirements by playing on a GUI representation of the system, as this is being
done the Play-Engine automatically constructs corresponding requirements in
LSCs.

3.1 The Play-Engine object model

We now introduce the object model used by the Play-Engine, which is the basis
for the LSC specifications. We later explain how this object model is related

to standard UML models, allowing our prototype tool to connect to models in
existing UML tools, and allowing to synthesize statechart-based UML models.
For a detailed explanation of the Play-Engine framework and object model see
[13,14].

An object system Sys is defined as

Sys = (D,C,0,F)

where D is the set of application types (domains), C is the set of classes, O is
the set of objects, F is the set of externally implemented functions. We refer to
the user of the system as User and to the external environment as Env.

A type D € D is simply a (finite) set of values. The basic types supported
are range, enumeration and string.

A class C'is defined as:
C = (Name, P, M)

where Name is the class name, P is the set of class properties and M is the set
of class methods.
An object O is defined as:

O = (Name, C, PV, External)

where Name is the object’s name, C is its class, PV : C.P — |J; D; is a func-
tion assigning a value to each of the object’s properties and External indicates
whether the object is an external object. We define the function class : O — C
to map each object to the class it is an instance of. We also use Value(O.P) =
O.PV(0O.C.P) to denote the current value of property P in object O.

An object property P is defined as

P = (Name, D, InOnly, ExtChg, Affects, Sync)

where Name is the property name and D is the type it is based on. InOnly €
{True, False} indicates whether the property can be changed only by the user,
ExtChg € {True, False} indicates whether the property can be changed by
the external environment, Affects € { User, Env, Self} indicates the instance to
which the message arrow is directed when the property is changed by the system,
and Sync € {True, False} indicates whether the property is synchronous.

An object method M is defined as:

M = (Name(D1, Da, ..., D,), Sync)

where Name is the method name, D; € D is the type of its i*" formal pa-
rameter and Sync € {True, False} indicates whether calling this method is a
synchronous operation.

An implemented function is defined as:

Func= Name: D1 X Dy x ..., XD, — Dp

where Name is the function name, D; € D is the type of its i*" formal parameter
and D € D is the type of its returned value.

3.2 Importing a UML model into the Play-Engine

The usual work-flow in the play-in/play-out approach as supported by the Play-
Engine is that the user starts by building a GUI representation and the corre-
sponding object model. As part of our current work we support an alternative
starting point, in which a UML model is imported into the Play-Engine, (say,
from RHAPSODY), and can then be used while specifying the behavior using
LSCs and the play-in process. This shows the relation between the Play-Engine
object model and a standard UML model, and also from the more practical point
of view it provides an easy link to models developed in existing UML tools and
a good starting point for applying our synthesis approach.

The import procedure is quite straightforward, we describe here only its gen-
eral principles. Types in the UML model are converted to Play-Engine types, as
defined in the previous section. Currently the Play-Engine supports only simple
type definitions — range, enumeration and string. A type that cannot be defined
in terms of these basic type definitions is declared as EngineVariant, the de-
fault Play-Engine type. The Play-Engine currently does not support packages,
the UML construct for grouping classes, so that when importing UML classes
they all appear in a flat structure. UML attributes are mapped to Play-Engine
properties, preserving their corresponding type. For each UML class, the opera-
tions are imported as Play-Engine methods, with the arguments preserving their
corresponding types.

Instances in the UML model are defined as internal objects, preserving their
base class. In the Play-Engine, internal objects are visualized using something
resembling class diagrams, and play-in is supported by clicking and manipulat-
ing this kind of diagram in a convenient way. This allows rapid development of
requirements without a need to construct a GUI. Building a GUI has many ben-
efits in terms of visualizing the behavior, but as a first approximation importing
the model and playing-in using internal objects works fine.

