
Multi-Directional Distributed Search with Aggregation

Georg Ringwelski and Youssef Hamadi
t-georgr@4c.ucc.ie, youssefh@microsoft.com

February 25, 2005

Technical Report
MSR-TR-2005-27

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

In many application domains constraint-based methods in tree-search are the
technology of choice to solve NP-complete problems today. However, when actu-
ally applying the algorithms out-of-the-box, i.e. without further customization,
we have often experienced inacceptable performance. This results from vari-
ous well-investigated factors including bad modelling and the choice of a wrong
labelling strategy. This is particularly present for the state-of-the-art search al-
gorithms for distributed constraint satisfaction (DisCSP). This paper targets on
those cases where bad performance in DisCSP can be prevented by choosing a
good labelling strategy and executing it in a benefiting order within the agents.

It is well known that clever heuristics for variable and value selection can
lead to good performance when solving certain problems[4]. However, they all
remain heuristics and we do not yet really understand what makes them good.
The risk of having chosen just the wrong heuristic will always be present. In a
preliminary experiment we compared the performance of four different variable-
ordering heuristics in distributed search on random problems. One of these
was a well-known “clever” heuristic, which turned out to be the best choice for
59% of the considered problems. In the remaining 41% of the tests other, blind
or even “anti-clever” heuristics were the best. This example makes clear, what
we have also experienced in industrial projects where domain specific knowledge
was used by experts to find good heuristics: we can never predict which heuristic
will be best for a particular problem instance. Thus, ideally we would not have
to make a choice for a strategy at all and rather be able to use an algorithm
“out-of-the-box” which finds the best strategy itself [11]. This is implemented
in algorithm portfolios which execute several strategies in parallel and let them
compete for being the first to finish.

A special motivation to apply competition in distributed search is that in
contrast to earlier portfolio-approaches [9, 5, 6] we do not have to add parallelism
(and its associated overhead) to the algorithm as it is already inherent in the
distribution. In order to evaluate this potential we set up an experiment where
we measured the idle time of agents in the distributed search algorithms IDIBT
[8] and ABT [13] and a portfolio of 10 IDIBT searches in parallel. We used a
multi-threaded simulator with random message delays and agent-activation. In
this simulator each agent imposes a thread and processes messages whenever
it is scheduled to the CPU. We could observe that with the plain algorithms
(ABT,IDIBT) the agents run most of the time idle and do not actively work
on finding a solution. The average idle times (10-100 samples) of the agents in
some classes of problems are shown in Table 1. These idle times can be used
“for free” to perform further computations in concurrent search efforts which
makes the portfolio-approach particularly interesting for distributed problems.
As can be seen in the figure the idle time is reduced when a portfolio of 10
searches is used (M-IDIBT, M-ABT)

In this paper we define a notion for the risk we have to face when choosing
a variable-ordering and present the new “M-” framework1 for the execution of

1M stands for Multi-Directional. The name is derived from “Bidirectional” search. “M-”

1

problem class idle time of agents
ABT IDIBT M-IDIBT M-ABT

easy random 87% 92% 47% 56 %
hard random 92% 96% 59% 39%

n-queens 91% 94% 52% 48%
hard quasigroups 87% 93% 58% 28%

Table 1: Idle times of agents in DisCSP.

distributed search. We apply the framework in two case studies where we define
the algorithms “M-ABT” and “M-IDIBT” which improve their counterparts
ABT and IDIBT significantly. With these case studies we can show the benefit
of competition and cooperation for the underlying distributed search algorithms.
We expect the “M-” farmework to be similarily beneficial for other DisCSP
algorithms. “M-” uses a portfolio of searches with different variable ordering
heuristics in parallel which compete for being the first to finish and furthermore
cooperate by exchanging gained knowledge. Cooperation of distributed searches
is implemented with the aggregation of knowledge within agents and thus yields
no extra communcation. The knowledge gained from all the parallel searches
is used by the agents for their local decision making in each single search. We
present two principles of Aggregation and employ them in methods which are
applicable to the limited scope of the agents in DisCSP.

In the next section we define the risks we have to face in search. This can
be used as another metric (besides performance) to evaluate algorithms. In
Section 3 we refer to related work and in Sections 4 and 5 we present the new
“M-” framework. Section 6 describes our case studies and shows an empirical
evaluation of them. The last Section summarizes the results and outlines some
ideas for future work.

