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Abstract: This paper presents results for Keyword Verification (KV) experiments using Cohort-Word Verification 
(CWV) and neural-network fusion of CWV and Speech Background Model based Verification (SBMV).  Baseline 
experiments found that CWV excelled in short-word KV while SBMV was more robust for long-word KV.  Fusion of 
CWV and SBMV yielded dramatic improvements in both short-to-medium length KV using the fusion of two CWV 
systems, and medium-to-long length KV using fusion of SBMV and CWV.  Overall, through target word phone length 
dependent fusion of verifiers, it was possible to at least halve the false rejection rate of the baseline SBMV verifier for 
all evaluated keyword length classes. 
Key words: Confidence Scoring, Keyword Spotting, Keyword Verification, Verifier Fusion.  

 

1. Introduction 
Keyword verification (KV) algorithms are an 

effective method of improving the robustness of 
speech recognition applications.  Such algorithms 
have played an important role in many state of the art 
speech recognition systems, such as speech 
transcription systems, dialog systems and keyword 
spotting systems. 

 
This paper focuses on the application of KV to 

keyword spotting systems (eg. audio database search 
engines, real-time keyword monitoring and command 
control systems).  Keyword spotting systems rely 
heavily on a robust KV system to reduce false alarm 
rates.  In applications that require high keyword 
spotting speeds, computationally intensive KV 
methods such as confusion networks (Mangu & al., 
2000) are unsuitable.  Instead, KV methods that are 
faster and only require acoustic analysis of the KV 
candidate are used. 

 
Two such KV methods are Speech Background 

Model based Verification (SBMV) (Wilpon & al., 
1990) and Cohort-Word Verification (CWV) 
(Thambiratnam & al., 2003).  Both methods were 
found in preliminary experiments to have acceptable 
KV performance for medium and long keywords, but 

poorer performance for short-word KV.  In particular, 
SBMV performance was significantly degraded for 
short target keyword lengths, having up to 5 times the 
false rejection obtained of long-word SBMV at the 
same false acceptance rate.  Reduced performance was 
also observed for short-word CWV, though the extent 
of degradation was not as much. 

 
To address the issue of poor short-word KV 

performance, this paper proposes the use of neural 
network fusion of CWV and SBMV.  It is anticipated 
that combining verifiers would yield improvements in 
KV through the use of orthogonal information.  
Additionally there would be little impact on overall 
execution speed since both KV methods are fast.   

 
This paper reports on experiments for neural 

network fusion of CWV and SBMV.  Results are 
presented for a variety of target word phone lengths as 
well as for a number of fused system architectures.  
Additionally the performance of baseline unfused 
CWV and SBMV are provided. 

2. Background 

2.1  Speech background model log-likelihood ratio 
A keyword confidence scoring metric typically 

takes the form of the Log-Likelihood Ratio (LLR): 
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where X is the sequence of observations corresponding 
to the word candidate to be verified, λkeyword is the 
acoustic model for the target keyword (eg. 
concatenated phones or triphones) and λnonkeyword  is the 
acoustic model for the non-keyword against which the 
target word is scored. 

 
The choice of the non-keyword model plays an 

important role in determining the quality of the 
confidence score.  Numerous non-keyword models 
have been proposed in literature, including anti-
syllable models (Xin & al., 2001), a uniform 
distribution (Silaghi & al., 2000) and a speech 
background model (Wilpon & al., 1990). 

 
In speech background model KV, the non-keyword 

model is represented by a high-order Gaussian 
Mixture Model (GMM) trained on a very large speech 
corpus.  This GMM is referred to as a speech 
background model (SBM).  The confidence score log 
likelihood ratio is then given by:  
 

 (2) 

2.2 Cohort-word keyword verification 
A difficulty encountered with KV log-likelihood 

ratio confidence scores is how to accurately model the 
non-keywords.  A good non-keyword model should 
model all keywords that are not the target keyword.  
This is difficult when the vocabulary of the system is 
unbounded or very large.  The cohort-word confidence 
metric uses a non-keyword set that contains words that 
have a similar pronunciation to the target keyword.  
The metric attempts to measure how much better the 
observation sequence is modelled by the target 
keyword model than the other words in the target 
language with similar pronunciations.  This is an 
extension of the method of anti-syllables proposed in 
(Xin et al., 2001), however selection is performed at 
the linguistically more natural word level rather than 
the sub-word level. 