3.3 Synthesizing a skeleton UML model

Complementary to the UML to Play-Engine import described in the previous
subsection, we also support the synthesis of a skeleton UML model from the
Play-Engine; that is, a UML model containing the object model definitions, but
without taking the LSC specifications into account and without synthesizing
any statecharts. This skeleton synthesis can be useful if we have a complex
Play-Engine model we have developed, and now want to go ahead and build a
corresponding UML model. We can apply the synthesis of the skeleton model,
thus automating the straightforward part, and then proceed to do the interesting
and creative part, regarding dynamic behavior, by defining the UML statecharts
manually. We may want to use this approach when we have special motivation
to create the statechart model manually (see, e.g., [9] for an example), or when
the automatic synthesis algorithms do not work properly. Using the InterPlay
approach [3] mentioned earlier, we can then execute the statechart-based UML
model linked to the Play-Engine, allowing the scenarios to be monitored as they
occur.

4 Consistency of LSCs

Before being able to synthesize a statechart based model we must ensure that the
LSCs are consistent. Consider the two charts OpenAntGradl and OpenAntGrad?2
in Fig. 2. When the user opens the Antenna both charts are activated. However,
there is no way to satisfy them both since after changing the reception level
of the Chip to 0 (as required by both charts), the first chart requires that the
reception level change to 2 and only later to 4, while the second one requires
that the reception level change first to 4 and only later to 2. These are clearly
contradictory. While this is a very simple example, such contradictions can be
a lot more subtle, arising as a result of the interaction between several charts.
In large specifications this phenomena can be very hard to analyze manually.
Our tool can automatically detect some of these inconsistencies and provide
information to the user. After the relevant LSCs are fixed the synthesis algorithm
can again be applied. This can lead to an iterative development process at the
end of which a consistent LSC specification is obtained, and a statechart model
can be synthesized.

4.1 A Game View

In the study of synthesis of reactive systems a common view is that of a game
between two players [6,22]. One of the players is the environment and the other
is the system. The players alternate turns each one making a move in his turn,
and the requirements define the winning condition. If there exists a strategy for
the system under which for any moves the environment makes the system always
wins, we say the specification is realizable (consistent) and we can attempt to
synthesize a system implementation.

In the Play-Engine tool while using LSCs as the requirement language, the
environment can be a User object, as in the prechart of Fig. 1, or a more
explicit environment object, as represented by the ENV object appearing in
the main chart of Fig. 1, or an external object, an object that is designated as
being implemented outside the Play-Engine specification. In principle, the clock
object, which represents global time, should also be considered external, but
the treatment of time is beyond the scope of this paper. All other objects are
assumed to be part of the system.

The game is played as follows: the environment makes a move, consisting of
performing a method call or modifying the value of an externally changeable
property. The system responds by performing a superstep, a finite sequence of
system events, and then it is again the environment’s turn. The system is the
winner of the game if all LSC requirements are satisfied, otherwise the environ-
ment is the winner.

For the finite state case, when the number of objects is finite, all types are
of finite domain, and the number of different simultaneously active copies of a
chart is bounded, the game can be solved using model-checking methods. An
implementation of the game problem is now part of the Weizmann Institute

DpenAntGradl

% Ant
S S
< Dpan{) \=

[T5e Recepint x

Chip

—————

Na Forbidden Elements I Ry 1234
A

= OpenAntGrad2(ID6189)

DpenAntGrad?

% Ant
S I
< ;....U_P_BD___ _

o 'm
-
xR}
T o
a oo
& &
=2 =
-2
=N
S

—————

Fig. 2. Inconsistent LSCs

model-checker TLV [23]. The computation complexity of the algorithms is still
a major limitation in applying this game approach.

In our current work, one of the main principles we apply is that the specifier
of the LSCs provide enough detail and knowledge of the design, to make the job
easier for the synthesis algorithm. LSCs as a declarative, inter-object behavior
language, enables formulating high level requirements in pieces (e.g., scenario
fragments), leaving open details that may depend on the implementation. The
partial order semantics among events in each chart and the ability to separate
scenarios in different charts without having to say explicitly how they should
be composed are very useful in early requirement stages, but can cause under-
specification and nondeterminism when one attempts to execute them.

