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ABSTRACT

We present a method for extracting sentences from an individual
document to serve as a document summary or a pre-cursor to
creating a generic document abstract. We apply syntactic analysis
of the text that produces a logical form analysis for each sentence.
We use subject—object—predicate (SOP) triples from individual
sentences to create a semantic graph of the original document and
the corresponding human extracted summary. Using the Support
Vector Machines learning algorithm, we train a classifier to
identify SOP triples from the document semantic graph that
belong to the summary. The classifier is then used for automatic
extraction of summaries from test documents. Our experiments
with the DUC 2002 and CAST datasets show that including
semantic properties and topological graph properties of logical
triples yields statistically significant improvement of the micro-
average F1 measure for both the extraction of SOP triples that
correspond to the semantic structure of extracts and the extraction
of summary sentences. Evaluation based on ROUGE shows
similar results for the extracted summary sentences.

1. INTRODUCTION

Document summarization refers to the task of creating document
surrogates that are smaller in size but retain various characteristics
of the original document. To automate the process of abstracting,
researchers generally rely on a two phase process. First, key
textual elements, e.g., keywords, clauses, sentences, or paragraphs
are extracted from text using linguistic and statistical analyses. In
the second step, the extracted text may be used as a summary.
Such summaries are referred to as ‘extracts’. Alternatively, textual
elements can be used to generate new text, similar to the human
authored abstract.

Automatic generation of texts that resemble human abstracts
presents a number of challenges. While abstracts may include
portions of document text, it has been shown that authors of
abstracts often rewrite the text, interpreting the content and fusing
the concepts. In the study by Jing [6] of 300 human-written
summaries of news articles, 19% of summary sentences did not
have matching sentences in the document. The remainder of
summary sentences overlapped with a single sentence content in
42% of cases. This included matches through paraphrasing and
syntactic transformation, implying that the number of perfectly
aligned matches would be even lower.
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Other studies show that the number of aligned sentences varies
significantly from corpus to corpus. For the set of 202
computational linguistic papers used by Teufel and Moens [18]
the perfect alignment is observed for only 31.7% of abstract
sentences. That figure rises to 79% in 188 technical papers in [9].
Thus, if the automatic summarization methods are to take
advantage of the texts from the document it is important to
investigate alignment on the sub-sentence level, e.g., at the level
of clauses as investigated by Marcu [12]. Comparing the meaning
of clauses in the document and corresponding abstracts, by
employing human subjects, Marcu [12] showed that in order to
create an abstract from extracted text one may need to start with a
pool of extracted clauses with a total length 2.76 times larger than
the length of the resulting abstract.

This implies that relevant concepts, carrying the meaning, are
scattered across clauses. Starting with a hypothesis that the main
functional elements of sentences and clauses are Subjects,
Objects, and Predicates, we ask whether identifying and
exploiting links among them could facilitate the extraction of
relevant text. Thus, we devise a method that creates a semantic
graph of a document, based on logical form triples subject—
predicate—object (SPO), and learns a relevant sub-graph that could
be used for creating summaries.

In order to establish the plausibility of this approach we first focus
on learning to automate human extracts. We assess how well the
model can extract the substructure of the graph that corresponds
to the extracted sentences. This substructure is then the basis for
extracting the relevant text from the document. Restricting the
evaluation to sentence extraction we gain a good understanding of
the effectiveness of the approach and learnt model. Essentially we
decouple the evaluation of the learning model from the issues of
text generation that arises in the creation of abstracts.

In this paper we present results from our experiments on two data
sets, CAST [4] and a part of DUC 2002 [3], equipped with human
extracted summaries. We demonstrate that the feature attributes
related to the connectivity of the semantic graph and linguistic
properties of the graph nodes significantly contribute to the
performance of our summary extraction model. With this
understanding we set solid foundations for exploring similar
learning models for document abstraction.
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Figure 1. Summarization procedure based on semantic structure analysis.

In the following sections we describe the procedure that we use to
generate the semantic graphs and define feature attributes for the
learning model. We present the results of the experiments and
discuss how they can guide the future work.

2. SEMANTIC GRAPH GENERATION

In this study we create a novel representation of the document
content that relies on the deep syntactic analysis of the text. We
extract elementary syntactic structures from individual sentences
in the form of logical form triples, i.e., subject—predicate—object
triples, and use linguistic properties of the nodes in the triples to
build semantic graphs for both documents and corresponding
summaries.

