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Abstract: This paper presents results for Keyword Verification (KV) experiments using Cohort-Word Verification
(CWYV) and neural-network fusion of CWV and Speech Background Model based Verification (SBMV). Baseline
experiments found that CWV excelled in short-word KV while SBMV was more robust for long-word KV. Fusion of
CWV and SBMV yielded dramatic improvements in both short-to-medium length KV using the fusion of two CWV
systems, and medium-to-long length KV using fusion of SBMV and CWYV. Overall, through target word phone length
dependent fusion of verifiers, it was possible to at least halve the false rejection rate of the baseline SBMV verifier for

all evaluated keyword length classes.
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1. Introduction

Keyword verification (KV) algorithms are an
effective method of improving the robustness of
speech recognition applications.  Such algorithms
have played an important role in many state of the art
speech recognition systems, such as speech
transcription systems, dialog systems and keyword
spotting systems.

This paper focuses on the application of KV to
keyword spotting systems (eg. audio database search
engines, real-time keyword monitoring and command
control systems). Keyword spotting systems rely
heavily on a robust KV system to reduce false alarm
rates. In applications that require high keyword
spotting speeds, computationally intensive KV
methods such as confusion networks (Mangu & al.,
2000) are unsuitable. Instead, KV methods that are
faster and only require acoustic analysis of the KV
candidate are used.

Two such KV methods are Speech Background
Model based Verification (SBMV) (Wilpon & al.,
1990) and Cohort-Word  Verification (CWYV)
(Thambiratnam & al., 2003). Both methods were
found in preliminary experiments to have acceptable
KV performance for medium and long keywords, but

poorer performance for short-word KV. In particular,
SBMYV performance was significantly degraded for
short target keyword lengths, having up to 5 times the
false rejection obtained of long-word SBMV at the
same false acceptance rate. Reduced performance was
also observed for short-word CWYV, though the extent
of degradation was not as much.

To address the issue of poor short-word KV
performance, this paper proposes the use of neural
network fusion of CWV and SBMV. It is anticipated
that combining verifiers would yield improvements in
KV through the use of orthogonal information.
Additionally there would be little impact on overall
execution speed since both KV methods are fast.

This paper reports on experiments for neural
network fusion of CWV and SBMV. Results are
presented for a variety of target word phone lengths as
well as for a number of fused system architectures.
Additionally the performance of baseline unfused
CWYV and SBMV are provided.

2. Background

2.1 Speech background model log-likelihood ratio

A keyword confidence scoring metric typically
takes the form of the Log-Likelihood Ratio (LLR):
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C= 10g(p(X | ﬂ’keyword )) - log(p(X | ﬂ‘mmkeyword )) (1)

where X is the sequence of observations corresponding
to the word candidate to be verified, Aepon 1S the
acoustic model for the target keyword (eg.
concatenated phones or triphones) and A,pukepwora 1S the
acoustic model for the non-keyword against which the
target word is scored.

The choice of the non-keyword model plays an
important role in determining the quality of the
confidence score. Numerous non-keyword models
have been proposed in literature, including anti-
syllable models (Xin & al, 2001), a uniform
distribution (Silaghi & al., 2000) and a speech
background model (Wilpon & al., 1990).

In speech background model KV, the non-keyword
model is represented by a high-order Gaussian
Mixture Model (GMM) trained on a very large speech
corpus. This GMM is referred to as a speech
background model (SBM). The confidence score log
likelihood ratio is then given by:

C =1og(p(X [ Agpora ) —10g(P(X | Agyp ) (2)

2.2 Cohort-word keyword verification

A difficulty encountered with KV log-likelihood
ratio confidence scores is how to accurately model the
non-keywords. A good non-keyword model should
model all keywords that are not the target keyword.
This is difficult when the vocabulary of the system is
unbounded or very large. The cohort-word confidence
metric uses a non-keyword set that contains words that
have a similar pronunciation to the target keyword.
The metric attempts to measure how much better the
observation sequence is modelled by the target
keyword model than the other words in the target
language with similar pronunciations. This is an
extension of the method of anti-syllables proposed in
(Xin et al., 2001), however selection is performed at
the linguistically more natural word level rather than
the sub-word level.

