
Technical Report MSR-TR-2005-28, February, 2005

Towards Service-Oriented Networked Embedded Computing

Jie Liu and Feng Zhao
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{liuj, zhao}@microsoft.com

Liz is a site manager at the high-rise CEDAR
office building in downtown B city. As one of
their major customers has just moved to another
site, she wants to evaluate the idea of opening part
of the parking space underneath the building to
the general public. To help her to reach a decision,
she wants to collect vehicle arrival and departure
statistics in the parking lot for a period of two
weeks. Pablo is a security officer for the CEDAR
building. He is investigating complains from
people that there are several cars driving
extremely fast in certain areas of the garage. He
wants to take pictures of those cars and issue
warnings to offending drivers. Cameo is a local
law enforcement agent in B city. He is in charge
of installing chemical sensors at strategic
locations throughout the city for terrorism
detection. He has installed some of them in the
CEDAR building garage, and wants a notification
whenever a vehicle carrying certain chemical
elements is detected. Although they are from
different organizations, Liz, Pablo, and Cameo all
plan to use a generic wireless sensor network
recently installed in the garage and augment it
with special purpose sensors as needed.

Systems like these are not readily supported
by the current networked embedded system
technologies developed by the sensor network
research community. Today, sensor network
applications are designed using primarily one of
the two philosophies: the dada-collection view
and the application-specific view. In the data-
collection view (see the various sensor database
projects [Cougar; tinyDB; GDI]), a sensor
network is regarded as data collection fibers
where sensor data are streamed to servers. The

data can be either aggregated through routing or
processed centrally. Although advances have been
made on running user queries within the network,
the architecture is ill-suited for monitoring and
tracking sparse events in a resource-constrained
environment. The application-specific view
[Shooter] acknowledges the fact that many sensor
network system behaviors depend heavily on the
physical stimuli, and tries to make the best use of
the power and bandwidth resources through
exploiting the application-specific dynamics. For
example, a microphone-based vehicle tracking
system would be designed quite differently from a
camera-based system, although many of the
system components are similar. Everything is
optimized at the design time. The system is rigid
and hard to change afterwards.

These two philosophies can be viewed as two
extremes for handling application logics. In the
data collection view, there is no application logic
in the network; everything is processed off line. It
is quite generic but not always resource optimal.
In the application specific view, the application
logic is hard wired into the network. The
designers have fine grained resource control but
the system is rigid and hard to reuse. We motivate
here a service-oriented architecture for networked
embedded computing, SONGS1, where the system
is open, retaskable, and resource-aware, a “happy
median” between the data-collection and
application-specific views.

As illustrated in the CEDAR building scenario,
we envision that a large-scale networked
embedded system is likely to be deployed by

1 SONGS stands for Service Oriented Networked
proGramming of Sensors.

 1

Technical Report MSR-TR-2005-28, February, 2005

multiple venders incrementally. A system may
consist of both mobile and stationary nodes with
varying capabilities. It must be integrated
seamlessly into the Internet and must provide
intuitive interfaces for remote user interactions.
There will be multiple, concurrent users
exercising different functionalities of the system
for different purposes. The system is self-
monitored and resource-aware. It has a certain
level of autonomy to decide on the best use of
available resources to fulfill multiple users’
uncoordinated requests.

SONGS: A Service-Oriented
Architecture

Service orientation as a programming
paradigm emerged from distributed enterprise
computing technologies such as CORBA
[CORBA] and Jini. It has been adopted at a larger
scale through the notion of “web services” [WS].
Services are loosely coupled, self-describing, and
typically stateless software units that are
interoperable through message-based
communication models.

Services are identified by their interfaces.
Users typically program against these interfaces
without caring about where the particular services
execute (a property known as location
transparency). An underlying infrastructure, often
called a framework or a service bus, may find the
best implementation through service discovery
and dynamic binding. Thus, a service-based
architecture contains substantial infrastructure
supports in addition to the services themselves.
Typical supports include service description
languages that allow platform independent
description of the service interfaces, service
registration mechanisms that allow services
advertise themselves once deployed, service
discovery mechanisms that allow user
applications to find and choose appropriate
services at run time, and authorization,
authentication and accounting mechanisms to
establish trusts among service providers and
service users. To achieve dynamic composability
and sharing among multiple applications, services

are generally stateless (a.k.a. functional). That is,
services do not store application state. It is up to
the service integrator to pass the state with service
requests.