We expect that the graph of the extracted summary would capture
essential semantic relations among concepts and that the resulting
structure could be found within the corresponding document
semantic graph. Thus, we reduce the problem of summarization to
acquiring machine learning models for mapping between the
document graph and the graph of a summary.

We generate a semantic graph in three steps:

- Syntactic analysis of the text — We apply deep syntactic
analysis to document sentences, using NLPWin linguistic tool
[2][5], and extract logical form triples.

- Co-reference resolution — We identify co-references for named
entities through the surface form matching and text layout
analysis. Thus we consolidate expressions that refer to the
same named entity.

- We merge the resulting logical form triples into a semantic
graph and analyze the graph properties. The nodes in our
graphs correspond to Subjects and Objects. A link between
them corresponds to a Predicate.

In our research we investigated semantic graphs that involved
pronominal reference resolution and semantic normalization.
However, initial experiments showed that using anaphora
resolution which achieved 80% accuracy and WordNet [20] for
synonym normalization yields marginal improvement in the
performance of the summary extractor. Thus, for the sake of
clarity and simplicity we present the method using minimal post-

processing of the NLPWin output through co-reference
resolution.

2.1 Linguistic Analysis

For linguistic analysis of text we use Microsoft’s NLPWin natural
language processing tool. NLPWin first segments the text into
individual sentences, converts sentence text into a parse tree that
represents the syntactic structure of the text (Figure 2) and then
produces a sentence logical form that reflects the meaning, i.e.,
semantic structure of the text (Figure 3). This process involves a
variety of techniques: use of knowledge base, grammar rules, and
probabilistic methods in analyzing the text.
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Figure 2. Syntactic tree for the sentence
“Jure sent Marko a letter”
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Figure 3. Logical form for the sentence

The logical form in Figure 3, shows that the sentence is about
sending, where “Jure” is the deep subject (an “Agent” of the
activity), “Marko” is the deep indirect object (having a
“Benefactive” role), and the “letter” is the deep direct object
(assuming the “Patient” role). The notations in parentheses
provide semantic information about each node (e.g., “Jure” is a
masculine, singular, and proper name).

From the logical form we extract constituent sub-structures in the
form of triples: “Jure”—“send”—*“Marko” and “Jure”—*send”
—“letter”. For each node we preserve semantic tags that are
assigned by the NLPWin software. These are used in our further
linguistic analyses and machine learning stage.
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Figure 4. Process of creating a semantic graph.

Figure 4 outlines the main processes. Identified logical form
triples are linked into a graph based on common nodes. Figure 5
shows an example of a semantic graph for an entire document.

2.2 Co-reference Resolution for Named

Entities

It is common that terms with different surface forms refer to the
same entity in the same document. Identifying such terms is
referred to as co-reference resolution. We restrict our co-reference
resolution attempt to syntactic nodes that, in the NLPWin
analysis, have the attribute of ‘named entity’. Such are names of
people, places, companies, and similar.

For each named entity we record the gender tag which reduces the
number of terms that need to be examined for co-reference
resolution. Starting with multi-word named entities, we first
eliminate the standard set of English stop words and ‘common’
words, such as “Mr.”, “Mrs.”, “international”, “company”,
“group”, “federal”, etc. We then apply a simple rule by which two
terms with distinct surface forms refer to the same entity if all the
words from one term also appear as words in the other term. The
algorithm, for example, correctly finds that “Hillary Rodham
Clinton”, “Hillary Clinton”, “Hillary Rodham”, and “Mrs.
Clinton” all refer to the same entity. This approach is similar to
the ones explored in related research [14] and has proven to be
effective in the context of our study, yielding better learning
models.

2.3 Construction of the Semantic Graph

We merge the logical form triples on subject and object nodes
which belong to the same normalized semantic class and produce
semantic graph, as shown in Figure 5. Subjects and objects are
nodes in a graph and predicates label the relations between them.
Each node is also described with a set of properties — explanatory
words which are helpful for understanding the content of the
node.

For each node in a semantic graph we calculate the number of
topological properties. These are later used as attributes of logical
form triples during the sub-graph learning process. The full set of
features used in the learning process is given in section 3.2

3. LEARNING SEMANTIC SUB-GRAPHS
USING SUPPORT VECTOR MACHINES

Using linguistic procedures described in Section 2 we can
generate, for each pair of document and document summary, the
corresponding set of subject—predicate—object triples and
associate them with a rich set of attributes, coming from
linguistic, statistical, and graph analysis. These serve as the basis
for training our summarization models.

