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ABSTRACT 
Optimizing performance of classification models often involves 
feature selection to eliminate noise from the feature set or reduce 
computational complexity by controlling the dimensionality of the 
feature space. A refinement of the feature set is typically 
performed in two steps: by scoring and ranking the features and 
then applying a selection criterion. Empirical studies that explore 
the effectiveness of feature selection methods are typically limited 
to identifying the number or percentage of features to be retained 
in order to maximize the classification performance. Since no 
further characterizations of the feature set are considered beyond 
its size, we currently have a limited understanding of the 
relationship between the classifier performance and the properties 
of the selected set of features. This paper presents a framework for 
characterizing feature weighting methods and selected features 
sets and exploring how these characteristics account for the 
performance of a given classifier. We illustrate the use of two 
feature set statistics: cumulative information gain of the ranked 
features and the sparsity of data representation that results from 
the selected feature set. We apply a novel approach of 
synthesizing ranked lists of features that satisfy given cumulative 
information gain and sparsity constraints. We show how the use of 
synthesized rankings enables us to investigate the degree to which 
the feature set properties explain the behaviour of a classifier, e.g., 
Naïve Bayes classifier, when used in conjunction with different 
feature weighting schemes. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: retrieval models, 
selection process. I.2.6 [Learning]: Concept learning. 

Keywords 
Feature weighting, feature selection, text categorization, 
information retrieval, vector sparsity, density  

1. INTRODUCTION 
In text classification, feature selection is widely used to control 
the dimensionality of the feature space or reduce noise in the 
feature set. That procedure typically involves two steps: first 
applying a feature weighing scheme to score and rank the features 
and then specifying the feature selection criterion that determines 
which portion of the ranked list of features should be retained for 
further processing. In most cases the selection criterion is the top 
N or top N percent of the ranked features. Identifying N that 
optimizes the performance of the classifier is treated as an 
empirical question that requires training and evaluation of the 

classification models for a range of values for N. As a result, no 
systematic investigation of the feature set properties has been 
attempted to link the characteristics of the selected feature sets and 
the classification performance.  

This paper introduces a framework that fulfills this role and, to 
our knowledge, is the first of that kind. It involves defining a 
single or multiple functions N→F(N) for the ranked list of 
features, which capture properties of the feature sets that we wish 
to observe. An example of such a property is the cumulative 
information gain of features included in the selected feature set: 
one can observe the change in value of the cumulative information 
gain I(N) as the feature set grows with the increased N. This is 
represented as a qualitative curve N→I(N) associated with the 
particular feature ranking.  

On the other hand, for a given weighting scheme and the 
corresponding feature ranking we observe the performance 
statistics of a given classifier as a function N→P(N) of the rank N, 
which defines the set of features and the its size.   The questions 
then arise: 

- To which degree the particular property of the feature set, 
captured by F(N), characterizes the given term weighting 
scheme. In other words,  how close a randomly generated 
feature ranking that satisfies the characteristic function  
N→F(N) resembles the original feature ranking which 
resulted from the given term weighting scheme? 

- To which degree the deviation from the original ranking 
influences the performance of the classifier, i.e., if some 
other ranking satisfies the constraint N→F(N), how close 
does it reproduce the original performance curve N→P(N)? 

We illustrate the use of this framework to investigate the 
performance of the Naïve Bayes classifier when used in 
conjunction with five feature weighing schemes. As examples of 
the feature set characteristic functions N→F(N) we consider the 
cumulative information gain and the sparsity of the document 
vectors induced by the selected feature set.   

In the following section we describe general issues associated 
with feature selection methods and further discuss the proposed 
framework. We briefly introduce the feature weighting methods 
used in our experiments and present the experiment design and 
findings. We refer to the related work throughout the paper, as 
appropriate. We conclude with the summary of our work and a set 
of open questions that will be addressed in our future research.  



2. FEATURE SELECTION RESEARCH 
Research in feature selection methods has been to a large extent 
focused on investigating how effective a given feature weighting 
method is in combination with a particular classification method. 
This typically leads to a more or less systematic evaluation of the 
classification performance for a range of feature set sizes, 
determined by different cut-off levels of the feature ranked list 
[6][1][9][13]. Our objective is to move that research forward by 
investigating the dependency of the classifier performance not 
only on the feature set size but the other properties of the selected 
feature sets.   