Services in Networked Embedded
Computing

In the context of networked embedded
computing, we adopt the concept of services
primarily for their interoperability, scalability, and
retaskability. Services are open and self-
descriptive. This allows systems from different
venders to work together. Services are not
necessarily tied to particular nodes. For example,
a car detection service can be implemented using
acoustic, magnetic, loop inductor, break beam, or
image sensing. In a real system, there is typically
a great deal of redundant information available to
the users. Hiding this information detail behind
the service interfaces makes interactions with
physical phenomena scalable to the number of
sensor nodes. In a service-oriented architecture,
services are reusable and often generic.
Applications are composed after the services are
deployed, thus the whole system is retaskable.
The scarce resources can be shared among
multiple concurrent tasks.

Using this model, the network of sensors in
the CEDAR building may expose a set of services,
for example, human detection, vehicle detection,
speed calculation, length calculation, certain
chemical element detections, picture taking, etc.
Then, the three different users can send their own
queries independently. These queries are
processed by composing a subset of these services
on demand. When all queries are running, parts of
the query processing services can be shared, as
shown in Figure 1.

 2

Technical Report MSR-TR-2005-28, February, 2005

Figure1. Multiple user queries may share common

services.

Services in networked embedded systems, in

addition to sharing general properties of web
services, have their own distinct characteristics.
Many of these characteristics are derived from the
resource constraints in the systems and their direct
interactions with the noisy physical world.

Physicality of services: Many networked
embedded services tie closely to the layout of the
sensor nodes, their sensing modality, and their
physical surrounding, thus they cannot be totally
location transparent. For example, a car tracking
service is only valid when a car has been detected
in that neighborhood, and the service may migrate
when the car moves. It is also hard to replicate
these services without sacrificing timing
properties, since sensor data are only available at
particular locations and particular time. Shipping
raw data over the network may not be the best use
of resources. This gives load balancing a whole
new meaning when optimizing on multiple user
queries.

Stateful services: The dependency on physical
input also makes it meaningless to have
completely stateless services. Why would an
anomaly detection service be useful if all the
required detection states are fed by the users? To
further develop this notion, we distinguish query-
dependent state from query-independent state. A
query-dependent state is the information that is
specific to a user’s task. For example, suppose the
query is to count the number of passing-by cars
from 8AM to 11AM. Then, the counting result up
to the current time is a query specific state. The
existence of the vehicles, on the other hand, is

query independent. Services with only query
independent state may be shared among queries,
while those with query-dependent state may be
hard to be shared.

Quality of service: The interaction with the
noisy and uncertain physical world also brings
new meanings for the term “quality of service.” In
sensing physical phenomena, the quality is usually
defined by the information quality in terms of,
e.g., signal-to-noise ratio, belief state, or entropy.
In general, one might have alternative services
with different qualities. Depending on the quality
of answers expected by the user, a service
framework may choose the services of sufficient
quality while considering response time and
resource usage.

Nature of events: Data in a networked
embedded system may be periodic, as in
streaming data, or aperiodic and infrequent, as in
detection events. The triggers for the events may
be external physical phenomena, user queries, or
system requests. Unlike in the more resourceful
wired environment, web services for processing
unpredictable, sporadic events in a resource-
constrained networked embedded system cannot
afford to run all the time, and must be extremely
stringent about where and when to invoke a
service. For an infrequently run service, there is
also the need to appropriately save intermediate
states between the processing episodes.

Service-Oriented Query Processing
Due to resource constraints in networked

embedded systems, there is an advantage of
processing the information within the network
rather than sending raw bits to the edge of the
network [CSIP; tinyDB]. Using a service-oriented
architecture, in-network information processing
becomes natural. Services can easily encapsulate
operators, such as sensing and signal processing
algorithms, over streams of sensor data or
sporadic events.

Figure 2 illustrates a way that networked
embedded services can be used by end users.
There are infrastructural supports at both schedule
time and run time.

Object
Length

Vehicle
Detection

Counter

Break beam
sensors Chemical

sensing

Object
Speed

Camera

 Liz

Pablo

Cameo

 3

Technical Report MSR-TR-2005-28, February, 2005

Figure 2. A way networked embedded services
are used by users.

As part of the runtime system, a networked

embedded system self-monitors its operating
conditions, such as network connectivity, resource
availability, as well as preconditions for registered
services. This information is made available to the
schedule time query planner. When a user issues a
query, it is first decomposed by the planner into a
set of services forming a service graph or
workflow. The logical graph is then embedded
onto the physical sensor nodes, resulting in an
assignment of logical operations to distributed
processors. For an optimal embedding of the
graph, the assignment must take into account node
locations, sensing modalities, network topology,
service availability, and resource constraints.
Since the system configuration may change
during the course of executing a long-running
query, the result may only serve as an initial
embedding subject to run-time adaptation.