3.1 Data Sets
We run our experiments on two data sets: a subset of the
DUC2002 dataset and CAST collection.

3.1.1 DUC2002 Data set

We use the DUC2002 document collection from the Document
Understanding Conference (DUC) 2002 [3]. For our experiments
we use training part of DUC 2002, which consists of 300
newspaper articles on 30 different topics, collected from Financial
Times, Wall Street Journal, Associated Press, and similar sources.
Almost half of these documents have human extracted sentences,
interpreted as extracted summaries. These are not used in the
official DUC evaluation since DUC is primarily focused on
generating abstracts. Thus, we cannot make a direct comparison
with DUC systems performance. However, the data is useful for
our objective of exploring various aspects of our approach.

On average, an article in the DUC data set contains about 1100
words or 50 sentences, each having 22 words. About 7.5
sentences are selected into the summary. After applying our
linguistic processing, we find, on average 81 logical triples per
document with 15 of them contained in extracted summary
sentences. In preparation for learning, we label as positive
examples all subject—predicate—object triples that correspond to
sentences in the human extracted summaries. Triples form other
sentences are designated as negative examples.

3.1.2 CAST Data set

CAST corpus [4] contains texts from the Reuters Corpus
annotated with information that can be used to train and evaluate
automatic summarization methods. Four annotators marked 15%
of document sentences as essential and additional 15% as
important for the summary. However the distribution of
documents across assessors has been rather arbitrary and for some
documents we have up to three sets of sentence selections while
for others only one. For that reason we decided to run our
experiments on the set of 89 documents annotated by a single
assessor, Annotator 1. We run experiments that model separately
extraction of short (15%) summaries, represented by sentences
marked as essential, and longer (30%) summaries, which include
both sentences marked as essential and sentences marked as
important.

An average length article in the CAST data set contains about 528
words or 29 sentences, each having 18 words. The assessor
selected on average about 6 sentences for short summaries and
additional 6 for longer summaries. After applying our linguistic
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Figure 5. Full semantic graph of the DUC 2002 document “Long Valley volcano activities”. Subject/object nodes indicated
by the light color (yellow) nodes in the graph indicate summary nodes. Gray nodes indicate non-summary nodes. We learn
a model for distinguishing between the light and dark nodes in the graph.

processing, we find on average 41 logical form triples per
document with 6 or 12 of them included in extracted sentences for
short and longer summaries, respectively.

3.2 Feature Set

As features for the learning process, we consider logical form
triples characterized by three types of attributes:

- Linguistic attributes which include logical form tags (subject,
predicate, object), part of speech tags, and about 70 semantic
tags (such as gender, location name, person name, etc.). There
are total 118 distinct linguistic attributes for each node.

- Semantic graph attributes describing properties of the graph.
For each node we calculate the number of incoming and
outgoing links, Hubs and Authorities [8] and PageRank [15]
weights. We also include the statistics on the number nodes
reachable by 2, 3 and 4 hops away respectively, and the total
of reachable nodes. We consider both the directed and
undirected versions of the semantic graph when calculating
these statistics. There are total 14 attributes calculated from
the semantic graph.

- Document discourse structure is approximated by several
attributes: the location of the sentence in the document and the
triple in the sentence, frequency and location of the word
inside the sentence, number of different senses of the word,
and related.

Each set of attributes is represented as a sparse vector of binary
and real-valued numbers. These are concatenated into a single
sparse vector and normalized to the unit length, to represent a
node in the logical form triple. Similarly, for each triple the node
vectors are concatenated and normalized. The resulting vectors for
logical form triples contain about 372 binary and real-valued
attributes. For the DUC dataset, 69 of these components have
non-zero values, on average. For the CAST dataset we find 327
attributes total with 68 non-zero values per triple on average.

3.3 Learning Algorithm

This rich set of features serves as input to the Support Vector
Machine (SVM) classifier [1][7]. In the initial experiments we
explored SVMs with polynomial kernel (up to degree five) and
RBF kernel. However, the results were not significantly different
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Figure 6. Automatically generated summary (semantic graph) from the document “Long Valley volcano activities”.
Subject/object nodes indicated by the light color (yellow) nodes in the graph indicate correct logical form nodes. Dark
gray nodes are false positive and false negative nodes.

from the SVMs with the linear kernel. Thus we continued our
experiments with the linear SVMs.