In play-out, if faced with nondeterminism an arbitrary choice is made. From
our experience in several projects, by providing a detailed enough LSC require-
ment play-out can get very close to solving the game problem, and sometimes
can even solve it directly. Assuming the user provided enough knowledge for

the synthesis algorithm, the algorithm tries to prove that a certain synthesized
model will satisfy all requirements, and if it manages to do this it can safely syn-
thesize the model. This approach is not complete, thus a different synthesized
model may be correct and the synthesis algorithm may fail to find it, but our
hope is that for many interesting cases the synthesis will succeed. In a situation
where for a synthesized model we have not managed to prove it correct or to
find some problem with it, synthesizing a state-based model opens possibilities
to try to prove its correctness using other tools and techniques, e.g., [25, 2].

5 The Synthesis Approach

In order to apply the synthesis approach we encode play-out in the form of
a transition system and then apply model-checking techniques. We construct
a transition system which has one process for each actual object. A state in
this system indicates the currently active charts and the location of each object
in these charts. The transition relation restricts the transitions of each process
only to moves that are allowed by all currently active charts. We now provide
some more of the details on how to translate LSCs to a transition system. The
encoding of the transition relation was developed as part of our work on smart
play-out [11].

An LSC specification LS consists of a set of charts M, where each chart
m € M is existential or universal. We denote by pch(m) the prechart of chart
m. Assume the set of universal charts in M is MY = {my, ma,...,m;}, and the
objects participating in the specification are O = {Oy, ..., O, }.

We define a system with the following variables:

act,,, determines if universal chart m; is active. It gets value 1 when m; is active
and 0 otherwise.

msgo, o, denoting the sending of message msg from object O; to object Oy.
The value is set to 1 at the occurrence of the send and is changed to 0 at
the next state.

mSg&—»Ok denoting the receipt by object O, of message msg sent by object O;.
Similarly, the value is 1 at the occurrence of the receive and 0 otherwise.

lm;,0; denoting the location of object O; in chart m;, ranging over 0-.-[™%*
where ["%" is the last location of O; in m;.

lpeh(m;),0; denoting the location of object O; in the prechart of m;, ranging over
0---1™m* where ["™* is the last location of O; in pch(m;).

We use the asynchronous mode, in which a send and a receive are separate
events, but we support the synchronous mode too. The details of encoding the
transition relation are rather technical, for more information see [11].

Given this encoding we claim that play-out is correct if the following property
holds.

~(EF(AG() (actm, =1))))

miEMU

The property specified above is a temporal logic property [8]. The operators
E, A are the existential and universal path quantifiers respectively, while F’
and G are the eventually and always temporal logic operators. Intuitively, this
formula claims that it is not the case that eventually play-out may get stuck,
not being able to satisfy the requirements successfully.

We now apply the model-checker to prove this property, and if it is indeed
correct we can go on and synthesize the system. The basic synthesis scheme
generates a statechart for each of the participating objects, using orthogonal
states for implementing different scenarios and making use of additional events
to guarantee synchronization of the distributed objects along each behavioral
scenario. More details are given in the next section. If the property does not hold
we can apply model-checking to a variation of this property and can sometimes
obtain more information on how the LSCs can be fixed so that play-out will be
correct.

6 An Example of Statechart Synthesis

We use an example of a cellular phone system to illustrate our synthesis algo-
rithms. A GUI representation of the system appears on the right-hand side of
Fig. 2. The system is composed of several objects, including the Cover, Display,
Antenna and Speaker. We consider a specification consisting of several universal
charts.

OpenCover

% Cionver Speaker
S B iy
< S :

¢ Sound(Silent]

“emipgres

Fig. 3. Open Cover

The chart OpenCover, appearing in Fig. 3, requires that whenever the user
opens the Cover, as specified in the prechart, the Speaker must turn silent.

The charts OpenAnt, CloseAnt, appearing in Fig. 4, specify that whenever the
user opens the Antenna the Display shows that the reception level is changed

2 =] [=]
S
< ;....@P_en___{g \=

=

% At
——l_—d—
< o Dese \.

Fe-

% _ " 7Show Reception{1]

Fig. 4. Opening and Closing the Antenna

to 4, and whenever the user closes the Antenna the Display shows that the
reception level is changed to 1.