For the purpose of this discussion we equate the feature weighting 
algorithm with the feature ranking that the assigned weights 
induce. We fully realize that in some instances the ranking of the 
features is not uniquely defined by assigned the weights since 
multiple features may be given the same value. Furthermore, 
while the weighing scheme cannot differentiate between different 
permutations of features with same score, their ordering and 
selection may have a significant impact on the classifier 
performance.  However, for the sake of clarity and simplicity we 
disregard that issue for now and focus on gaining a better 
understanding of the feature selection methods and the resulting 
feature sets.  

2.1 Combining Feature Weighting and 
Classification Models 
Studies have shown that different feature ranking methods may 
lead to very different classification performance for the same 
classification model [13]. This can be observed by considering 
how the performance depends on the feature set size N, i.e., the 
performance curves N→P(N), where P(N) is some suitable 
performance measure (in our experiments, we used the well-
known F1-measure). Figure 3 shows the performance of the Naïve 
Bayes algorithm when five different feature ranking methods are 
used (see Section 3). Consequently, setting in advance a fixed 
number of features to be retained from the ranked list and used for 
classification may lead to a dramatically different performance, 
depending on the feature weighting scheme.  

An intuitive explanation of this observation is that a feature 
weighting can be more or less coordinated with the classification 
model, in the sense that they may be governed by the same or 
distinct theoretical models. In that respect, feature scoring using 
Odds Ratio is seen as a good match for the Naive Bayes classifier 
and has been shown to improve its performance [3]. However, this 
argumentation is not satisfactory, in particular, when the feature 
ranking is based on a scoring scheme that cannot be expressed in a 
clear analytical form, such as scoring features based on the 
weights generated by the normal of the linear classifiers, such as 
SVM and Perceptron [10][13]. Our position is that the key for 
understanding the interaction between the feature selection and 
the classification methods lies in connecting statistical properties 
of the selected feature sets and the classifier performance. Thus 
we propose a framework that enables us to conduct that 
investigation. 
It is important to differentiate between statistics used to score and 
rank individual features by the weighting scheme and the 
statistical properties of the selected feature set. In most cases the 
classification model does not explicitly incorporate the weights 
assigned to the features during ranking. Thus, the performance of 

the classifier is a function of the ranking itself and the statistical 
properties of the selected feature set that is used by the 
classification method.   

3. A FRAMEWORK FOR 
CHARACTERIZING FEATURE RANKINGS 
We propose to investigate the dependency of the text classifier on 
the properties of the feature set through the framework that 
involves the following concepts and procedures:  
- Ranked feature set. For a given feature set, consider a 

weighting scheme. The result is a ranked set of features.  

- Statistical profile of the feature set. Characterize the set of 
ranked features by relevant statistics F, i.e., generate a statis-
tical profile by observing  one or several characteristic 
functions and the corresponding characteristic curve 
N→F(N). 

- Performance statistics for the feature set. For the same rank 
list, consider the performance curve of the classifier, showing 
the change of performance statistics (e.g. the F1-measure) 
with the size N of the used feature set.  

- Synthesized ranked sets. Assess to what degree the statistical 
profile of the feature set explains the feature weighing 
function, i.e., the resulting feature ranking. We propose to 
accomplish that in the following way. We treat the statistical 
profile – i.e., characteristic curves of the feature ranking, as 
constraints. We then generate a ranked list of features that 
satisfies the constraints, by (randomly) selecting terms from 
the entire feature set and adding them to the ranked list.  The 
result is a synthesized ranking for which the characteristic 
functions are approximately the same as those  of the original 
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Figure 1. Framework. Comparison of the classifier 
performance for the synthesized feature ranking – which 

satisfies the same feature set properties as the original 
ranking (constraints N Fi(N)), shows how effective these 

properties are in explaining the classifier performance. 
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ranking. We can investigate the discrepancy between the 
original and synthesized ranking. For example, we can look 
at the intersection of the feature sets when the cut-off is set to 
N for both ranked lists.   