We define the learning task as a binary classification problem. We
label as positive examples all subject—predicate—object triples that
were extracted from the document sentences which humans
selected into the summary. Triples from all other sentences are
designated as negative examples. We then learn a model that
discriminates between these two classes of triples.

3.4 Experimental Setup

We evaluate performance of both, the extraction of semantic
structure elements, i.e., logical form triples, and the extraction of
document sentences. We use extracted logical form ftriples to
identify the appropriate sentences for inclusion into the summary.
We apply a simple decision rule by which a sentence is included
in the summary if it contains at least one triple identified by the
learning algorithm. We accumulate the summaries to satisfy the
length criteria. All reported experiment statistics are micro-
averaged over the instances of logical triple and sentence
classifications, respectively.

One important objective of our research is to understand the
relative importance of various attribute types that describe the
logical form triples. Thus we evaluate how adding features to the
model impacts the precision and recall of extracted logical form
triples and corresponding summaries. We report the standard
precision and recall and their harmonic mean — the F1 score. All
the experiments are run using stratified 10-fold cross-validation,
where samples of documents are selected randomly and
corresponding sentences (triples) are used for training and testing.
We take into account the document boundaries and therefore the

triples from a single document all belong either to the training or
test set and are never shared between the two.

We always run and evaluate the resulting models on both the
training and the test sets, to gain an insight into the generalization
of the model. When evaluating summaries, we are also interested
in the coverage of the human extracts achieved by our extracted
summaries. In instances where we miss to extract the correct
sentence, we still wish to assess whether the automatically
extracted sentence is close in content to the ones that we missed.
For that we calculate the overlap between the automatically
extracted summaries and human extracted summaries using
ROUGE [10], the measure adopted by DUC as the standard for
assessing the summary coverage. ROUGE is a recall oriented
measure, based on n-gram statistics that has been found highly
correlated with human evaluations. We use ROUGE n-gram(1,1)
statistics and restrict the length of the automatically generated
summary to be the same as of the human sentence extract.

4. EXPERIMENT RESULTS

Tables 1-3 summarize the results of the sentence extraction based
on the learned SVM classifier for the DUC and CAST datasets.
Precision, recall and F1 measures for the extraction of triples are
very close to the performance of extracted sentences and therefore
we do not present them separately.

4.1.1 Impact of Different Feature Attributes
Performance statistics presented in Tables 1 to 3 provides insight
into the relative importance of different attribute types, the graph
topological properties, the linguistic features, and the statistical
and discourse attributes.



Table 1: Performance of sentence extraction on the DUC2002 extracts, in terms of macro-average Precision, Recall and F1
measures and Rouge score. Results for stratified ten-fold cross validation.

Attribate set Training set Test set
Precision Recall F1 Precision Recall F1 Rouge
Sentence position and terms 65.08 92.14 76.28 28.77 37.27 32.48 0.69
Triple and sentence position 31.29 53.38 39.45 31.12 53.34 39.32 0.71
Graph attributes 28.26 62.99 39.02 27.58 61.67 38.11 0.73
Linguistic attributes 25.79 62.48 36.51 20.79 51.87 29.69 0.78
Position + Linguistic 30.74 67.33 42.21 28.66 63.23 39.44 0.76
Position + Graph 34.44 65.37 45.11 33.67 64.39 44.22 0.83
Position + Graph + Linguistic 34.25 71.40 46.29 31.85 66.77 43.13 0.82

Table 2: Performance of the sentence selection on the CAST 15% extracts (essential sentences), in terms of macro-average
Precision, Recall and F1 measures and Rouge score. Results for the stratified ten-fold cross validation.

Attribute set Training set Test set
Precision Recall F1 Precision Recall F1 Rouge
Sentence position and terms 85.54 87.43 86.42 30.32 25.14 27.49 0.59
Triple and sentence position 33.07 65.69 44.99 32.54 64.54 43.27 0.62
Graph attributes 20.92 59.52 30.95 19.82 56.85 29.39 0.66
Linguistic attributes 35.95 57.10 44.12 21.34 32.83 25.87 0.62
Position + Linguistic 39.89 74.59 51.89 34.31 63.41 44.53 0.73
Position + Graph 33.70 72.63 46.04 32.47 70.92 44.54 0.73
Position + Graph + Linguistic 40.43 77.40 53.12 33.83 64.35 44.34 0.74

Table 3: Performance on the CAST 30% extracts (essential and important sentences), in terms of macro-average Precision,
Recall and F1 measures and Rouge score. Results for the stratified ten-fold cross validation.