The task assignment is then injected into the
network in the form of a tasking description
language – the micro-server tasking markup
language, or MSTML. This description is
accepted by a service scheduler running on each
node. In order to control memory consumption,
not all services are preloaded. They are created
only upon request. The service scheduler is also
responsible for checking all other services running
on the same node to determine whether part of a
new task can be achieved using parts of other

tasks. After this optimization step, the task is
admitted to execute. Because some tasks are
instantiated on-demand, service schedulers may
negotiate with the planner to iteratively achieve a
feasible and optimal service allocation. After the
services are instantiated, the service execution
engine executes and monitors the tasks across
multiple nodes. When resources change in the
network, some services may be migrated to other
nodes. If the execution engine cannot determine
alternate task composition locally, the schedule
time planner may be invoked again. When tasks
terminate, the execution engine is also responsible
to clean up parts of the task that is not shared by
other tasks.

A Proof-of-Concept Testbed
We have built a testbed to study the SONGS

architecture. An initial prototype includes two
microserver nodes, six sensor motes and a web
camera deployed in a parking garage. Figure 2(a)
shows the layout of an experiment. Five
Crossbow MicaZ motes are places in a row, each
attached to a break beam sensor. The break beam
sensor emits an infrared beam which bounces
back from a reflector on the opposite side of the
lane. When a car drives by this section of the lane,
it blocks the infrared beam one by one. By
correlating the sequence of break beam signals,
one can detect vehicles and estimate their lengths
and speeds. A magnetometer is placed further
down the road. When receiving a trigger, it can
collect and transmit magnetometer readings to a
microserver. Both the five break beam motes and
the magnetometer motes communicate wirelessly
with a microserver. A camera, connected to
another microserver, is also placed near the
magnetometer. When receiving a trigger, it can
take a picture and send it to the microserver.

User

Planner Query
Service
graph

Graph
embedding

Tasking
MSTML

Service
scheduler

Service
schedule

Execution

Run-
timeRun time

Schedule time

Service
info

Report

Service Discovery/
Self-monitoring

Tasking
Progress

 4

Technical Report MSR-TR-2005-28, February, 2005

(a)

(b)

Figure 3. A garage deployment of a sensor

network testbed, and a GUI showing a successful
query of the network.

The system is used to answer three user queries
such as the ones shown in Figure 1, with the
magnetometer replacing the chemical sensor (see
Figure 2(b) for an example).

Research Challenges
The service-oriented architecture and the proof-
of-concept testbed motivate us to look at some
important research issues.

Service Interfaces
A service-oriented platform for networked

embedded computing is essentially a layer of
abstraction, which, to application users, supports
application programming and user interaction,
while, to system developers, encapsulates
essential system functionalities such as locations,
timing, sensing, signal processing, data storage
and retrieval, and routing. How good that platform
is must be judged by how well it can support both
two kinds of users.

Traditional software service descriptions, e.g.
the web-service description language (WSDL),
only capture the invocation mechanisms of the
services – their address/port, name, and input-
output argument types. In networked embedded
systems, services need richer interfaces to abstract
the non-functional aspects and to facilitate
resource-aware execution. In addition to general
service invocation information, this richer set of
interfaces may include resource requirements,
QoS metric (which can be a function of resource
usage), configuration parameters, input/output
data semantics, etc. We need to investigate what
the minimum set of these descriptions for
compile-time scheduling and runtime adaptation
is. At the same time, there need to be systematic
ways in which this information can be assigned to
the services, either at compile time or by learning
the environment after the services are deployed.

Service Framework
Services can be instantiated either by users’

query or in response to physical triggers. They can
reside on fixed nodes, migrate among nodes, or
collaboratively run on multiple nodes. These
make service registration and discovery quite
tricky, especially when there is no central
registration point for an ad hoc or unreliable
system deployment. Multi-tier architectures may
help shield away local service dynamics from
high-level query planners. In these architectures,
high-level nodes become proxies for low-level
nodes, and service descriptions are aggregated
spatially and temporally to improve scalability.
We also expect distributed data structures such as

 5

Technical Report MSR-TR-2005-28, February, 2005

distributed hash table [DHT] to play an important
role in service registration and discovery.

One of the key components in a resource-
aware execution environment is the capability of
optimizing resource uses by reducing duplicate
service instantiations. This can be done
syntactically by comparing the service
composition graphs, or based on data semantics.
For example, if there is already a car detection
service running, a new task that needs car
detection event can directly subscribes to the
existing detection service without reinitiating
another car detection process. This problem gets
more interesting when taking quality of
information, cost for producing data, and the
nature of events into consideration. Take sampling
as an example, if one task requires sampling at
20Hz and another requires sampling the same
sensor at 50Hz, a 100Hz sampling can satisfy both
requirements, but 40% of the samples are useless.
On the other hand, given the continuity of the
underlying signal, the 20Hz stream can be
constructed from the 50Hz stream with limited
error. Many examples like this exist, motivating
us to take advantage of the physicality of real
world data.