The resulting statecharts for the Antenna and the Display obtained by ap-
plying the synthesis algorithms appear in Fig. 5 and Fig. 6 respectively. Consider
the Antenna statechart of Fig. 5. The AND-state named T'op contains two orthog-
onal states OpenAnt and CloseAnt, corresponding to the scenarios of opening
and closing of the Antenna.

The orthogonal state OpenAnt has three substates, PO, P1 and S0, where
PO is the initial state entered, as designated by the default transition into PO.
The states PO, P1 and S0 correspond to progress of the Antenna object along
the OpenAnt scenario, where we use the convention that P states correspond
to prechart locations while S states correspond to main chart locations. If the
Antenna object is in state PO of the OpenAnt orthogonal component, and it
receives the event Open, it takes a transition to state P1 and performs the action
written in the label of the transition. The action has the effect of telling the other
objects that the scenario of opening of the Antenna has been activated. This is
done by sending the event activeOpenAnt to the other objects, i.e., the command
getItsDisplay C()->GEN(activeOpenAnt) generates an event activeOpenAnt
and sends it to the Display object. In a similar way the event activeOpenAnt
is generated and sent to the Cover and Speaker objects. The Antenna object,
which is now in the sub-state P1 of the OpenAnt component, takes the null

4 OpenAnt overOpenant N

[S0 PO < .

Open/getltsDisplay_C()->GEN(activeOpenAnt);
getltsCover_C{j->GEN(activeOpenAnt);
P1 getltsSpeaker_[C()->GEN(activeOpenAnt);

Close/getltsDigplay_C{)->GEN(activeCloseAnt);
getltsCover_C{)->GEN(activeCloseAnt);
P1 getltsSpeaker_[C()->GEN(activeCloseAnt);

N S/

Fig. 5. Synthesized Antenna statechart

transition to state S0. Null transitions are transitions with no trigger event, and
are taken spontaneously.

The Display object is originally in state PO of the Open Ant orthogonal state.
It receives the event activeOpenAnt (sent by the Antenna), causing the transi-
tion to state SO to be taken, meaning that now the object has progressed to the
main chart of the scenario. From state S0 a null transition to state S1 is taken,
and the reception level of the Display is set to volume level 4. This is done by
performing the method setReception(V_4), which sets the value of the attribute
receptionto V_4. As part of the action of the transition from state SO to state S1
the other objects are notified that the scenario of opening of the Antenna is over,
this is done by performing the command getItsAnt C()->GEN(overOpenAnt),
and similarly for other objects. The Display object then takes the null transition
back to state PO. The Antenna object on receiving the event overOpenAnt takes
the transition from state S0 back to state P0. At this point the scenario of open-
ing the Antenna has completed successfully. The statechart synthesis algorithm
implements the scenario of closing the Antenna in a similar way, as reflected by
the CloseAnt components of the Antenna and Display objects.

There are several points were the synthesis algorithm can be optimized to
produce more efficient and readable models, and indeed we have a first version of
such an improved algorithm. When sending an event to all other objects to notify
them of some occurrence (for example when taking the transition from state PO
to state P1 in orthogonal component OpenAnt of the Antenna) it is enough in
our case to send the event only to the Display object, since the objects Cover
and Speaker do not participate and are not affected by the opening Antenna
scenario.

4 OpenAnt N
‘ 81 > ‘ PO ’
fsetReceqtion(V_4); l activeOpenAnt

getltsCover C()->GEN{pverOpenAnt); S0
getltsAnt |C()->GEN(over ;
getltsSpepker_C()->GEN(overOpenAnt);

CloseAnt

S1 ‘ S0 }
/setRecgeption(V_1);
l getltsAnt_C()->@EN(overCloseAnt);
’__‘ PO

Fig. 6. Synthesized Display statechart

activeCloseAnt

A related issue is the architecture of the synthesized model: In this exam-
ple, we allow each object to communicate directly with each of the other ob-
jects in the system, and we synthesize the relations in the UML model to allow
this. Thus, for example, the Antenna object can relate to the Speaker by the
getItsSpeaker C() command. Using an optimized algorithm, if this commu-
nication is not used the corresponding relations will not be synthesized. For
improved readability, if an action contains several commands of similar nature,
e.g., sending an event to various objects, an optimized synthesis algorithm will
define a method performing these related commands, and the label of the tran-
sition will include a call to this method, thus resulting in more readable and
elegant statecharts than those of Fig. 5 and 6.