2 Risks in Search

In [6] “risk” is defined as the standard deviation of the performance of one
algorithm applied to one problem multiple times. This risk increases when
more randomness is used in the algorithms. With random value selection for
example it is high and with a completely deterministic algorithms it will be
close to zero. In order to prevent confusion we will refer to this risk as to the
Randomization-Risk (R-Risk) in the rest of the paper.

Definition 1 The R-Risk is the standard deviation of the performance of one
algorithm applied multiply to one problem.

Reducing the R-Risk leads in many cases to tradeoffs in performance [7]. Such
that the reduction of this risk is in general not desirable. For instance, we would

searches in multiple directions, namely agent topologies, at the same time.

2

in most cases rather wait between 1–10 seconds for a solution than waiting 7–
8 seconds. In the latter case the risk is lower but the expected performance
is worse. Thus, for this example we should refer to the larger range as to a
“chance” rather than to a risk.

In asynchronous and distributed systems we are not able to eliminate ran-
domness at all. Besides intended randomness (e.g. in value selection functions)
it emerges from external factors including the CPU scheduling to agents or un-
predictable times for message passing [14]. We measured the R-Risk in DisCSP
in a preliminary experiment, where randomness emerged from distribution only.
We solved binary DisCSPs with the IDIBT and ABT algorithms with random
message delays and inpredictable agent-activation. It turned out that the R-Risk
is in general very high (compared to monolithic systems). Even with completely
deterministic value-selection functions the performance of different runs of the
algorithm on the same problem differed significantly. For instance, the ABT al-
gorithm with lexicographic labelling applied 100 times to the 10-queens-problem
could find one solution with our simulator in 297–5374 milliseconds IDIBT ap-
plied 100 times took 1640–1984 milliseconds. The R-Risk resulting exclusively
from distribution was thus 807 for ABT and 96 for IDIBT.

Selection-Risk. The risk we take when we select a certain algorithm or a
heuristic to be applied within an algorithm to solve a problem will always be
that this is the wrong choice. For most problems we do not know in advance,
which the best algorithm or heuristic will be and may select one which performs
much worse than others. We’ll refer to this risk as to the Selection-Risk (S-Risk).

Definition 2 The S-Risk of a set of algorithms A is the standard deviation of
the performance of each a ∈ A applied the same number of times to one problem.

We investigated the S-Risk emerging from the chosen variable ordering in IDIBT
in a preliminary experiment on small, fairly hard random problems (15 vari-
ables, 5 values, denisty 0.3, tightness 0.4). We used lexicographic value selection
and four different static variable-ordering heuristics: a well-known “intelligent”
heuristic, its inverse (which should be bad) and two different blind heuristics.
As expected, we could observe that the intelligent heuristic dominates in aver-
age but that it is not always the best. It was the fastest in 59% of the tests,
but it was also the slowest in 5% of the experiments. The second best heuris-
tic (best in 18%) was also the second worst (also 18%). The “anti-intelligent”
heuristic turned out to be the best of the four in 7% after all. The differences
between the performances were quite significant. A typical range of run time
for one (average) problem instance was 0.29 – 54.7 seconds with IDIBT in this
experiment. This range was achieved with applying each heuristic 10 times to
the problem. The S-Risk, including the inevitable R-Risk was thus 84754 with
the four considered variable-orderings on that random DisCSP. This value is
close to the average for the 30 considered problems with this tightness. In the
10-queens problem we tried random, lexicographic and middle-first variable or-
dering and lexicographic value selection with ABT and IDIBT. Each algorithm
was run with each ordering 100 times and the range of runtime was 140–5374

3

milliseconds for ABT and 141–4781 for IDIBT. The S-Risk of the mentioned
variable orderings is thus 818 for ABT and 848 for IDIBT.

