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Liz is a site manager at the high-rise CEDAR 
office building in downtown B city. As one of 
their major customers has just moved to another 
site, she wants to evaluate the idea of opening part 
of the parking space underneath the building to 
the general public. To help her to reach a decision, 
she wants to collect vehicle arrival and departure 
statistics in the parking lot for a period of two 
weeks. Pablo is a security officer for the CEDAR 
building. He is investigating complains from 
people that there are several cars driving 
extremely fast in certain areas of the garage. He 
wants to take pictures of those cars and issue 
warnings to offending drivers. Cameo is a local 
law enforcement agent in B city. He is in charge 
of installing chemical sensors at strategic 
locations throughout the city for terrorism 
detection. He has installed some of them in the 
CEDAR building garage, and wants a notification 
whenever a vehicle carrying certain chemical 
elements is detected.  Although they are from 
different organizations, Liz, Pablo, and Cameo all 
plan to use a generic wireless sensor network 
recently installed in the garage and augment it 
with special purpose sensors as needed.  

Systems like these are not readily supported 
by the current networked embedded system 
technologies developed by the sensor network 
research community. Today, sensor network 
applications are designed using primarily one of 
the two philosophies: the dada-collection view 
and the application-specific view. In the data-
collection view (see the various sensor database 
projects [Cougar; tinyDB; GDI]), a sensor 
network is regarded as data collection fibers 
where sensor data are streamed to servers. The 

data can be either aggregated through routing or 
processed centrally. Although advances have been 
made on running user queries within the network, 
the architecture is ill-suited for monitoring and 
tracking sparse events in a resource-constrained 
environment. The application-specific view 
[Shooter] acknowledges the fact that many sensor 
network system behaviors depend heavily on the 
physical stimuli, and tries to make the best use of 
the power and bandwidth resources through 
exploiting the application-specific dynamics. For 
example, a microphone-based vehicle tracking 
system would be designed quite differently from a 
camera-based system, although many of the 
system components are similar. Everything is 
optimized at the design time. The system is rigid 
and hard to change afterwards.  

These two philosophies can be viewed as two 
extremes for handling application logics. In the 
data collection view, there is no application logic 
in the network; everything is processed off line. It 
is quite generic but not always resource optimal. 
In the application specific view, the application 
logic is hard wired into the network. The 
designers have fine grained resource control but 
the system is rigid and hard to reuse. We motivate 
here a service-oriented architecture for networked 
embedded computing, SONGS1, where the system 
is open, retaskable, and resource-aware, a “happy 
median” between the data-collection and 
application-specific views.  

As illustrated in the CEDAR building scenario, 
we envision that a large-scale networked 
embedded system is likely to be deployed by 
                                                 
1 SONGS stands for Service Oriented Networked 
proGramming of Sensors. 
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multiple venders incrementally. A system may 
consist of both mobile and stationary nodes with 
varying capabilities. It must be integrated 
seamlessly into the Internet and must provide 
intuitive interfaces for remote user interactions. 
There will be multiple, concurrent users 
exercising different functionalities of the system 
for different purposes. The system is self-
monitored and resource-aware. It has a certain 
level of autonomy to decide on the best use of 
available resources to fulfill multiple users’ 
uncoordinated requests.  

SONGS: A Service-Oriented 
Architecture  

Service orientation as a programming 
paradigm emerged from distributed enterprise 
computing technologies such as CORBA 
[CORBA] and Jini. It has been adopted at a larger 
scale through the notion of “web services” [WS]. 
Services are loosely coupled, self-describing, and 
typically stateless software units that are 
interoperable through message-based 
communication models.  

Services are identified by their interfaces. 
Users typically program against these interfaces 
without caring about where the particular services 
execute (a property known as location 
transparency). An underlying infrastructure, often 
called a framework or a service bus, may find the 
best implementation through service discovery 
and dynamic binding. Thus, a service-based 
architecture contains substantial infrastructure 
supports in addition to the services themselves. 
Typical supports include service description 
languages that allow platform independent 
description of the service interfaces, service 
registration mechanisms that allow services 
advertise themselves once deployed, service 
discovery mechanisms that allow user 
applications to find and choose appropriate 
services at run time, and authorization, 
authentication and accounting mechanisms to 
establish trusts among service providers and 
service users. To achieve dynamic composability 
and sharing among multiple applications, services 

are generally stateless (a.k.a. functional). That is, 
services do not store application state. It is up to 
the service integrator to pass the state with service 
requests. 