- Classification peformance for the synthesized feature 
ranking. We look at the classification performance for the 
synthesized set. If we observe degradation in the performance 
of the classifier we can conclude that the observed 
characteristic function, or constraint, only weakly charac-
terizes the classifier performance. Since we can create 
synthesized sets that correspond to any number of constraints 
we can observe the dependency of the classifier performance 
on any number of constraints, generating the appropriate 
feature ranking. Those combinations of constraints that yield 
higher performance are considered better in explaining the 
behavior of the classification performance.  

The underlying assumptions of this approach are: 

- The performance of a given feature ranking (when plugged 
into a given classification method) can be reasonably ex-
plained by a finite number of statistical properties related to 
the used feature set.  

- Given a feature ranking, it can be characterized (modulo 
permutation of the features with similar score in the ranking) 
by a sufficient number of constraints N Fi(N), expressed in 
the form of characteristic curves.  

3.1 Definition of the Characteristic Functions 
As an illustration of the framework application, we here consider 
text classification using the Naïve Bayes classifier and two feature 
set statistics: the sparsity and the cumulative information gain. 
They induce two characteristic functions for the feature sets and 
serve as constraints for generating synthesized feature rankings. 

3.1.1 Sparsity 
It has been observed that some feature weighting schemes rank 
highly those features that have low distribution across the data 
corpus and thus yield very sparse representation of documents 
[10]. More precisely, if we retain only a small number N of top 
ranked features, the average number of non-zero components per 
document vector is low. Thus, a significant number of documents 
is represented as zero vectors and do not participate in the 
classifier training. For that reason, a useful characteristic of a 
feature set is the vector sparsity statistics (or vector density) 
calculated as the average number of non-zero components across 
document vectors. Applied to the ranked feature list, this leads to 
a sparsity curve N→S(N) associated with a particular feature 
scoring scheme. Figure 1 shows sparsity curves for several feature 
scoring schemes (see Section 4.1). 

As sparsity is closely related to the distribution of features in the 
corpus and its inverse, known as idf or feature specificity or 
rarity, the sparsity curves implicitly show how strong the 
influence of these statistics is on the feature scores. This is 
particularly useful when feature weighting is not based on an 
explicit analytic formula but, for example, obtained from linear 
classifiers such as Support Vector Machines (SVM) [10]. 
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Figure 2. Sparsity curves for five feature ranking schemes: 
Odds Ratio (OR), Information Gain (IG), Support Vector 

Machines (SVM), Document Frequency (DF), Inverse 
Document Frequency (IDF) and a random ranking of features 

(Rnd). 
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Figure 3. Macroaveraged F1 measure for the Naïve Bayes 

classifier using different feature ranking schemes. 

For the sake of clarity, when we plot the performance curves for 
different ranking schemes we use the sparsity as the independent 
variable instead of the feature set size N. For example, Odds Ratio 
tends to rank highly many rare features, as long as they don’t 
appear in any negative documents. Therefore, it needs a 
considerable number of features to achieve a non-zero sparsity of 
vectors and yield a good classification performance. Table 1 and 2 
show the relationship between the predefined sparsity levels and 
the corresponding number of features N for different feature 
ranking schemes. 

3.1.2 Cumulative Information Gain 
Furthermore, since we are considering feature selection in the 
context of text classification, it is natural to expect that one of the 
important aspects of each feature set is the distribution of 
constituent features among documents associated with each class 
(positive and negative). One measure that combines evidence from 
the positive and negative class is information gain.  We thus use 
the cumulative information gain to characterize the set of selected 
features and consider the cumulative information gain curves 



curves N→I(N) for each of the ranking functions. I(N) is defined 
as the sum of the information gain scores IG(class, feature) for the 
N top-ranking features. 