3 Related Work

The benefit of cooperating searches executed in parallel was first investigated
for CSP in [9]. They used multiple agents, each of which executed one mono-
lithic search algorithm. Agents cooperated by writing/reading hints to/from a
common blackboard. The hints were partial solutions its sender has found and
the receiver could use them by trying to do the same. In contrast to our work,
this multi-agent-system was an artefact created for the cooperation. Thus the
overhead it produced, especially when not every agent could use its own proces-
sor, added directly to the overall performance. Another big difference between
Hogg’s work and ours is that we use message passing instead of the (for DisCSP
inpracticable) global blackboard. Finally DisCSP agents do not have a global
view to the searches and can thus only communicate what’s in their agent-view
which usually captures partial solutions for comparably few variables only.

Later the expected performance and the expected (Randomization-)risk in
portfolios of algorithms with ILOG solver was investigated [5, 6]. No cooper-
ation between the processes was used here. They calculated in the first paper
statistically that both risk and runtime can be very low with uniform portfolios
when each algorithm can use its own processor. From this they concluded that
using a uniform portfolio is better than using different algorithms in parallel.
This conclusion was wrong for the following two reasons: first, they ignored
that also the worst observed cases used a uniform portfolio; and second they
didn’t capture the S-Risk. In the newer paper they concluded that portfolios,
provided there are enough processors, reduce the risk and improve the perfor-
mance. When algorithms do not run in parallel (i.e. when not each search can
use its own processor) the portfolio approach becomes equivalent to random
restarts [7]. Using only one processor, the expected performance and risk of
both are equivalent.

In contrast to Gomes and Selman we cannot allocate search processes to
CPUs. In DisCSP we have to allocate each agent, which participates in every
search, to one process. Thus the load-balancing is performed by the agents and
not by the designer of the portfolio. In this paper we consider agents that do this
on a first-come-first-serve basis. Furthermore we use cooperation between the
agents and the parallelism is not an overhead-prune artefact. Another difference
is that we distinguish R-Risk and S-Risk. From Gomes and Selman’s results it
becomes clear that using uniform portfolios may be very beneficial, but also that
this may be the worst thing to do. Thus, the selection of a uniform portfolio,
i.e. deciding to use one algorithm exclusively, yields the risk of actually doing
the worst possible.

Recent work on constraint optimization [2] has shown that letting multiple
search algorithms compete and cooperate can be very beneficial without haveing
to know much about the algorithms themselves. They successfully use various

4

optimization methods on one processor which compete for finding the next best
solutions. Furthermore they cooperate by interchanging the best known feasible
solutions. However, this method of cooperation cannot be applied in distributed
problem solving as no global views to current states are available until a solution
is found and in this case the (satisfaction) problem is already solved.

4 Multi-Directional Distributed Search

By a direction in search we refer to to a variable ordering. In this paper we con-
sider only static orderings but the “M-” framework can be used with dynamic
orderings as well. In DisCSP the variable ordering implies the agent topology.
For each constraint a directed connection between two agents is imposed. The
direction defines the priority of the agents and thus in which direction back-
tracking is performed. In Figure 1 we show two different static agent-topologies
emerging from two different variable-ordering heuristics in DisCSP.

X2

X6

X3

X7

X1

X5

DisCSP

X4 X1

X2

X3 X4 X5

X7 X6

max-degree
ordering

X1

X2

X3 X4

X5

X6 X7

min-degree
ordering

Figure 1: DisCSP and agent topologies implied by variable orderings

The idea of Multi-Directional search is that several variable orderings and
thus several agent topologies are used by concurrent searches. We refer to
this idea as to the “M-” framework for DisCSP. Applied to an algorithm X it
defines a DisCSP algorithm M-X which applies X multiply in parallel. Each
search operates in its usual way on one of the previously selected topologies.
In each agent the multiple searches use separate contexts to store the various
pieces of information they require. The idea of multiple contexts in DisCSP was
first used to employ parallel search in IDIBT [8]. These include for example
adjacent agents, their current value or their beliefs about the current values of
other agents. Given the topologies in Figure 1, agent X4 for example, would
contain two contexts. In the one which related to maxDegree it would store
X1 and X2 as higher prioritized adjacent agents an in the other it would store

5

X2 and X7. In ABT od IDIBT it would thus address backtracking-messages to
agents X1 or X2 in one search effort and to X2 or X7 in the other. In Figure 2
we show how an agent hosting variable X4 from Figure 1 could employ the two
described variable orderings. It hosts two different current values, one for each
search and two different agent-views which contain its beliefs about the values
of higher-priority agents. The set of these higher-priority agents depends on the
chosen topology and thus on the chosen variable ordering.