Selecting non-keywords at the word level instead
of the sub-word level ensures that the non-keyword set
only contains words that exist in the target language.
For example, given a target keyword DINER, the non-
keyword set may contain words such as DONOR and
LINER when selecting non-keywords at a word level.
However, when selecting at a sub-word level (eg. such
as anti-syllables proposed in (Xin et al., 2001) the
word DINER (syllable sequence DI-NER) may result
in non-existent non-keywords such as GI-NER and
RI-BER.

In addition, CWV should provide better
discrimination in the case where the candidate to be
verified is an actual occurrence of one of the words in

the cohort-word set. This may well be a very common
case, particularly in keyword spotting systems where
the false alarms that are to be rejected are usually
instances of words that are acoustically very similar to
the target word.

2.2.1 Cohort-word verification confidence score

Given a target keyword w, let R(w) = {rrs,....,rn}
be defined as the cohort-word set (set of words in the
target language that have a similar pronunciation) of
word w. Note that the cohort-word set R(w) does not
include the target word w. The corresponding models
of the cohort-word set are then used as the non-
keyword model term in equation 1. Hence the cohort-
word confidence score is given by:

C,(w) =log(p(X | 2,)) - log@ pX|2) G

This formulation of the cohort-word confidence
score requires calculation of likelihoods for all words
in the cohort-word set. This can be computationally
very expensive since the cohort-word set may be very
large depending on the cohort-word selection criteria.
To address this issue, a simplified approximation that
is computationally less expensive is used. Let S(w,K)
= {s5,5....,5¢} be the subset of the K top scoring
words from the cohort-word set R(w). Then the
simplified cohort-word confidence score is defined as:

K
C,(w,K) =log(p(X | 2,)) ~log(}_ p(X | 2,)) (4)
i=1
This simplified cohort-word confidence score only
requires the likelihoods of the K best scoring cohort
words, which can be quickly obtained from a K-best
recognition pass.

2.2.2 Cohort word selection

The cohort-word set is constructed by selecting
words from a large word-to-phone dictionary. A
cohort word is defined as a word with a pronunciation
similar to the target word, where similarity is
measured using the Minimum Edit Distance (MED)
string alignment algorithm (Jurafsky, 2000).

Let V = {v,v,,....,vyy} be the set of words in the
target language and ¢(w) be a mapping from the
word w to the phonetic transcription of w. Then the
distance between the target word, w, and the word v;
taken from the word set V'is given by:

d(w,v;) = MED(¢(w), §(v,)) 4

where MED(a,b) is the Minimum Edit Distance
between sequence a and sequence b.

Let the range [d,;,, dinax] be defined as the cohort-
word selection range. The cohort-word selection
range is used to restrict the cohort-word set to words
that are within a certain MED distance from the target
word (d,;, was required as preliminary experiments
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found that using cohort words that were very close in
MED distance to the target word actually gave very
poor performance).

Given the cohort-word distance formulation and
the cohort-word selection range, the cohort-word set
of target word w is then defined as:

R(W) = {V 54 | dmin < d(W5 V) < dmax} (6)

To reduce the computational time required for
cohort-word scoring, random sampling of the cohort-
word set is used to reduce its size. This gives the
reduced cohort-word set:

R(w,N)=top(N,shuffle(R(w))) @)

where the shuffle function randomly shuffles a set,
and the fop function returns the first N elements of a
set.

The MED algorithm allows weights to be specified
for the insertion, deletion, substitution and match
operations that are used during string alignment. In
cohort-word selection, these weights can be used to
favour certain types of cohort words over others. For
example, using a high insertion penalty will result in
more cohort-words that have fewer phones in their
pronunciation than the target word. Let {w, v;, v W}
be defined as the cohort-word selection deletion,
insertion,  substitution and match  penalties
respectively. Collectively the set of parameters, {y,
Wi W Wi Aminy Amay}, 18 referred to as the cohort-word
selection parameters.