 
Selecting non-keywords at the word level instead 

of the sub-word level ensures that the non-keyword set 
only contains words that exist in the target language.  
For example, given a target keyword DINER, the non-
keyword set may contain words such as DONOR and 
LINER when selecting non-keywords at a word level.  
However, when selecting at a sub-word level (eg. such 
as anti-syllables proposed in (Xin et al., 2001) the 
word DINER (syllable sequence DI-NER) may result 
in non-existent non-keywords such as GI-NER and 
RI-BER. 

 
In addition, CWV should provide better 

discrimination in the case where the candidate to be 
verified is an actual occurrence of one of the words in 

the cohort-word set.  This may well be a very common 
case, particularly in keyword spotting systems where 
the false alarms that are to be rejected are usually 
instances of words that are acoustically very similar to 
the target word. 

2.2.1 Cohort-word verification confidence score 
Given a target keyword w, let R(w) = {r1,r2,....,rN}  

be defined as the cohort-word set (set of words in the 
target language that have a similar pronunciation) of 
word w.  Note that the cohort-word set R(w) does not 
include the target word w.  The corresponding models 
of the cohort-word set are then used as the non-
keyword model term in equation 1.  Hence the cohort-
word confidence score is given by: 

 
 (3) 

 
This formulation of the cohort-word confidence 

score requires calculation of likelihoods for all words 
in the cohort-word set.  This can be computationally 
very expensive since the cohort-word set may be very 
large depending on the cohort-word selection criteria.  
To address this issue, a simplified approximation that 
is computationally less expensive is used.  Let S(w,K) 
= {s1,s2,....,sK} be the subset of the K top scoring 
words from the cohort-word set R(w).  Then the 
simplified cohort-word confidence score is defined as: 

 
 (4) 

 
This simplified cohort-word confidence score only 

requires the likelihoods of the K best scoring cohort 
words, which can be quickly obtained from a K-best 
recognition pass. 

2.2.2 Cohort word selection 
The cohort-word set is constructed by selecting 

words from a large word-to-phone dictionary.  A 
cohort word is defined as a word with a pronunciation 
similar to the target word, where similarity is 
measured using the Minimum Edit Distance (MED) 
string alignment algorithm (Jurafsky, 2000).    

 
Let V = {v1,v2,....,vM} be the set of words in the 

target language and )(wφ  be a mapping from the 
word w to the phonetic transcription of w.  Then the 
distance between the target word, w, and the word vi 
taken from the word set V is given by: 

 
 (5) 
 

where MED(a,b) is the Minimum Edit Distance 
between sequence a and sequence b. 

 
Let the range [dmin, dmax] be defined as the cohort-

word selection range.  The cohort-word selection 
range is used to restrict the cohort-word set to words 
that are within a certain MED distance from the target 
word (dmin was required as preliminary experiments 
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found that using cohort words that were very close in 
MED distance to the target word actually gave very 
poor performance). 

 
Given the cohort-word distance formulation and 

the cohort-word selection range, the cohort-word set 
of target word w is then defined as: 

 
 (6) 
 
To reduce the computational time required for 

cohort-word scoring, random sampling of the cohort-
word set is used to reduce its size.  This gives the 
reduced cohort-word set: 

 
 (7) 
 
 where the shuffle function randomly shuffles a set, 

and the top function returns the first N elements of a 
set. 

 
The MED algorithm allows weights to be specified 

for the insertion, deletion, substitution and match 
operations that are used during string alignment.  In 
cohort-word selection, these weights can be used to 
favour certain types of cohort words over others.  For 
example, using a high insertion penalty will result in 
more cohort-words that have fewer phones in their 
pronunciation than the target word.  Let {ψd, ψi, ψs, ψm} 
be defined as the cohort-word selection deletion, 
insertion, substitution and match penalties 
respectively.  Collectively the set of parameters, {ψd, 
ψi, ψs, ψm, dmin, dmax}, is referred to as the cohort-word 
selection parameters. 