X4: Agent

context: max-degree
current val: 3
higher priority neighbors: X1, X2
lower priorty neighbors: X7

context: min-degree
current val: 5
higher priority neighbors: X2, X7
lower priorty neighbors: X1

Figure 2: Two contexts in one agent hosting one variable

In a set of such agents different search-efforts can be made in parallel. Each
message will refer to a context and will be processed in the scope of this context.
The first search to terminate will deliver the solution or report failure. Termi-
nation detection has thus to be implemented for each of the contexts separately.
This does not yield any extra communication as shown for the multiple contexts
of IDIBT in [8].

One motivation for this is to reduce the S-Risk by adding more diversity
to the used portfolio. Assuming we do not know anything about the quality
of orderings, the chance of including a good ordering in a set of M different
orderings is |M |-times higher than selecting it for execution in one search. When
we know intelligent heuristiscs we should include them but the use of many of
them will reduce the risk of bad performance for every single problem instance
(cf. experiement in Section on S-Risk). Furthermore the expected performance
is improved with the “M-” framework since always the best heuristic in the
portfolio will deliver the solution or report failure. If we have a portfolio of
orderings M where the expected runtime of each m ∈ M is t(m) then ideally (if
no overhead emerges) the system terminates after min({t(m)|m ∈ M}). The
resulting tradeoffs and overheads for this are investigated in this paper.

The tradeoff in space is linear in the number of appplied orderings. Thus,
it clearly depends on the size of the data structures that need to be duplicated
for the contexts.

It turned out in our experiemnts that this extra space requirement is very
small in our implementations M-IDIBT and M-ABT. We could observe that the
extra memory needed with a portfolio of size ten applied to IDIBT is typically
only about 5–10%. For ABT the extra memory when using 10 instead of one
context differed depending on the problem. For easy problems, where few no-
goods need to be stored the extra memory consumption was about 5–20%. For

6

hard problems we could observe up to 1000% more memory usage of the port-
folio. This clearly relates to the well-known space-tradeoff of nogood-recording.

The tradeoff in computational costs will be described in detail in the Evalu-
ation Section. Unlike the described monolithic portfolio approaches, we do not
need a processor for every heuristic or agent in order to achieve a speedup. In
DisCSP we can do the additional work in times when the agents would run idle
otherwise. (cf. Table 1). The load-balancing is performed dynamically by the
agents and does not have to be set a priori by the designer of the portfolio. We
have observed in our experiments that we can handle a portfolio of 10 heuristics
managed in in parallel in 81 agents with about 15MB memory usage on one
processor.

5 Aggregation

Besides the idea of letting randomized algorithms compete to become “as good
as the best” the “M-” frameowrk can also use cooperation. With this we may
be able to be even “better than the best”, by accelerating the best search effort
even more by providing it with useful knowledge others have found. Cooperation
is implemented in the aggregation of knowledge within the agents. The agents
use the information gained from one search to make better decisions (value
selection) in another search. This enlarges the amount of knowledge on the
basis of which local decisions are made.

In distributed search, the only information that agents can use for aggrega-
tion is their view to the global system. With multiple contexts, the agents have
multiple views and thus more information available for their local reasoning. In
this setting, the aggregation yields no extra communication costs. It can be
performed locally and does not require any messages or blackboard-access.

In addition the views could be enriched by adding information for aggregation-
purposes. This could be communicated in messages the agents send anyway or
even in extra messages for this purpose. Such methods are, however, not con-
sidered in this paper.

In order to implement Aggregation we have to make two design decisions:
first, which knowledge is used and second, how it is used. As mentioned before
we use knowledge that is available for free from the internally stored data of the
agents. In particular this may include:

usage. Each agent knows the values it currently has selected in each search.

support. Each agent can store currently known values of other agents (agent-
view) and the constraints that need to be satisfied with these values.

nogoods. Agents may store partial assignments that are found to be incon-
sistent.

effort. Each agent knows for each search how much effort in terms of the
number of backtracks it has already invested.

7

The interpretation of this knowledge can follow two orthogonal principles:
diversity and emulation. Diversity implements the idea of traversing the
search space in different parts simultaneously in order not to miss the part in
which a solution can be found. The concept of emulation implements the idea
of cooperative problem solving, where agents try to combine (partial) solutions
in order to make use of work which others have already done.