Attribute set Training set Test set
Precision Recall F1 Precision Recall F1 Rouge
Sentence position and terms 87.97 84.27 86.08 43.24 33.68 37.86 0.59
Triple and sentence position 44.62 59.44 50.97 43.67 58.42 49.98 0.68
Graph attributes 38.42 67.42 48.95 36.80 65.85 47.22 0.67
Linguistic attributes 45.96 80.41 58.41 40.22 70.84 51.31 0.73
Position + Linguistic 50.57 74.18 60.14 43.92 64.25 52.18 0.72
Position + Graph 45.10 70.60 55.04 43.47 67.26 52.81 0.71
Position + Graph + Linguistic 51.04 75.00 60.74 44.45 65.57 52.98 0.72

The first row of each table shows the baseline model where we
use only sentence position and sentence terms for learning the
model. In all cases we observe very good performance of the
baseline on training set, but the model does not generalize well —
has poor performance on the test set. The Rouge score of baseline
is also quite low. For comparison we also generated another set of
baseline summaries by taking first sentences in each document.
Over all datasets Rouge score of these summaries was additional
0.10 lower than of the baseline obtained using machine learning.

For the all datasets, the performance statistics are obtained from
the 10-fold cross-validation. Relative difference in performance
has been evaluated using pair-wise t-test and it has been
established that the differences between different runs are
statistically significant.

From Table 1 we see that including semantic graph attributes
consistently improves recall and thus the F1 score. Starting with
only linguistic attributes and adding information about position,
we experience 9.75% absolute increase in the F1 measure. As new
attributes are added to describe the triple from additional



perspectives, the performance of the classifier consistently
increases. The cumulative effect of all attributes considered in the
study is 26.5% relative increase in F1 measure over the baseline

Table 4: Some of the most important Subject—Predicate—
Object triple attributes for DUC experiments

Attribute rank
Attribute name 1 3rd
.. | Median .
quartile quartile
Authority weight of Object node 1 1 1
Size of weakly connected 2 25 3
component of Object node )
Number of links of Object node 2 3 3
Is Object a name of a country 4 5 5
Size of weakly connected 6 7 9
component of Subject node
Number of links of Subject node 6 10.5 12
PageRank weight of Object node 6 11 12
Is Object.a name qfa 3 13 16
geographical location
Authority weight of Subject 13 18.5 23

that uses only sentence terms and position attributes. The model
which uses information about position of the triple and the
structure of semantic graph performs best both in F1 and Rouge
scores.

In terms of Rouge measure, linguistic features (syntactic and
semantic tags) outperform the model which relies only on the
semantic graph. For linguistic attributes we also observe a
discrepancy between F1 and Rouge score. Linguistic attributes
score low on F1 but usually relatively high on Rouge. On the
other hand, for position attributes we observe the reverse effect —
good F1 and low Rouge score.

We make similar observations on CAST dataset (tables 2 and 3).
We see that using position and graph attributes gives very good
performance in terms of F1 and Rouge measures. We observe that
using only semantic graph attributes does not give a very good
performance. While the size of sentence extracts in DUC and
CAST are similar, DUC documents are much longer, contain
more logical triples, and therefore have semantic graphs that are
better connected. We manually inspected CAST semantic graphs
and observed that they are not so well connected and appear less
helpful for summarization.

4.1.2 Observations from the SVM Normal.

We also inspect the learned SVM models, i.e., the SVM normal,
for the weights assigned to various attributes during the training
process. We normalize each attribute to have a value between 0
and 1. This way we prevent the attributes with smaller values to
automatically have higher weights. We then observe the relative
rank of attribute weights over 10 folds. Since the distributions of
weights and corresponding attribute ranks are skewed they are
best described by the median.

From table 4 it is interesting to see that the semantic graph
attributes are consistently ranked high among the attributes used

in the model. They describe the elements of a triple in relation to
other entities mentioned in the text and capture the overall
structure of the document. For example, ‘Authority weight of
Object node’ measures how other important ‘hub’ nodes in the
graph link to it. A good ‘hub’ points to nodes with ‘authoritative’
content, and a node has a high ‘authority’ if it is pointed to by
good hubs. In our graph representations, subjects are hubs
pointing to authorities — objects and thus the authority weight
captures how important is the object, i.e., in how much actions,
described by predicates, it is involved.