3. Experiment set up 
All experiments were performed on a subset of the 

clean microphone speech Wall Street Journal 1 
(WSJ1) test dataset.  Speech was parameterised using 
Mel Frequency Cepstral Coefficient (12 MFCCs + 
deltas + accelerations) with RASTA post-filtering.  
HMMs (12-mixture triphones) trained on WSJ1 
training data were used for acoustic scoring.  A 256-
component GMM trained on the WSJ1 training data 
set was used as the speech background model for 
SBMV. 

3.1 Evaluation word candidate sets 
Experiments were performed on 3 different word 

length classes: 4-phone words, 6-phone words and 8-
phone words (where a n-phone word is a word with n 
phones in its phone transcription).  For each phone-
length class, 3 word candidate sets were built from the 
WSJ1 test data set.  The first set contained 600 word 
candidates and was used for fused word-verifier 
training (the TRAIN set) while the second and third 
sets contained 300 word candidates each and were 
used for word-verifier evaluation (the EVAL1 and 
EVAL2 sets). 

 
Each set consisted of approximately 50% true 

word candidates and 50% false word candidates.  True 
word candidates were taken from a forced-aligned 
word transcription of the test data.  False word 
candidates were obtained by taking the false alarm 
outputs of a keyword spotter.  The false alarm outputs 
were used instead of randomly selected locations in 
the test audio to increase the difficulty of KV for the 
false candidates.  Since a keyword spotter's false 
alarms are likely to be at areas that are acoustically 
similar to the target keyword being spotted, KV of 
these false alarms should be markedly more difficult 
than KV of randomly chosen word occurrences.  This 
hypothesis was confirmed in experiments reported in 
(Thambiratnam, 2003). 

3.2 Performance Metrics 
Although there are a variety of measures for 
measuring KV performance (eg. equal error rate and 
figure of merit), the false rejection (FR) rate at 10% 
false acceptance (FA) rate was chosen for evaluation.  
This metric favours keyword spotting applications 
where it is more important not to incorrectly react to a 
false word occurrence (eg. command control systems) 
rather than to accidentally miss a true word 
occurrence.  This operating point is also well suited 
for large database search applications where one is 
interested in returning a smaller result set to a user 
with confident results rather than a large result set 
with a lot of false occurrences.  Additionally Detection 
Error Trade-off (DET) plots are provided for the final 
optimal systems to provide performance trends across 
operating points. 

3.3 Base Verification Procedure 
Baseline SBMV results were obtained using the 
confidence score given by equation 2.  The SBMV 
confidence score was calculated for each word 
candidate in the EVAL1 and EVAL2 sets.  
Thresholding was then used to calculate FR at 10% 
FA. 
 
CWV performance was evaluated for a variety of 
cohort-word selection parameters.  To reduce the 
scope of the experiments, the restrictions ψi = 1, ψs = 
0, ψm є {1,2}, ψs є {1,2}, and 1 ≤ dmin ≤ dmax ≤ 4 were 
used.   
 
For each word candidate in the EVAL1 and EVAL2 
sets, the reduced cohort-word set R’(w,N) of size 
N=200 was found using the cohort-word selection 
procedure.  The simplified cohort-word confidence 
score C2(w,K) was then calculated using the reduced 
cohort-word set R’(w,N) and with K=1 (this restriction 
on K was used to reduce computation time).  FR was 
finally calculated at 10% FA by confidence score 
thresholding. 
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3.4 Fused Verification Procedure 
Word-verifier fusion was performed using a multi-
layer perceptron neural network.  Confidence scores 
from the verifiers to be fused were used as the input 
values.  A 25 node hidden layer was used in the 
intermediary layer and 2 nodes were used in the output 
layer, one for true occurrences and one for false 
occurrences.  A separate neural network was trained 
on the TRAIN set for each phone-length using 4-fold 
cross validation.  Evaluation was then performed on 
the EVAL1 and EVAL2 sets for each phone length.  
The output value of the true occurrence output node 
was thresholded to obtain FR at 10% FA. 

4. Experiments and Results 
Baseline SBMV and CWV performances were 
measured to provide a benchmark for fused verifier 
experiments.  Results for the baseline systems are 
given in tables 1 and 2.  Although CWV was evaluated 
for a variety of cohort-word selection parameters (see 
section  3.3), only the best performing CWV methods 
are shown to conserve space.  Cohort-word selection 
parameters are specified in the format {ψd, ψi, ψs, ψm, 
dmin, dmax}. 
 