A resource-aware service execution
framework needs to monitor itself and to deal
with uncertainties in the system. This is
particularly challenging given unreliable wireless
links, low power devices, and sometimes harsh
physical environment. Fault tolerance and load
balancing under these uncertainties becomes
extremely important for keeping the system
functioning.

Application Programming Model
There are many ways to provide a

programming interface in SONGS. A
straightforward approach is to design imperative
or visual languages that directly address services
and their composition. However, since networked
embedded computing programs are usually tied
into specific application domains, it is more user-
friendly and powerful to provide high-level
domain-specific languages.

Service-oriented architectures are desirable for
application programmer and end users to program
and interact with the entire network as a whole
rather than programming each individual node.
They are not intended to address tightly-coupled
node level interactions such as network protocols.
An ideal programming interface for these
architectures then should allow programmers to
directly specify system behaviors in terms of their
domain knowledge, such as physical phenomena
of interests. For example, a collaboration group is
an abstraction of nodes that share common
application states [State]. Given that the program
does not address individual nodes, it is possible
for compilers and run-time systems to preserve
the specified behavior against the uncertainties in
system topology, signal noise, and node
capabilities. Since physical phenomena will be
first class citizens in these programming models,
the notion of space, time, sampling, and
information quality must be rigorously introduced
into the languages. Extensions to spreadsheet
programming such as Excel, functional/reactive
programming such as Regiment [Regiment], or
logic programming such as Datalog [Datalog] are
particularly promising.

Conclusion
We have developed a service-oriented

architecture SONGS for open, retaskable, and
scalable networked embedded computing. The
service model simplifies user programming and
interaction with such complex systems, and
enables resource sharing among uncoordinated
concurrent user queries. We have also presented a
prototype implementation of the service model for
a parking garage monitoring application.

Acknowledgement

We wish to thank Elaine Cheong, Prabal Dutta,
and Kamin Whitehouse for their help in the
development of the prototype system and testbed,
and Jeremy Elson and Alec Woo for discussions.

 6

Technical Report MSR-TR-2005-28, February, 2005

References

[tinyDB] S. R. Madden, M. J. Franklin, J. M.
Hellerstein, and W. Hong. “TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor
Networks.” Proc. 5th Symp. Operating Systems
Design and Implementation, December 2002.
[Cougar] P. Bonnet, J. E. Gehrke, and P. Seshadri.
“Querying the Physical World.” IEEE Personal
Communications, Vol. 7, No. 5, October 2000,
pages 10-15.
[GDI] A. Mainwaring, J. Polastre, R. Szewczyk,
D. Culler, J. Anderson. “Wireless Sensor
Networks for Habitat Monitoring.” First ACM
Workshop on Wireless Sensor Networks and
Applications. Atlanta, 2002.
[Shooter] M. Maroti, G. Simon, A. Ledeczi, J.
Sztipanovits. “Shooter Localization in Urban
Terrain.” IEEE Computer, August 2004.
[CORBA] Object Management Group. The
common object request broker: Architecture and
specification. Technical report, Object
Management Group, June 1999.
[WS] Web Services Description Working Group.
“Web Services Description Language (WSDL)
Version 2.0: Primer.” W3C working draft,
December 2004.
[CSIP] F. Zhao, J. Liu, J. Liu, L. Guibas, and J.
Reich, "Collaborative Signal and Information
Processing: An Information Directed Approach."
Proceedings of the IEEE, 91(8):1199-1209, 2003.
[Chord] I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. “Chord: A
scalable peer-to-peer lookup service for Internet
applications.” Proc. ACM SIGCOMM ’01
Conference, San Diego, Aug. 2001.
[State] J. Liu, M. Chu, J. Liu, J. Reich, and F.
Zhao, “State-Centric Programming for Sensor and
Actuator Network Systems.” IEEE Pervasive
Computing, 2(4):50-62, 2003.
[Regiment] R. Newton and M. Welsh. “Region
Streams: Functional Macroprogramming for
Sensor Networks.” Proceedings of the First
International Workshop on Data Management for
Sensor Networks (DMSN), Toronto, Canada,
August 2004.

[Datalog] R. Ramakrishman and J. D. Ullman. “A
Survey of Deductive Database Systems.” J. Logic
Programming, 23(2):125-150, 1995.

 7

	SONGS: A Service-Oriented Architecture
	Services in Networked Embedded Computing
	Service-Oriented Query Processing
	A Proof-of-Concept Testbed

	Research Challenges
	Service Interfaces
	Service Framework
	Application Programming Model

	Conclusion
	Acknowledgement
	References