The justification for the use of I(N) can be made also made from 
the perspective of uncertainty that remains regarding the class 
label of a document if we know the values of e.g. N top-ranking 
features. If the feature ranking puts features that are informative of 
the class label high in the rank, the uncertainty will be low. It 
could be measured using conditional entropy H(C|T1,…,TN) where 
C is the class label and T1,…,TN are the top-ranking N features. In 
practice, it would be difficult to accurately compute this entropy 
for large values of N, or to estimate the underlying probability 
distribution. However, if we assume that the terms are statistically 
independent, the conditional entropy can be expressed as 
H(C|T1,…,TN) = H(C,T1,…,TN) – H(T1,…,TN) = 
 = H(C) + H(T1,…,TN|C) – H(T1,…,TN) =  
 = H(C) + Σi=1,…,N H(Ti|C) – Σi=1,…,N H(Ti) 
 = H(C) – Σi=1,…,N [H(C)+H(Ti)–H(Ti,C)] 
 = H(C) – Σi=1,…,N MI(C;Ti). 
Here MI denotes the mutual information of C and Ti. This is also 
known as information gain, expressing the amount of information 
gained about one variable if we learn the value of the other 
variable. The sum Σi=1,…,N MI(C;Ti) is exactly the cumulative 
information gain which we use to characterize feature rankings. 
Thus, the cumulative information gain is a simplification of the 
formula for the amount of information about the class that is 
contained in the first N top-ranking features; the simplification 
would be accurate if the features were independent variables. 

3.2 Synthesis of Feature Rankings with 
Constraints 
We can use a pair of characteristic curves (a sparsity curve S(N) 
and a cumulative information gain curve I(N)) as constraints to 
generate a new, synthesized feature ranking in such a way that its 
sparsity curve and cumulative IG curve are approximately the 
same as the original curves. The algorithm that se currently use for 
generating such synthetic feature rankings is as follows: 

n1 := 1; F := {set of all features}; 
while n1 ≤ the total number of features do 
 n2 := n1 + 1; 
 while n2 ≤ the total number of features and  n2 – n1 < θn 
  and S(n2)–S(n1) < θS and I(n2)–I(n1) < θI do n2 := n1 + 1; 
 target average DF := (S(n2) – S(n1))/(n2 – n1); 
 target average IG := (I(n2) – I(n1))/(n2 – n1); 
 select n2 – n1 features from F such that their average DF  
  and average IR approximately match the target values 
  computed above;  
 append these features to the ranking which we are 
  synthesizing, and remove them from F; 
 n1 := n2; 
end while; 

The thresholds θn, θS, and θI define how fine-grained the 
approximation of the target characteristic curves (constraints) is 
meant to be. Small thresholds may result in a synthesized ranking 
which is closer to the original one. However, that also implies that 
the target characteristic curves are known in great detail, which 
may not be the case in practice. Currently our thresholds are set at 
1% of the total number of features (for θn), 1% of the total sparsity 

sparsity (for θS), and 1% of the total cumulative information gain 
(for θI). 

Our implementation uses a quad-tree to index the set F of features 
not yet included in the ranking under construction; each feature is 
represented by a 〈document frequency(DF), information gain(IG)〉 
pair. To select the next batch of n2–n1 features, we perform a 
spatial query in the quad-tree to find features with DF and IG near 
the desired average values. This is convenient from the point of 
view of implementation efficiency, but imposes an unnecessary 
additional constraint; the average DF and IG of the current batch 
of features should be close to the target values, but the DF and IG 
of each individual feature need not be  close to the target average 
values. This additional constraint sometimes makes it difficult to 
synthesize a ranking whose characteristic curves match those of 
the target ranking. The design of a better synthesis algorithm will 
be a subject of our future work. 

4. EXPERIMENT SET UP 

4.1 Feature Weighting Schemes 
In text classification, numerous feature weighting methods have 
been used to assign scores and rank features, including Odds 
Ratio, Information Gain, χ2, term strength, weights from a linear 
classifier [10][13], etc. Even the simple document frequency (DF) 
has been found to perform well in conjunction with the k-Nearest 
Neighbor method [6][5]. Here we consider a selection of five 
weighting schemes.  

4.1.1 Odds Ratio (OR) 
The Odds Ratio score of a term t is calculated as follows: 

OR = log[odds(t|positive)/odds(t|negative)] 
where odds(t|c) = P(t|c)/(1–P(t|c)), c denotes a class having two 
possible values: positive, negative. P(t|c) is the probability that the 
term t is present in a randomly chosen document from class c. 