Phone 
Len 

FR 
EVAL1 

FR 
EVAL2 

FR 
Avg. 

4 25.3 30.2 27.8 
6 7.8 11.8 9.8 
8 4.2 4.6 4.4 

Table 1: Best SBMV baseline verifier performance 

The results show that the absolute gain in FR of CWV 
over SBMV dropped off as target keyword phone-
length increased.  While there were positive gains for 
4-phone and 6-phone keywords (8.8% absolute for 4-
phone, 4.6% absolute for 6-phone), there was a loss in 
verifier performance over SBMV for 8-phone 
keywords.  This observation motivated SBMV-CWV 
fusion experiments.  It was anticipated that a fused 
SBMV-CWV verifier could combine the short 
keyword performance of CWV with the long keyword 
performance of SBMV.  Table 3 shows the results of 
experiments to evaluate the performance of fused 
SBMV-CWV keyword verification. 
 

Phone 
Len 

CWV 
Best Method 

FR 
EVAL1 

FR 
EVAL2 

FR 
Avg. 

4 EVAL1 {2,1,3,3} 16.2 28.9 22.6 
4 EVAL2 {2,1,2,4} 31.8 17.5 24.7 
4 All {1,2,3,3} 17.9 20.1 19.0 
6 EVAL1 {2,1,3,4} 1.2 9.2 5.2 
6 EVAL2 {1,2,3,4} 10.0 7.5 8.8 
6 All {2,1,3,4} 1.2 9.2 5.2 
8 EVAL1 {1,1,4,4} 7.2 8.5 7.8 
8 EVAL2 {2,1,4,4} 15.6 6.7 11.2 
8 All {1,1,4,4} 7.2 8.5 7.8 

Table 2: Best CWV baseline verifier performance 

The results of these experiments demonstrated that a 
fused SBMV-CWV verifier was able to provide 

consistent gains in FR over the baseline SBMV 
systems as well as the best performing individual 
CWV systems.  For all phone lengths the best overall 
performing SBMV-CWV system was able to at least 
halve the false rejection rate of the baseline SBMV 
system.  The figures also showed that the relative gain 
of SBMV-CWV over the best overall performing 
CWV baseline verifier increased with phone length 
(25.3% 4-phone, 30.8% 6-phone, 71.8% 8-phone).  
This gain with longer phone lengths was consistent 
with the trends seen in SBMV performance across 
phone length. 
 

Phone 
Len 

SMBV-CWV 
Best Method 

FR 
EVAL1 

FR 
EVAL2 

FR 
Avg. 

4 EVAL1 {2,1,1,1} 12.2 21.5 16.8 
4 EVAL2 {2,2,2,3} 20.9 14.5 17.7 
4 All {2,2,1,3} 13.2 15.3 14.2 
6 EVAL1 {2,1,3,3} 1.4 7.2 4.3 
6 EVAL2 {2,1,2,3} 2.4 4.7 3.6 
6 All {2,1,2,3} 2.4 4.7 3.6 
8 EVAL1 {1,2,1,4} 1.8 2.6 2.2 
8 EVAL2 {1,1,2,3} 8.1 2.4 5.2 
8 All {1,2,1,4} 1.8 2.6 2.2 

Table 3: Best fused SBMV-CWV verifier performance 

Since SBMV performance was poor for short 
keywords, experiments were performed to evaluate 
fusion of multiple CWVs.  Although improvements in 
performance were observed for SBMV-CWV over 
CWV for short keywords, it was hoped that fusing 
multiple well performing cohort-word verifiers would 
yield even greater improvements, since the individual 
CWV systems performed better than SBMV for short-
word KV.  To reduce the scope of the experiments, 
fusion of only 2 verifiers at a time was considered.  
Table 4 shows the best performing CWV-CWV fused 
verifiers. 
 

Phone 
Len 

CWV-CWV 
Best Method 

FR 
EVAL1 

FR 
EVAL2 

FR 
Avg. 