Services in Networked Embedded 
Computing  

In the context of networked embedded 
computing, we adopt the concept of services 
primarily for their interoperability, scalability, and 
retaskability. Services are open and self-
descriptive. This allows systems from different 
venders to work together. Services are not 
necessarily tied to particular nodes. For example, 
a car detection service can be implemented using 
acoustic, magnetic, loop inductor, break beam, or 
image sensing. In a real system, there is typically 
a great deal of redundant information available to 
the users. Hiding this information detail behind 
the service interfaces makes interactions with 
physical phenomena scalable to the number of 
sensor nodes. In a service-oriented architecture, 
services are reusable and often generic. 
Applications are composed after the services are 
deployed, thus the whole system is retaskable. 
The scarce resources can be shared among 
multiple concurrent tasks.   

Using this model, the network of sensors in 
the CEDAR building may expose a set of services, 
for example, human detection, vehicle detection, 
speed calculation, length calculation, certain 
chemical element detections, picture taking, etc. 
Then, the three different users can send their own 
queries independently. These queries are 
processed by composing a subset of these services 
on demand. When all queries are running, parts of 
the query processing services can be shared, as 
shown in Figure 1.  
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Figure1. Multiple user queries may share common 

services. 
  
Services in networked embedded systems, in 

addition to sharing general properties of web 
services, have their own distinct characteristics. 
Many of these characteristics are derived from the 
resource constraints in the systems and their direct 
interactions with the noisy physical world. 

Physicality of services: Many networked 
embedded services tie closely to the layout of the 
sensor nodes, their sensing modality, and their 
physical surrounding, thus they cannot be totally 
location transparent. For example, a car tracking 
service is only valid when a car has been detected 
in that neighborhood, and the service may migrate 
when the car moves. It is also hard to replicate 
these services without sacrificing timing 
properties, since sensor data are only available at 
particular locations and particular time. Shipping 
raw data over the network may not be the best use 
of resources. This gives load balancing a whole 
new meaning when optimizing on multiple user 
queries. 

Stateful services: The dependency on physical 
input also makes it meaningless to have 
completely stateless services. Why would an 
anomaly detection service be useful if all the 
required detection states are fed by the users? To 
further develop this notion, we distinguish query-
dependent state from query-independent state. A 
query-dependent state is the information that is 
specific to a user’s task. For example, suppose the 
query is to count the number of passing-by cars 
from 8AM to 11AM. Then, the counting result up 
to the current time is a query specific state. The 
existence of the vehicles, on the other hand, is 

query independent. Services with only query 
independent state may be shared among queries, 
while those with query-dependent state may be 
hard to be shared.   

Quality of service: The interaction with the 
noisy and uncertain physical world also brings 
new meanings for the term “quality of service.” In 
sensing physical phenomena, the quality is usually 
defined by the information quality in terms of, 
e.g., signal-to-noise ratio, belief state, or entropy. 
In general, one might have alternative services 
with different qualities. Depending on the quality 
of answers expected by the user, a service 
framework may choose the services of sufficient 
quality while considering response time and 
resource usage.   

Nature of events:  Data in a networked 
embedded system may be periodic, as in 
streaming data, or aperiodic and infrequent, as in 
detection events. The triggers for the events may 
be external physical phenomena, user queries, or 
system requests. Unlike in the more resourceful 
wired environment, web services for processing 
unpredictable, sporadic events in a resource-
constrained networked embedded system cannot 
afford to run all the time, and must be extremely 
stringent about where and when to invoke a 
service. For an infrequently run service, there is 
also the need to appropriately save intermediate 
states between the processing episodes. 

Service-Oriented Query Processing  
Due to resource constraints in networked 

embedded systems, there is an advantage of 
processing the information within the network 
rather than sending raw bits to the edge of the 
network [CSIP; tinyDB]. Using a service-oriented 
architecture, in-network information processing 
becomes natural. Services can easily encapsulate 
operators, such as sensing and signal processing 
algorithms, over streams of sensor data or 
sporadic events.  

Figure 2 illustrates a way that networked 
embedded services can be used by end users. 
There are infrastructural supports at both schedule 
time and run time. 
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Figure 2. A way networked embedded services 
are used by users. 