As mentioned earlier, an important part of the synthesis is to apply the play-
out consistency check, as described in Section 5, which guarantees the correctness
of the synthesis algorithm.

7 Related Work

The idea of deriving state-based implementations automatically from scenario-
based requirements has been the subject of intensive research efforts in recent
years; see, e.g., [17,18,20,19,29]. Scenario-based specifications are very useful
in early stages of development, they are used widely by engineers, and a lot
of experience has been gained from their being integrated into the MSC ITU
standard [21] and the UML [28]. The latest versions of the UML recognized the
importance of scenario-based requirements, and UML 2.0 sequence diagrams

have been significantly enhanced in expressive capabilities, inspired by the LSCs
of [7].

There is also relevant research on statechart synthesis. As far as the case
of classical message sequence charts goes, work on synthesis includes the SCED
method [17] and synthesis in the framework of ROOM charts [20]. Other relevant
work appears in [4,26,1,19,29]. In addition, there is the work described in [16],
which deals with LSCs, but synthesizes from a single chart only: an LSC is
translated into a timed Biichi automaton (from which code can be derived).

While the work in [10, 5] addressed the synthesis problem of LSCs from a the-
oretical viewpoint, the current paper applies new verification-based techniques
and also reports on a prototype implementation. Other aspects special to our
approach were described in Section 2 above. In addition to synthesis work di-
rectly from sequence diagrams of one kind or another, one should realize that
constructing a program from a specification is a long-known general and funda-
mental problem. For example, there has been much research on constructing a
program from a specification given in temporal logic (e.g., [22]).

References

1. R. Alur and M. Yannakakis. Model checking of message sequence charts.
In 10th International Conference on Concurrency Theory (CONCUR99),
volume 1664 of Lect. Notes in Comp. Sci., pages 114-129. Springer-Verlag,
1999.

2. T. Arons, J. Hooman, H. Kugler, A. Pnueli, and M. van der Zwaag. De-
ductive Verification of UML Models in TLPVS. In Proc. 7th International
Conference on UML Modeling Languages and Applications (UML 2004),
Lect. Notes in Comp. Sci., pages 335—-349. Springer-Verlag, October 2004.

3. D. Barak, D. Harel, and R. Marelly. InterPlay: Horizontal Scale-Up and
Transition to Design in Scenario-Based Programming. In Lectures on Con-
currency and Petri Nets, volume 3098 of Lect. Notes in Comp. Sci., pages
66—86. Springer-Verlag, 2004.

4. A'W. Biermann and R. Krishnaswamy. Constructing programs from exam-
ple computations. IEEE Trans. Softw. Eng., SE-2:141-153, 1976.

5. Y. Bontemps and P.Y. Schobbens. Synthesizing open reactive systems from
scenario-based specifications. In Proc. of the 3rd Int. Conf. on Application of
Concurrency to System Design (ACSD’03). IEEE Computer Science Press,
2003.

6. J.R. Buchi. State-strategies for games in F,5sNGs,. J. Symb. Logic, 48:1171—
1198, 1983.

7. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts.
Formal Methods in System Design, 19(1):45-80, 2001. Preliminary version
appeared in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-
Based Distributed Systems (FMOODS’99).

8. E.A. Emerson. Temporal and modal logics. In J. van Leeuwen, editor, Hand-
book of theoretical computer science, volume B, pages 995-1072. Elsevier,
1990.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. Fisher, D. Harel, E.J.A. Hubbard, N. Piterman, M.J. Stern, and
N. Swerdlin. Combining state-based and scenario-based approaches in mod-
eling biological systems. In Proc. 2nd Int. Workshop on Computational
Methods in Systems Biology (CMSB 2004), Lect. Notes in Comp. Sci.
Springer-Verlag, 2004.