4 EVAL1 
{1,2,3,3},{2,1,4,4} 

11.5 18.8 15.1 

4 EVAL2 
{1,2,3,3},{2,2,2,3} 

20.2 8.7 14.5 

4 All 
{1,2,3,3},{2,1,1,3} 

13.9 10.1 12.0 

6 EVAL1 
{2,1,3,4},{1,1,3,4} 

1.1 7.2 4.1 

6 EVAL2 
{2,1,3,4},{1,2,3,4} 

2.0 4.3 3.2 

6 All 
{2,1,3,4},{1,2,3,4} 

2.0 4.3 3.2 

8 EVAL1 
{1,1,4,4,},{2,2,1,3} 

4.5 7.2 5.9 

8 EVAL2 
{1,1,4,4},{2,2,4,4} 

5.7 5.5 5.6 

8 All 
{1,1,4,4},{2,2,4,4} 

5.7 5.5 5.6 

Table 4: Best fused CWV-CWV verifier performance 

The CWV-CWV architecture seemed to be 



SETIT2005  

particularly well suited for short KV, resulting in a 
15.5%, 36.8% and 56.8% relative gain in overall FR 
over the best SBMV-CWV, CWV and SBMV verifiers 
respectively.  Improvements were also seen for the 6-
phone keyword experiments, although the gain over 
the SBMV-CWV system was much more marginal.  
CWV-CWV fusion did not yield improved 
performance for the 8-phone keyword set, though this 
was expected considering that individual CWV did not 
outperform SBMV for the 8-phone keyword sets.   
 
A consistent trend that was noted across all 
experiments was the dependence of CWV 
performance on cohort-word selection parameters.  
Although not shown here, performance of CWV 
varied dramatically with cohort-word selection 
parameters.  For example for the 4-phone EVAL1 set, 
the best performing CWV configuration had an FR of 
16.2% while the average FR across all evaluated 
CWV configurations was 29.3%.  The use of CWV 
therefore requires careful tuning of the cohort-word 
selection parameters.  However it appears that the 
relative performance between various CWV 
configurations remains reasonably consistent between 
fused and unfused systems.  This means that the 
optimum cohort-word selection parameters for CWV 
are most likely to give close to optimum performance 
when used in a fused CWV-CWV or SBMV-CWV 
system.  For example, the best EVAL1 CWV system 
was only 0.4% poorer when used in a fused CWV-
CWV system compared to the best EVAL1 CWV-
CWV system.  Unfortunately there does not appear to 
be a single set of cohort-word selection parameters 
that is optimal for all target word phone lengths.   
 
As previously discussed, short-word KV is a particular 
difficult problem leading to significantly higher false 
rejection rates compared to KV for longer target word 
lengths.  Hence the absolute gains observed using the 
CWV and CWV-CWV for short-word KV are 
particularly pleasing.  The DET plot in figure 4 further 
demonstrates the benefits of CWV and CWV-CWV.  
Both methods consistently outperformed SBMV for 
short-word KV at the majority of operating points. 
 
Overall, the experimental results suggest that an 
optimum KV system would be keyword phone-length 
dependent.  A CWV-CWV verifier would be used for 
short length keywords, a SBMV-CWV or CWV-CWV 
verifier for medium length keywords and a SBMV-
CWV verifier for long keywords.  Using this 
approach, a 5.8% overall FR could be obtained for all 
keyword lengths on the EVAL1 and EVAL2 word 
candidate sets.  This is a significant gain over the 
14.0% overall FR using SBMV alone and 10.7\% 
overall FR using the optimal CWV verifier for each 
keyword length class. 

5. Conclusion 
The experiments demonstrated that fused SBMV-
CWV and CWV-CWV verification yielded dramatic 
gains in KV performance over unfused SBMV and 

CWV.  The CWV-CWV system was more suited to 
short-to-medium length KV while the SBMV-CWV 
system performed best for medium-to-long length KV.  
Overall a 5.8% false rejection rate at 10% false 

Figure 1: DET plot for best verifiers on combined 4-
phone EVAL1 and EVAL2 sets 
 
acceptance was achieved using a combination of 
CWV-CWV and SBMV-CWV.  This was a 
considerable gain over the 14.0% false rejection rate 
achieved by the baseline SBMV system and the 10.7% 
false rejection rate obtained using the best performing 
baseline CWV systems. 
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