With these concepts of providing and interpreting knowledge we can define
the portfolio of aggregation methods shown in Table 2. In each box we provide
a name (to be used in the following) and a short description of which value is
preferably selected by an agent for a search.

diversity emulation

usage minUsed: the value which
is used the least in other
searches

maxUsed: the value which is
used most in other searches

support – maxSupport: the value that is
most supported by constraints
wrt. current agent-views

nogood differ: the value which is least
included in nogoods

share always use nogoods of all
searches

effort minBt: a value which is not
the current value of searches
with many backtracks

maxBt: the current value of
the search with most back-
tracks

Table 2: Methods of aggregation.

6 Algorithms

As a case study to investigate the benefit of cooperation and competition in
distributed search we implemented M-IDIBT and M-ABT.

6.1 M-IDIBT

IDIBT [8] is an asynchronous tree-based search algorithm to solve binary, dis-
tributed Constraint Satisfaction Problems (DisCSP). A DisCSP [13] consists of
a set of variables with associated domains and a set of constraints which define
allowed combinations of values for the variables. A solution to a DisCSP is
a variable assignment that satisfies all constraints. Each variable imposes an
agent which can communicate with other agents exclusively by message passing.
The agents try to find a solution to the problem. The IDIBT algorithm is a
self-stabilizing protocol for such agents. It leads to a state where either it was
proven that no solution exists or where a solution is represented by the values
selected in each agent.

IDIBT performs tree-based search on a topology of agents that is determined
by the structure of the problem. Whenever a constraint exists between two

8

variables, then a directed link is imposed between their associated agents. The
direction of these links defines the applied variable ordering for the search.
For instance, for the well-known maxDegree heuristic each link will point to
the variable which is in the scope of fewer constraints. Furthermore for the
soundness of the algorithm it is necessary to pre-process the topology with the
DisAO algorithm [8]. This adds extra links between some pairs of agents where
no constraint exists.

In the context of this work we have found a new way to omit this pre-
processing and still achieve soundness. This is done by dynamically adding the
required links during the execution of the search in a similar way as it is done
in ABT [13]. Whenever a backtrack-message is sent to an agent which is not
already stored to be adjacent and has a higher priority, then a link is imposed
from the receiver of this message to its sender.

Lemma 1 Dynamic linking preserves the correctness of IDIBT.

Proof 1 A proof can be obtained from the authors. The idea is that dynamic
linking captures all cases where additional links are necessary. This is whenever
a btSet-message is sent to a non-parent agent.

IDIBT interleaves parallel search and distributed search by allowing for the
concurrent management of multiple contexts in each agent. Thus each agent
can actively participate in several search-efforts at the same time. These efforts
can implement the parallel exploration of different parts of the search tree or the
parallel solving of same (sub-)problems. However, the applied search heuristics
(variable-ordering and value selection) are static and identical in all parallel
searches. Thus IDIBT can only be used to apply uniform portfolios of heuristics
and parallel search in DisCSP.

In order to allow for variation of applicable heuristics we extended IDIBT
with functionality for dynamic value selection. This is implemented by storing
the values that were already considered since the last backtrack. Whenever an
agent is to pick a new value it chooses one which is not stored in this list. When
an agent sends a backtrack-message it deletes the list of used values and thus
allows for their re-use in combination with other values of higher prioritized
variables.

Lemma 2 Dynamic Value selection preserves the correctness of IDIBT with
dynamic linking.

Proof 2 A proof can be obtained from the authors. The idea is that the value
selection functions return valid values in exactly the same cases as the static
functions in IDIBT do.

6.2 M-ABT

This algorithm incorporates ABT [13] in the “M-” framwork. For this we im-
plemented contexts by duplicating the local storage of current value agent-view

9

and nogood-store. Furthermore, every message additionally carries the id of its
related search. No other changes were made to the original algorithm.