3. Experiment set up

All experiments were performed on a subset of the
clean microphone speech Wall Street Journal 1
(WSJ1) test dataset. Speech was parameterised using
Mel Frequency Cepstral Coefficient (12 MFCCs +
deltas + accelerations) with RASTA post-filtering.
HMMs (12-mixture triphones) trained on WSJ1
training data were used for acoustic scoring. A 256-
component GMM trained on the WSJ1 training data
set was used as the speech background model for
SBMV.

3.1 Evaluation word candidate sets

Experiments were performed on 3 different word
length classes: 4-phone words, 6-phone words and 8-
phone words (where a n-phone word is a word with n
phones in its phone transcription). For each phone-
length class, 3 word candidate sets were built from the
WSIJI test data set. The first set contained 600 word
candidates and was used for fused word-verifier
training (the TRAIN set) while the second and third
sets contained 300 word candidates each and were
used for word-verifier evaluation (the EVAL1 and
EVAL2 sets).

Each set consisted of approximately 50% true
word candidates and 50% false word candidates. True
word candidates were taken from a forced-aligned
word transcription of the test data. False word
candidates were obtained by taking the false alarm
outputs of a keyword spotter. The false alarm outputs
were used instead of randomly selected locations in
the test audio to increase the difficulty of KV for the
false candidates. Since a keyword spotter's false
alarms are likely to be at areas that are acoustically
similar to the target keyword being spotted, KV of
these false alarms should be markedly more difficult
than KV of randomly chosen word occurrences. This
hypothesis was confirmed in experiments reported in
(Thambiratnam, 2003).

3.2 Performance Metrics

Although there are a variety of measures for
measuring KV performance (eg. equal error rate and
figure of merit), the false rejection (FR) rate at 10%
false acceptance (FA) rate was chosen for evaluation.
This metric favours keyword spotting applications
where it is more important not to incorrectly react to a
false word occurrence (eg. command control systems)
rather than to accidentally miss a true word
occurrence. This operating point is also well suited
for large database search applications where one is
interested in returning a smaller result set to a user
with confident results rather than a large result set
with a lot of false occurrences. Additionally Detection
Error Trade-off (DET) plots are provided for the final
optimal systems to provide performance trends across
operating points.

3.3 Base Verification Procedure

Baseline SBMV results were obtained using the
confidence score given by equation 2. The SBMV
confidence score was calculated for each word
candidate in the EVAL1 and EVAL2 sets.
Thresholding was then used to calculate FR at 10%
FA.

CWV performance was evaluated for a variety of
cohort-word selection parameters. To reduce the
scope of the experiments, the restrictions y; = 1, y, =
0, wne {12}, w,e {1,2}, and 1 < d,;, < dyax < 4 were
used.

For each word candidate in the EVAL1 and EVAL2
sets, the reduced cohort-word set R'(w,N) of size
N=200 was found using the cohort-word selection
procedure. The simplified cohort-word confidence
score C,(w,K) was then calculated using the reduced
cohort-word set R (w,N) and with K=/ (this restriction
on K was used to reduce computation time). FR was
finally calculated at 10% FA by confidence score
thresholding.
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3.4 Fused Verification Procedure

Word-verifier fusion was performed using a multi-
layer perceptron neural network. Confidence scores
from the verifiers to be fused were used as the input
values. A 25 node hidden layer was used in the
intermediary layer and 2 nodes were used in the output
layer, one for true occurrences and one for false
occurrences. A separate neural network was trained
on the TRAIN set for each phone-length using 4-fold
cross validation. Evaluation was then performed on
the EVALI and EVAL2 sets for each phone length.
The output value of the true occurrence output node
was thresholded to obtain FR at 10% FA.