These results support our intuition that relations among concepts
in the document that result from the syntactic and semantic
properties of the text are important for summarization.
Interestingly, feature attributes that most strongly characterize
non-summary triples are mainly linguistic attributes describing
gender, position of the verb, as being inside the quotes, position
of the sentence in the document, word frequency, and similar —
the latter few attributes are typically used in statistical approaches
to summary extraction.

5. RELATED WORK

Over the past decades, research in text summarization has
produced a great volume of literature and methods. For overview
and insights into the state-of-the-art we refer to [16][17] and
comment on the work that relates to several aspects of our
approach. While most of the past work stays in the realm of
shallow text parsing level and statistical processing, our approach
is unique in that it combines two aspects: (1) it introduces an
intermediate layer of text representation within which the
structure and the content of both the document and summary are
captured and (2) it uses machine learning to identify elements of
the semantic structures, i.e., concepts and relations, as oppose to
learning from linguistic features of finer granularity, such as
keywords and noun phrases [9][18] or yet, complete sentences
[13]. We also note that the semantic graph representation opens
possibilities for novel types of document surrogates, focused not
on reading but navigation through the document on the basis of
captured concepts and relations.

Graph based methods. Application of graph representation in
summarization has been applied by Mihalcea [13] by treating
individual sentences as nodes in the graph and establishing links
among the sentences based the content overlap. In addition to the
difference in the text granularity level at which the graph is
applied, the method in [13] does not involve learning. It selects
sentences by setting the threshold on the scores associated with
the graph nodes.

Most similar to our approach to constructing the semantic graph is
the method by Vanderwende et al. [19] aimed at generating event-
centric summaries. The method uses the same linguistic tool,
NLPWin to obtain logical form triples from sentences but
constructs the semantic graph in a rather different way. In order to
capture text about events Vanderwende et al. [19] treat Predicates
as nodes in the graph, together with Subjects and Objects while
the links between the nodes are inherited from the logical form
analysis. More precisely, the atomic structure of the graph is a
triple (Node;, relation/link, Node;), where relation is a syntactic
tag such as: direct object, location, time, and similar. For example,
the graph would contain (“Marko”, Subject, “Send”), (“Send”,
Object, “Letter”), (“Send”, Time, “Wednesday”). In our



representation the elementary structure is (“Marko”, “Send”,
“Letter”). Therefore, the statistical properties of the graph and link
weight propagation have different meaning and effect. Similarly
to Mihalcea [13], Vanderwendte et al. [19] do not apply learning
to select substructures but set the score threshold for selection of
logical form triples.

Both methods [13] and [19] are applied in the context of
generating abstracts and their encouraging results lead us to
believe that further evaluation of our method will show similar
results.

In their work Mani & Bloedorn [11] and Kupiec et al. [9] applied
several learning algorithms to the set of features that were in the
previous research applied in an adhoc manner to select text for
summarization (sentence location, statistical measures of term
prominence, similarity between sentences, presence of proper
names or certain syntactic features in the sentence, etc.). The
significant contribution of our work is in widening the type of
features for learning to those that capture both the structure and
the content and enhance our understanding of the role that these
structural elements play in modeling sentence extraction for
summarization.

6. SUMMARY AND FUTURE WORK

We presented a novel approach to document summarization which
generates a semantic representation of the document and applies
machine learning to extract semantic sub-structure suitable for
creating summaries. We evaluated our approach on a simpler
problem of sentence extraction for document summaries. This
enabled us to focus on the characteristics of the learning model
and investigate the relative importance of feature attributes used
in learning. Experiments on the two data sets show that the
attributes which capture properties of the document semantic
structure play an important role in the sentence selection process.

Our approach, has a number of advantages over methods used so
far. Semantic structure based on the logical form enables us to
extract triples that correspond to sub-clauses of document
sentences. This provides a good foundation for collecting text
segments that would be useful for abstract creation and multi-
document summarization.

Furthermore, the rich set of linguistic and graph attributes enable
the learning algorithm to select the set of attributes that best
model the summarization process for a particular set of documents
and a particular performance measure. For example, we noticed
that for training data with shorter summaries linguistic features
play more significant role in optimizing the performance than the
structure features. That is reversed in the situation where we have
longer summaries and longer documents, for which the semantic
structure is richer and more informative.

Our future work will involve explorations of alternative semantic
structures on additional data sets and a wider set of summarization
problems, including human generated abstracts and cross
document summaries.
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