7 Empirical Evaluation

For the empirical evaluation of the “M-” framework we solved more than 180000
DisCSPs with M-IDIBT and M-ABT. In a first set of experiments we solved ran-
dom binary problems with 15 variables, 5 values each, density 0.3 and tightness
varying between 0.2 and 0.8. The sample size (per problem instance) was 20-100
and for each tightness we used 30 different problem instances. To compare the
performance of the algorithms we counted overall constraint checks (cc), con-
current constraint checks(ccc), the overall number of messages(mc), the longest
path of sequential messages(smc) and the run time (t). All tests were run in a
multi-threaded simulator where each agent implements a thread using random
message delays and unpredictable thread-scheduling. The simulator was used
with a single-processor Windows PC with a Pentium 4, 1.8 GHz.

7.1 Portfolio size

In Figure 3 we show the median numbers of messages sent and the runtime to
find one solution by different sized portfolios on fairly hard instances (tightness
0.4) of random problems (sample size 300). No aggregation was used in these
experiments. The best known variable-ordering (maxDegree) was used in each
portfolio and thus also for the plain algorithms. In the larger portfolios only
blind orderings and more instances of maxDegree were added. It can be seen
that with increasing portfolio-size, the absolute numbers of mc rise. There
is more communication between agents when more searches are executed in
parallel. In the same Figure we show the run time, which correlated strongly
to smc and ccc. It can be seen that the performance improves up to a certain
point when larger portfolios are used. With the considered problems, using one
processor only, this point is reached with size 10. With larger portfolios no
further speedup can be achieved wich would make up the communication and
compuational overhead.

In Figure 4 we concentrate on the run time (same experimental setting as
before) with different compositions of the portfolios. Heterogeneous portfolios
are those we used before and homogeneous portfolios use the maxDegree vari-
able ordering in all searches. It can be seen that heterogeneous portfolios are
much more beneficial. This results from the fact that we can only make used
of the chances resulting from the R-Risk with homogeneous portfolios. With
heterogeneous portfolios we can make use of the potential of the S-Risk, which
is always higher that that of the R-Risk (see Figure 6).

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2 4 6 8 10 12 14 16 18 20
 200

 300

 400

 500

 600

 700

 800

nu
m

be
r

of
 m

es
sa

ge
s

ru
nt

im
e

in
 m

ill
is

ec
on

ds

portfolio size

M-IDIBT runtime
M-ABT runtime

M-IDIBT messages
M-ABT messages

Figure 3: Communication and runtime in portfolios.

7.2 Risk

The Selection-Risk is defined as the standard deviation of the performance of
different algorithms. Since our algorithms are distributed, the S-Risk cannot
exclude the R-Risk. We reduced the randomness as much as possible by using
deterministic value selection. In order to capture the overall risk (subsuming
S-Risk and R-Risk) we used random variable orderings. This would eliminate
the effects we get from knowledge about heuristics. Thus, we chose a low-
knowledge approach [2] in this experiement. The reason for this is to get a
statistically relevant evaluation of the S-Risk instead of another comparison of
the expected performance of different heuristics. In a portfolio of size n we thus
used n different, randomly generated variable orderings all using lexicographic
value selection. Each portfolio was applied 100 times each to one hard random
problem instance. The standard-deviation of the runtime with these portfolios
is shown in Figure 5 on a logarithmic scale. It can be seen that the risk can be
reduced significantly with portfolios. With a portfolio of size 20, for instance,
the risk of IDIBT can be reduced to 1

344 and the risk of ABT to 1
727 .

The total risk (or chance of improvement) we get with larger portfolios
clearly relates to the composition of the portfolio. In Figure 6 we show the
overall risk (S-Risk plus inevitable R-Risk) of portfolios of size up to ten. The
decrease in the overall risk is much more significant when heterogeneous port-
folios are used. For the homogeneous portfolios it is still present (note the
log-scale) but not as significant.

11

1000

1200

1400

1600

1800

2000

2200

2400

1 2 4 8 10 12 14 16 18 20

portfolio size

ru
n

ti
m

e
homogeneous
heterogeneous

Figure 4: Runtime in homeogeneous and heterogeneous portfolios.

7.3 Diversity in portfolios and performance

In the above experiments we could observe that diversity in the portfolios is
advantageous in both, performance and risk. To make this more clear we thus
computed the correlation between these outcomes and the degree of difference of
the used heuristics. This was measured as the average of the pairwise Hamming
Distance of the used variable orderings. We could, however not observe, that
the performance correlates to the hamming distance. In figure 7 we show the
performances of 600 tests with two random varaible orderings. Using random
orderings we obtained different hamming distances which we used to order the
samples on the x-axis. The performance (y-axis) does not seem to correlate to
that at all.