This measure gives a high score to features typical of positive 
documents and a low score to those typical of negative docu-
ments. Note that features which occur in very few positive 
documents can get very high scores as long as they do not occur in 
negative documents. In this manner rare rather than representative 
features of positive documents obtain high scores. The method has 
been used in conjunction with Naive Bayes for categorizing web 
pages based on profiles of web usage [3] and for classifying 
Yahoo data into Yahoo categories [5]. 

4.1.2 Information Gain (IG) 
Using the information-theoretic definition of mutual information 
we define information gain (IG) of a term t as:  
IG(T) = H(C) – H(C|T) 
         = Στ,c P(C=c,T=τ) ln[P(C=c,T=τ)/P(C=c)P(T=τ)]. 

Here, τ ranges over {present, absent} and c ranges over {positive, 
negative}. In effect, IG is the amount of information about C, the 
class label, gained by knowing T (i.e. by knowing the presence or 
absence of a given word). 

4.1.3 Feature weights from linear classifiers 
Linear classifiers such as e.g. linear SVM [8] calculate predictions 
in the form: prediction(x) = sgn(wTx + b) = sgn(Σj wjxj + b), 
where wj  and xj are vector components that correspond to the 



feature i. The vector w also represents the normal to the 
hyperplane determined by the classifier, which separates positive 
from negative class examples. Features whose wi is close to 0 have 
a small influence on the predictions; it is therefore reasonable to 
assume that they are also not very important for learning. The 
SVM feature ranking thus involves ordering the features based on 
the absolute value |wi| of the coefficient they have in the 
representation of the normal. This approach has been explored in 
detail for linear SVMs in [10] [11].  
Since training an SVM model is relatively expensive, in practice 
this method is applied to a subset of the training data in order to 
obtain feature ranking and after the final set of features is selected 
the SVM classifier is trained on the full feature set  [10][13]. In 
this study we disregard this issue and assume that the SVM 
normal is based on initial training over the full set of training data.   

4.1.4 Distribution based weights 
Use of simple feature distribution (DF) in the corpus for feature 
selection has been already explored in a number of comparative 
studies, pointing its beneficial effect on the classifier performance 
[6]. For us, DF and the inverse document frequency (IDF) are of 
interest since they are often used in some form by classification 
methods. They are also most explicitly related to the concept of 
vector sparsity.   

4.2 Naïve Bayes Classification Algorithm  
For Naïve Bayes classification we use the multinomial model 
as described by McCallum and Nigam [12]. The predicted class 
for document d is the one that maximizes the posterior probability 
P(c|d), which is proportional to P(c)ΠwP(t|c)TF(t,d). Here P(c) is the 
prior probability that a document belongs to class c, P(t|c) is the 
probability that a word w, chosen randomly in a document from 
class c equals t, and TF(t, d ) is the “term frequency”, or the 
number of occurrences of word t in a document d.  
If there are only two classes, pos and neg, maximizing P(c|d) is 
equivalent to taking the sign of ln P(pos|d )/P(neg|d ), which is a 
linear combination of the term frequencies TF(w, d). The training 
consists simply of estimating the probabilities P(t|c) and P(c) from 
the training documents. 

4.3 Data  
4.3.1 Document corpus 
For experimentation we used a subset of the Reuters-2000 
collection [7] and a subset of the Reuters categories. The entire 
Reuters-2000 collection includes a total of 806,791 documents. 
For training we used a subset of 118,924 documents comprising 
about 1600 random positive examples for each Reuters category. 
For smaller categories we use all the available positive examples 
[10]. We also restrict the experiments to 16 out of 103 Reuters 
categories. These are the same categories that were suggested in 
[10] and selected based on a preliminary document classification 
experiment that involved a smaller training set of approximately 
200 positive examples per category, the complete set of Reuters 
categories, and a test set of 9,596 documents. The selection took 
into account the distribution of positive examples in the whole 
corpus and the precision recall break-even point achieved in the 
preliminary experiment. Thus, the selected 16 categories (c13, 
c15, c183, c313, e121, e13, e132, e142, e21, ghea, gobit, godd, 
gpol, gspo, m14, and m143) are diverse in terms of size and the 
difficulty they pose as classification problems. 