4. Experiments and Results

Baseline SBMV and CWYV performances were
measured to provide a benchmark for fused verifier
experiments. Results for the baseline systems are
given in tables 1 and 2. Although CWV was evaluated
for a variety of cohort-word selection parameters (see
section 3.3), only the best performing CWV methods
are shown to conserve space. Cohort-word selection
parameters are specified in the format {y, v; w, W,
dmim dmax}-

Phone FR FR FR
Len | EVALI | EVAL2 | Avg.

4 253 30.2 27.8
6 7.8 11.8 9.8
8 4.2 4.6 4.4

Table 1: Best SBMV baseline verifier performance

The results show that the absolute gain in FR of CWV
over SBMV dropped off as target keyword phone-
length increased. While there were positive gains for
4-phone and 6-phone keywords (8.8% absolute for 4-
phone, 4.6% absolute for 6-phone), there was a loss in
verifier performance over SBMV for 8-phone
keywords. This observation motivated SBMV-CWV
fusion experiments. It was anticipated that a fused
SBMV-CWYV verifier could combine the short
keyword performance of CWV with the long keyword
performance of SBMV. Table 3 shows the results of
experiments to evaluate the performance of fused
SBMV-CWYV keyword verification.

Phone CwVv FR FR FR
Len Best Method EVAL1 | EVAL2 | Avg.
4 EVAL1 {2,1,3,3} 16.2 28.9 22.6
4 EVAL2 {2,1,2,4} 31.8 17.5 24.7
4 All {1,2,3,3} 17.9 20.1 19.0
6 EVAL1 {2,1,3,4} 1.2 9.2 52
6 EVAL2 {1,2,3,4} 10.0 7.5 8.8
6 All {2,1,3,4} 1.2 9.2 52
8 EVALI {1,1,4,4} 7.2 8.5 7.8
8 EVAL2 {2,1,4,4} 15.6 6.7 11.2
8 All {1,1,4,4} 7.2 8.5 7.8

Table 2: Best CWV baseline verifier performance

The results of these experiments demonstrated that a
fused SBMV-CWV verifier was able to provide

consistent gains in FR over the baseline SBMV
systems as well as the best performing individual
CWYV systems. For all phone lengths the best overall
performing SBMV-CWYV system was able to at least
halve the false rejection rate of the baseline SBMV
system. The figures also showed that the relative gain
of SBMV-CWV over the best overall performing
CWYV baseline verifier increased with phone length
(25.3% 4-phone, 30.8% 6-phone, 71.8% 8-phone).
This gain with longer phone lengths was consistent
with the trends seen in SBMV performance across
phone length.

Phone SMBV-CWV FR FR FR
Len Best Method EVALI | EVAL2 | Avg.
4 EVAL1 {2,1,1,1} 12.2 21.5 16.8
4 EVAL2 {2,2,2,3} 20.9 14.5 17.7
4 All {2,2,1,3} 13.2 15.3 14.2
6 EVAL1 {2,1,3,3} 1.4 7.2 43
6 EVAL2 {2,1,2,3} 2.4 4.7 3.6
6 All {2,1,2,3} 2.4 4.7 3.6
8 EVAL1 {1,2,1,4} 1.8 2.6 2.2
8 EVAL2 {1,1,2,3} 8.1 24 5.2
8 All {1,2,1,4} 1.8 2.6 2.2

Table 3: Best fused SBMV-CWYV verifier performance

Since SBMV performance was poor for short
keywords, experiments were performed to evaluate
fusion of multiple CWVs. Although improvements in
performance were observed for SBMV-CWV over
CWYV for short keywords, it was hoped that fusing
multiple well performing cohort-word verifiers would
yield even greater improvements, since the individual
CWYV systems performed better than SBMV for short-
word KV. To reduce the scope of the experiments,
fusion of only 2 verifiers at a time was considered.
Table 4 shows the best performing CWV-CWV fused
verifiers.

Phone CWV-CWV FR FR FR

Len Best Method EVAL1 | EVAL2 | Avg.