7.4 Aggregation

The benefit of Aggregation, which is implemented with the different value se-
lection heuristics presented in Table 2 is shown in Table 3. Each column in
the table shows the median values of 600 samples solved with a portfolio of
size 4 applied to 30 different hard random problems. It can be seen that only
maxBt and maxUsed do not perform better than random value selection. The
best methods (wrt. smc) were maxSupport and minMaxUsed. The first selects
the value that supports the most constraints wrt. the current agent-views and

12

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10 12 14 16 18 20

se
le

ct
io

n
ris

k
(lo

g
sc

al
e)

portfolio size

M-ABT
M-IDIBT

Figure 5: S-Risk including the R-Risk emerging from distribution.

the second is a composition of minUsed and maxUsed. It switches from the
diversity-principle to emulation as soon as the number of backtracks is larger
than half the size of the variable domain. The runtime and ccc results show
that the computation of support is rather costly. We did not use an efficient
(incremental) algorithm for this such that, given the smc, there is potential for
speedup in maxSupport.

smc ccc t

minUsed 425 2478 2294
maxUsed 446 2562 2483

minMaxUsed 421 2410 2296
minBt 429 2484 2499
maxBt 452 2623 2534

maxSupport 421 3312 2650
random 447 2639 2654

Table 3: Performance of aggregation methods.

7.5 Approaching real problems

In order to check the applicability of the “M-” framework we investigated how
it scales in larger and more structured problems. For this experiment we used
the well-known quasigroups completion problem cf. [6] in a straightforward
model (N2 variables, one variable per agent, no symmetry breaking, binary

13

1

10

100

1000

10000

100000

1000000

1 2 4 6 8 10

homogeous
heterogeneous

Figure 6: Risk in homeogeneous and heterogeneous portfolios.

constraints only). We solved problems with a 42% ratio of pre-assigned values
which is the peak value in the phase transition for all orders, i.e. we used
the hardest problem instances for our test. Figure 8 shows the run time of
distributed search algorithms on problems of different orders on a logarithmic
scale. All algorithms used the domain/degree variable ordering (besides other
orderings where applicable) and minMaxUsed value selection (where applicable).
For each order we show the median runtime to solve 20 different problems (once
each). We used a timeout of two hours whithin which we could solve all 20
instances of the presented results. Furthremore M-IDIBT 10 was able to solve
8 instances of order 9, M-IDIBT 6 and IDIBT 5 within the time limit. M-ABT
could additionally not solve many of the larger instances because of memory
problems. Using one thread per agent and 10 searches we had for instance for
order 8 to store 640 nogood-stores in one process. Solving the hardest problems
the nogood stores would potentially contain large portions of the search space.
This memory problem of ABT was addressed in [1], but we didn’t implement this
method in our simulator. From the successful tests it can be seen that portfolios
improve the performance of the algorithms significantly. In the problems of order
8 a portfolio of 10 IDIBT was 71 times faster than the regular IDIBT and twice
as fast as with a smaller portfolio of size 5. Furthermore, portfolios seem to
become more and more beneficial in larger problems as the portfolios of size 10
seems to scale better than smaller portfolios.

14

performace of two random orderings

0

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 100 120 140 160 180

hamming dist

ti
m

e

Figure 7: Hamming distance of orderings and performance.

8 Conclusion and Future Work

The use of heterogeneous portfolios of variable-orderings in distributed CSP
is very beneficial. It improves the performance and reduces the risk of poor
performance. With this technique we could achieve a speedup of one order of
magnitude while reducing the risk by up to three orders of magnitude compared
to the traditional execution of the used algorithm.

Randomness is known to potentially improve the performance of search.
However, in tradional approaches the tradeoff for this is the risk of very poor
performance for some problem instances. With our portfolio approach we re-
duce this tradeoff by reducing the likelyhood of choosing the “wrong” random
heurtistic. The cost is shifted to the computational effort we have to perform
in parallel. However, in distributed algorithms this comes to a wide extent for
free as agents would run more idle otherwise. The extra mamory consumption
is linear in the size of the portfolio and was negligible in all our experiments.