D. Harel and H. Kugler. Synthesizing state-based object systems from LSC
specifications. Int. J. of Foundations of Computer Science (IJFCS)., 13(1):5-
51, Febuary 2002. (Also,Proc. Fifth Int. Conf. on Implementation and Ap-
plication of Automata (CTIAA 2000), July 2000, Lecture Notes in Computer
Science, Springer-Verlag, 2000.).

D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In Proc. 4*" Intl. Conference on Formal Methods in Computer-
Aided Design (FMCAD’02), Portland, Oregon, volume 2517 of Lect. Notes in
Comp. Sci., pages 378-398, 2002. Also available as Tech. Report MCS02-08,
The Weizmann Institute of Science.

D. Harel, H. Kugler, and G. Weiss. Some Methodological Observations Re-
sulting from Experience Using LSCs and the Play-In/Play-Out Approach. In
Proc. Scenarios: Models, Algorithms and Tools, Lecture Notes in Computer
Science. Springer-Verlag, 2005. To appear.

D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer-Verlag, 2003.

D. Harel and R. Marelly. Specifying and Executing Behavioral Require-
ments: The Play In/Play-Out Approach. Software and System Modeling
(SoSyM), 2(2):82-107, 2003.

Rhapsody. I-Logix, Inc., products web page.
http://www.ilogix.com/products/.

J. Klose and H. Wittke. An automata based interpretation of live sequence
chart. In Proc. 7" Intl. Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’01), volume 2031 of Lect. Notes
in Comp. Sci., Springer-Verlag, 2001.

K. Koskimies and E. Makinen. Automatic synthesis of state machines from
trace diagrams. Software — Practice and Experience, 24(7):643-658, 1994.
K. Koskimies, T. Mannisto, T. Systa, and J. Tuomi. SCED: A Tool for
Dynamic Modeling of Object Systems. Tech. Report A-1996-4, University
of Tampere, July 1996.

I. Kriiger, R. Grosu, P. Scholz, and M. Broy. From MSCs to Statecharts.
In Proc. Int. Workshop on Distributed and Parallel Embedded Systems
(DIPES’98), pages 61-71. Kluwer Academic Publishers, 1999.

S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM models from
message sequence chart specifications. Tech. Report 98-06, University of
Waterloo, April 1998.

ITU-TS Recommendation Z.120 (11/99): MSC 2000. ITU-TS, Geneva, 1999.
A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
16th ACM Symp. Princ. of Prog. Lang., pages 179-190, 1989.

A. Pnueli and E. Shahar. A platform for combining deductive with algo-
rithmic verification. In R. Alur and T. Henzinger, editors, R. Alur and

24.

25.

26.

27.

28.

29.

T. Henzinger, editors, Proc. 8" Intl. Conference on Computer Aided Verifi-
cation (CAV’96), volume 1102 of Lect. Notes in Comp. Sci., Springer-Verlag,
pages 184-195, 1996.

Rational Rose Technical Developer. Rational, Inc., web page. http://www-
306.ibm.com/software/awdtools/developer/technical/.

I. Schinz, T. Toben, and B. Westphal. The Rhapsody UML Verification En-
vironment. In 2nd Int. Conf. on Software Engineering and Formal Methods.
IEEE Computer Society Press, 2004.

R. Schlor and W. Damm. Specification and verification of system-level hard-
ware designs using timing diagram. In FEuropean Conference on Design
Automation, pages 518-524, Paris, France, 1993. IEEE Computer Society
Press.

Telelogic TAU. Telelogic, Inc., web page.
http://www.telelogic.com/products/tau/.

UML. Documentation of the unified modeling language (UML). Available
from the Object Management Group (OMG), http://www.omg.org.

J. Whittle and J. Schumann. Generating statechart designs from scenar-
ios. In 22nd International Conference on Software Engineering (ICSE 2000),
pages 314-323. ACM Press, 2000.