4 EVALI 11.5 18.8 15.1
{1,2,3,3},{2,1,4,4}

4 EVAL2 20.2 8.7 14.5
{1,2,3,3},{2,2,2,3}

4 All 13.9 10.1 12.0
{1,2,3,3},{2,1,1,3}

6 EVALI 1.1 7.2 4.1
{2,1,3,4},{1,1,3,4}

6 EVAL2 2.0 4.3 32
{2,1,3,4},{1,2,3,4}

6 All 2.0 4.3 32
{2,1,3,4},{1,2,3,4}

8 EVALI1 4.5 7.2 5.9
{1,1,44,},{2,2,1,3}

8 EVAL2 5.7 5.5 5.6
{1,1,4,4},{2,2,4,4}

8 All 5.7 5.5 5.6
{1,1,4,4},{2,2,4,4}

Table 4: Best fused CWV-CWYV verifier performance
The CWV-CWV architecture seemed to be
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particularly well suited for short KV, resulting in a
15.5%, 36.8% and 56.8% relative gain in overall FR
over the best SBMV-CWYV, CWV and SBMYV verifiers
respectively. Improvements were also seen for the 6-
phone keyword experiments, although the gain over
the SBMV-CWV system was much more marginal.
CWV-CWV fusion did not yield improved
performance for the 8-phone keyword set, though this
was expected considering that individual CWV did not
outperform SBMV for the 8-phone keyword sets.

A consistent trend that was noted across all
experiments was the dependence of CWV
performance on cohort-word selection parameters.
Although not shown here, performance of CWV
varied dramatically with cohort-word selection
parameters. For example for the 4-phone EVALLI set,
the best performing CWV configuration had an FR of
16.2% while the average FR across all evaluated
CWYV configurations was 29.3%. The use of CWV
therefore requires careful tuning of the cohort-word
selection parameters. However it appears that the
relative  performance between various CWV
configurations remains reasonably consistent between
fused and unfused systems. This means that the
optimum cohort-word selection parameters for CWV
are most likely to give close to optimum performance
when used in a fused CWV-CWV or SBMV-CWV
system. For example, the best EVALI CWV system
was only 0.4% poorer when used in a fused CWV-
CWV system compared to the best EVAL1 CWV-
CWYV system. Unfortunately there does not appear to
be a single set of cohort-word selection parameters
that is optimal for all target word phone lengths.

As previously discussed, short-word KV is a particular
difficult problem leading to significantly higher false
rejection rates compared to KV for longer target word
lengths. Hence the absolute gains observed using the
CWV and CWV-CWV for short-word KV are
particularly pleasing. The DET plot in figure 4 further
demonstrates the benefits of CWV and CWV-CWV.
Both methods consistently outperformed SBMV for
short-word KV at the majority of operating points.

Overall, the experimental results suggest that an
optimum KV system would be keyword phone-length
dependent. A CWV-CWYV verifier would be used for
short length keywords, a SBMV-CWV or CWV-CWV
verifier for medium length keywords and a SBMV-
CWV verifier for long keywords. Using this
approach, a 5.8% overall FR could be obtained for all
keyword lengths on the EVAL1 and EVAL2 word
candidate sets. This is a significant gain over the
14.0% overall FR using SBMV alone and 10.7\%
overall FR using the optimal CWV verifier for each
keyword length class.

5. Conclusion

The experiments demonstrated that fused SBMV-
CWV and CWV-CWYV verification yielded dramatic
gains in KV performance over unfused SBMV and

CWV. The CWV-CWV system was more suited to
short-to-medium length KV while the SBMV-CWV
system performed best for medium-to-long length KV.
Overall a 5.8% false rejection rate at 10% false
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Figure 1: DET plot for best verifiers on combined 4-
phone EVALI1 and EVAL?2 sets

acceptance was achieved using a combination of
CWV-CWV and SBMV-CWWV. This was a
considerable gain over the 14.0% false rejection rate
achieved by the baseline SBMV system and the 10.7%
false rejection rate obtained using the best performing
baseline CWV systems.
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