In future work we will dynamically adapt the portfolio during search in order
to provide more resources to the most promising efforts. This will be performed
with the prioritization of messages to be processed. When an agent believes that
a certain search effort is promising it will preferably process messages which are
relevant for this effort. This will allow to leverage the load-balancing dynami-
cally and find an ideal portfolio.

With the implementations of M-IDIBT and M-ABT we have provided a

15

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 5 6 7 8 9

ru
n

tim
e

m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

problem order

M-IDIBT size 10
M-IDIBT size 5

IDIBT

Figure 8: Median performance on quasigroup completion problems with 42%
pre-assigned values.

case study of the benefit we get from competition and cooperation in tree-based
distributed search. The same could be implemented on top of any other dis-
tributed algorithms. We could even combine multiple different algorithms, as
opposed to just different topologies. In future work we will investigate the ben-
efit and possible aggregation-methods of portfolios which contain for example
also distributed local-search algorithms or consistency-enforcement.

The implementation of aggregation in a heuristic i.e. as value selection
function, may be a first step to a new approach to search in CSP which is
derived from Bidirectional Search as it is known in Planning cf. [10]. Instead of
just using it as a heuristic, aggregation could also be implemented in an exact
way. For problems that satisfy certain structural requirements we could already
implement an algorithm in which agents can compose partial solutions and thus
make the traversal of parts of the search-tree for some searches redundant.

Once DisCSP has found an algorithm which scales well enough we intend
to integrate it in distributed systems of constraint solvers to manage real-world
distributed problems cf. [3, 12]. In such settings each agent will host a powerful
constraint solver and a few variables which are linked to other agents by (binary)
equality-constraints. DisCSP will then be used to find solutions to the linked
variables which extend to the local problems.

16

References

[1] C. Bessiere, I. Brito, A. Maestre, and P. Meseguer. Asynchronous back-
tracking without adding links: A new member in the abt family. Artificial
Intelligence, 161:7–24, 2005.

[2] Tom Carchrae and J Chirstopher Beck. Low knowledge algorithm con-
trol. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI04), 2004.

[3] Y. L. Chong and Y. Hamadi. Distributed algorithms for log-based recon-
ciliation. Technical Report MSR-TR-2004-104, Microsoft Research, Cam-
bridge, UK, December 2004.

[4] Ian P Gent, Ewan MacIntyre, Patrick Prosser, Barbara M Smith, and Toby
Walsh. An empirical study of dynamic variable ordering heuristics for the
constraint satisfaction problem. In Proc. CP96, pages 179–193. Springer
LNCS 1118, 1996.

[5] C.P. Gomes and B. Selman. Algorithm portfolio design: Theory vs. prac-
tice. In Proc. UAI-97, pages 190–197, 1997.

[6] C.P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence,
126:43–62, 2001.

[7] C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search
through randomization. In Proc. AAAI-98, pages 431–438. AAAI Press,
1998.

[8] Youssef Hamadi. Interleaved backtracking in distributed constraint net-
works. International Journal on Artificial Intelligence Tools, 11(2):167–188,
2002.

[9] Tad Hogg and Bernardo A. Huberman. Better than the best: The power
of cooperation. In Lynn Nadel and Daniel Stein, editors, 1992 Lectures in
Complex Systems, volume V of SFI Studies in the Sciences of Complexity,
pages 165–184. Addison-Wesley, Reading, MA, 1993.

[10] N. Nilsson. Principles of Artificial Intelligence. Tioga, PaloAlto, CA, 1980.

[11] Jean-Francois Puget. Some challenges for constraint programming: an
industry view. In Principles and Practice of Constraint Programming -
CP2004, invited talk, pages 5–9. Springer LNCS 3258, 2004.

[12] Georg Ringwelski and Armin Wolf. Global production planning in multiple
facilities with the discs library. In Proc. 19th Workshop on (Constraint)
Logic Programming, 2005.

17

[13] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara.
Distributed constraint satisfaction for formalizing distributed problem solv-
ing. In International Conference on Distributed Computing Systems, pages
614–621, 1992.

[14] Roie Zivan and Amnon Meisels. Synchronous vs asynchronous search on
discsps. In Proceedings EUMAS, 2003.

18