Table 1.  Relationship between vector sparsity or density and 
the total number of retained features. Shows that after 

retaining 10,000 features from the Odds Ratio ranking we 
arrive at only 25.7 non-zero components per document vector  

Vector Density for the Feature Weighting 
Method Num of 

Features 
DF IG SVM OR IDF 

1 0.4 0.1 0.0 0.0 0.0 
10 2.6 0.5 0.3 0.0 0.0 

100 13.0 4.1 2.3 0.0 0.0 
1000 43.8 21.3 15.3 0.6 0.0 

10000 77.9 51.6 56.1 25.7 0.3 
80000 88.3 88.3 88.3 88.3 88.3 

Table 2. Number of features in the set, for various levels of 
vector sparsity or density. Shows that we need to select top 
2,593 features from the Odds Ratio ranking to ensure that on 
document vectors contain 1 non-zero component on average. 

Feature Set Size for the Feature Weighting 
Methods 

Features 
Per 

Vector DF IG SVM OR IDF 
1 1 22 45 2,593 24,145 
10 65 369 591 8,174 65,407 
20 203 3,934 1,544 10,570 71,413 
30 425 5,988 3,019 12,403 73,517 
50 1,430 18,433 8,074 16,768 75,118 
80 12,756 60,234 28,637 57,196 75,789 

We represent documents using the bag-of-words approach, 
applying a stop-word filter (from a standard set of 523 stop-
words) and ignoring the case of the word surface form. Features 
that occur less than 4 times in Train-1600 are removed.  
For experiments with the linear SVM classifier we used the 
SVMLight program (version 3.5) by Thorsten Joachims [4].  

5. FRAMEWORK APPLICATION  
In this section we show the analysis of the Naïve Bayes 
performance within the framework described in Section 3. Since 
some degree of randomness is involved in the construction of 
synthetic feature rankings, all the results concerning them are 
averages computed across five such rankings (constructed based 
on the same characteristic curves). All the results are also 
macroaveraged across the 16 categories used in our experiments. 

5.1 Analysis  
5.1.1 Discussion of Sparsity Curves 
We observe that there are two natural reference curves: (1) the 
ranking based on document frequency DF, which sorts the 
features from the most common to the least common and produces 
the fastest growing sparsity curve, and (2) the ranking based on 
IDF, which sorts the features from the least common to most 
common and has the slowest growing sparsity curve. The other 
sparsity curves lie between these two extremes. A purely random 
ranking of features results in a sparsity curve with a constant slope 
(See Figure 2 and 3). 
We may group the resulting sparsity curves into two broad 



groups: the quickly growing ones and the slowly growing ones. 
Information gain (IG) has a quickly growing sparsity curve 
because the features with high IG should occur in most documents 
of one class and few documents of the other class. Consequently, 
very rare features do not have high IG, except if one of the classes 
is very small. The IG sparsity curve also grows quickly at the end 
of the ranking, which is where many common words with little 
relationship to either class are located.  
On the other hand, Odds Ratio (OR) has a slowly growing sparsity 
curve, because many infrequent features have high OR, as long as 
they do not occur in any negative documents. At the same time, 
many frequent features occur mostly in negative documents since 
the negative class is typically larger than the positive and have 
very low Odds Ratio, resulting in the steep growth of the sparsity 
curve towards the end of the ranking. 
For OR and IG, we are able to understand the sparsity curve from 
the formulas defining these two rankings. However, for the SVM-
based ranking we have no such formula, and consequently the 
concept of the sparsity curve is particularly interesting because it 
gives us a better understanding of the SVM feature ranking. The 
SVM sparsity curve initially grows almost as quickly as that of 
IG. While IG places most of the infrequent features in the middle 
of the ranking, SVM tends to give them the lowest scores, 
relegating them to the end of its ranking. 

5.1.2 Cumulative Information Gain Curves  
Naturally, the feature ranking based on information gain weights 
produces the fastest-growing cumulative IG curve (see Figure 5).  
It is interesting to observe that the feature ranking based on SVM 
weights also has a fairly quickly growing cumulative IG curve. 
Thus, it appears that the SVM-based ranking and the IG ranking 
are similar when characterized by the sparsity curve and the 
cumulative IG curve. Finding some other feature set 
characteristics which will distinguish these two rankings better is 
therefore an interesting problem for further work.  
The Odds Ratio ranking has a slower growing curve because it 
ranks many infrequent features highly while such feature are less 
likely to have a high information gain. The ranking based on DF 
has a cumulative IG curve very close to that of the SVM-based 
ranking, while the ranking based on IDF has an extremely slowly 
growing IG curve. We do not plot them on the graph in Figure 5 
to preserve the readability of the graph.  

5.1.3 Synthesized Curves 
If we construct a synthetic feature ranking based on the 
characteristic curves (sparsity curve and cumulative IG curve) of 
some original ranking, the characteristic curves of the synthetic 
ranking would ideally be almost identical to those of the original 
ranking.   
Figure 4 and 5 show the characteristic curves of the original and 
the synthetic rankings. As we can see, the shape of the curves 
achieved by our synthetic rankings corresponds reasonably well to 
those of the original rankings, but may in nevertheless differ 
considerably from the original curve.  
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Figure 4. Sparsity curves for Odds Ratio, inf. gain, SVM-
based ranking, and the corresponding synthetic  rankings. 
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Figure 5. The cumulative information gain curves of feature 

rankings based on Odds Ratio, information gain, SVM 
weights, and of the corresponding synthetic feature rankings. 

This is a deficiency of our version of the synthetic ranking 
construction scheme presented in Sec. 3.2, which will be 
addressed in our future work. If we apply one constraint only, e.g. 
the sparsity curve, it is not difficult to obtain a synthetic ranking 
whose curve matches the original one almost perfectly. However, 
the resulting rankings perform poorly on the classification task 
(see Section 5.3). 

5.2 Document Classification Performance 
In order to evaluate the performance of different feature rankings, 
we calculate the macroaveraged F1 measure across the 16 
categories. Figure 6 and 7 show the F1 measure as a function of 
sparsity for easier readability and comparison than when N is used 
as independent variable, In N based graphs, rankings such as  
Odds Ratio, with its preference for rare features, would have a 
very low performance for a wide range of ‘small’  values of N. 
Of the original rankings, the one based on the SVM normal 
weights is the most successful while the  OR (Odds Ratio) ranking 
performs slightly better than IG (information gain. 
The synthetic rankings and corresponding performance curves are 



designated by prefix Synth-. Unsurprisingly, Synth-IG performs 
very similarly to the original IG since it is completely determined 
by the one of  the constraints, the cumulative IG curve.  
On the other hand, Synth-SVM has a performance curve similar to 
IG (and Synth-IG) but much worse than the original SVM. This 
similarity is probably due to the fact that the shape of both the 
sparsity and the cumulative IG curve of the original SVM and IG 
rankings are similar. At the same time, the gap between the 
performance of Synth-SVM and the original SVM ranking 
remains large, which shows that a part of original SVM ranking 
success stems from properties of the feature set that has not been 
capture by the two characteristic curves used in our experiments. 
As for Synth-OR, although its performance is much below that of 
the original OR ranking, the shape of its performance curve is 
remarkably similar to the original OR (Figure 6). This suggests 
that, although the sparsity and IM constraints do not approximate 
the OR ranking sufficiently well, the resulting ranking preserves 
the same increase in performance with the growing feature set.  

5.2.1 One constraint vs two constraints 
For the sake of comparison, Figure 7 shows the performance of 
synthetic rankings obtained by taking only the sparsity curves into 
account, while disregarding the cumulative IG curves. We expect 
a loss in classification performance as no information about class 
membership is included and enforced by the sparsity constraint. 
The results are still informative. They show to what extent the per-
formance of a ranking is influenced by its sparsity curve.  
For example, SVM and IG have similarly-shaped sparsity curves 
(Figure 4) and the corresponding synthetic rankings have very 
similar performance curves. On the other hand, OR has a 
similarly-shaped sparsity curve as IDF, and the performance 
curves of Synth-OR, Synth-IDF and IDF are almost exactly the 
same. This shows that the shape of a sparsity curve by itself 
already has an effect on the performance of a feature ranking. 

5.3 Comparison of Synthetic and Original 
Feature Rankings 
If we try to synthesize a feature ranking that approximately 
exhibits the same characteristic curves as another ranking, how 
similar are the two rankings themselves? To answer this question 
we compare two feature rankings using the following method. Let 
A(S) be the set of features from the original ranking, required to 
attain the sparsity S of our training documents.  Analogously, let 
B(S) be the set of features required to satisfy the sparsity S but for 
the synthetic ranking. We compute the size of the relative 
intersection of the two sets |A(S)∩B(S)|/|A(S)∪ B(S)| (common vs 
all the features) as a measure of the overlap between the feature 
sets that correspond to the sparsity S. By varying S we obtain the 
overlap curve; if the two rankings are the same, the curve would 
have a constant value of 1 for all S.  
The chart on in Figure 8 shows the resulting curves for Odds 
Ratio, IG, and the SVM based ranking. We see considerable 
discrepancies between the original and the synthetic rankings, 
resulting in relative intersection sizes much less than 1.  
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Figure 6. Macroaveraged F1 measure for the Naïve Bayes 

classifier using different feature ranking schemes. For clarity, 
the y-axis shows only the range from 0.3 to 0.6. 
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Figure 7. Performance of synthetic rankings based only on the 

sparsity curves, ignoring the cumulative IG curves. 
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Figure 8. A comparison of the original feature rankings with 

synthesized ranking  

This shows that the feature rankings are only partially  character-
ized by the characteristic curves employed in our experiments, 
i.e., the sparsity curve and the cumulative information gain curve.  
The synthetic counterpart to Odds Ratio has a fairly large 
intersection with the original Odds Ratio ranking. We note that for 
the OddsRatio, even at low sparsity levels, there are lots of 
features involved (See Tables 1 and 2). This may make it more 



probably that the relative intersection will be larger. We also note 
that the intersection between the SVM ranking and its synthetic 
counterpart is relatively low, indicating that SVM ranking is the 
most sophisticated and least accurately characterized by the two 
characteristic curves used in these experiments. 
We are aware that some of the set discrepancies are caused by the 
imperfections in our algorithm for synthesizing feature ranking for 
a given constraint. This will be addressed in our future work. 

6. CONCLUSIONS  
In this paper we introduce a framework for analyzing the feature 
ranking schemes and their impact on the performance of a given 
classifier. The properties of both the term weighing schemes and 
the classification performance are essentially ‘projected’ onto the 
space of characteristic functions for the given features sets. By 
synthesizing alternative feature rankings that satisfy the same 
constraints we can probe to which degree each of the identified 
properties explain the performance of the classifier or determines 
the ranking associated with the given feature weighting scheme.  
We apply this method to the Naïve Bayes classifier, and five 
distinct feature weighting schemes. We explore two sets of statis-
tics as a vehicle for characterizing the feature sets: the sparsity and 
the cumulative information gain curves. We demonstrate that the 
combined constraints yield feature rankings which exhibits a 
higher accuracy in approximating the original ranking, associated 
with the feature weighting scheme. On the other side they also 
improve the classification performance.  
Our approach is unique in its attempt to provide a framework for 
increasing the understanding of the interaction between the feature 
selection and classification methods. With a suitable set of 
characterizing functions for feature rankings it might be possible 
to synthesize feature rankings that resemble and perform equally 
well as feature weighting based on sophisticated methods like 
SVM.  
As our experiments show, the sparsity curves and the cumulative 
IG curves already provide an interesting characterization of 
feature rankings, but are not sufficient to synthesize good 
approximations of the existing rankings. Thus one of the main 
directions for further work is to investigate the set of characteristic 
functions that could serve this purpose and their mutual relation 
ship. The underlying assumption is that feature scoring and 
classification functions over the ranked feature sets are well 
behaved and thus decomposable into elementary functions that 
characterize the features sets.  
Another objective of the further work is to improve the algorithm 
for constructing synthetic feature rankings to satisfy a given set of 
constraints. The improved algorithm should be able to obtain 
rankings that follow the constraints more tightly than we can 
achieve now. Ideally, one would be able to simply synthesize a 
good feature ranking based on the approximate shape of a few 
characteristic curves. However, for this approach to be useful in 
practice, properties of good rankings should have roughly similar 
characteristic curves across datasets and constraints. Thus, an 
important topic for further work is to investigate to what extent 
the shapes of such characteristic curves is stable across datasets 
and categories. 
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