 
As part of the runtime system, a networked 

embedded system self-monitors its operating 
conditions, such as network connectivity, resource 
availability, as well as preconditions for registered 
services. This information is made available to the 
schedule time query planner. When a user issues a 
query, it is first decomposed by the planner into a 
set of services forming a service graph or 
workflow. The logical graph is then embedded 
onto the physical sensor nodes, resulting in an 
assignment of logical operations to distributed 
processors. For an optimal embedding of the 
graph, the assignment must take into account node 
locations, sensing modalities, network topology, 
service availability, and resource constraints. 
Since the system configuration may change 
during the course of executing a long-running 
query, the result may only serve as an initial 
embedding subject to run-time adaptation. 

The task assignment is then injected into the 
network in the form of a tasking description 
language – the micro-server tasking markup 
language, or MSTML. This description is 
accepted by a service scheduler running on each 
node. In order to control memory consumption, 
not all services are preloaded. They are created 
only upon request. The service scheduler is also 
responsible for checking all other services running 
on the same node to determine whether part of a 
new task can be achieved using parts of other 

tasks. After this optimization step, the task is 
admitted to execute. Because some tasks are 
instantiated on-demand, service schedulers may 
negotiate with the planner to iteratively achieve a 
feasible and optimal service allocation. After the 
services are instantiated, the service execution 
engine executes and monitors the tasks across 
multiple nodes. When resources change in the 
network, some services may be migrated to other 
nodes. If the execution engine cannot determine 
alternate task composition locally, the schedule 
time planner may be invoked again. When tasks 
terminate, the execution engine is also responsible 
to clean up parts of the task that is not shared by 
other tasks.   

A Proof-of-Concept Testbed 
We have built a testbed to study the SONGS 

architecture. An initial prototype includes two 
microserver nodes, six sensor motes and a web 
camera deployed in a parking garage. Figure 2(a) 
shows the layout of an experiment. Five 
Crossbow MicaZ motes are places in a row, each 
attached to a break beam sensor. The break beam 
sensor emits an infrared beam which bounces 
back from a reflector on the opposite side of the 
lane. When a car drives by this section of the lane, 
it blocks the infrared beam one by one. By 
correlating the sequence of break beam signals, 
one can detect vehicles and estimate their lengths 
and speeds. A magnetometer is placed further 
down the road. When receiving a trigger, it can 
collect and transmit magnetometer readings to a 
microserver. Both the five break beam motes and 
the magnetometer motes communicate wirelessly 
with a microserver. A camera, connected to 
another microserver, is also placed near the 
magnetometer. When receiving a trigger, it can 
take a picture and send it to the microserver.   
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(a) 
 

 
(b) 

 
Figure 3. A garage deployment of a sensor 

network testbed, and a GUI showing a successful 
query of the network. 
 
The system is used to answer three user queries 
such as the ones shown in Figure 1, with the 
magnetometer replacing the chemical sensor (see 
Figure 2(b) for an example).  

Research Challenges 
The service-oriented architecture and the proof-
of-concept testbed motivate us to look at some 
important research issues.  

Service Interfaces 
A service-oriented platform for networked 

embedded computing is essentially a layer of 
abstraction, which, to application users, supports 
application programming and user interaction, 
while, to system developers, encapsulates 
essential system functionalities such as locations, 
timing, sensing, signal processing, data storage 
and retrieval, and routing. How good that platform 
is must be judged by how well it can support both 
two kinds of users.   

Traditional software service descriptions, e.g. 
the web-service description language (WSDL), 
only capture the invocation mechanisms of the 
services – their address/port, name, and input-
output argument types. In networked embedded 
systems, services need richer interfaces to abstract 
the non-functional aspects and to facilitate 
resource-aware execution. In addition to general 
service invocation information, this richer set of 
interfaces may include resource requirements, 
QoS metric (which can be a function of resource 
usage), configuration parameters, input/output 
data semantics, etc. We need to investigate what 
the minimum set of these descriptions for 
compile-time scheduling and runtime adaptation 
is. At the same time, there need to be systematic 
ways in which this information can be assigned to 
the services, either at compile time or by learning 
the environment after the services are deployed.  

Service Framework 
Services can be instantiated either by users’ 

query or in response to physical triggers. They can 
reside on fixed nodes, migrate among nodes, or 
collaboratively run on multiple nodes. These 
make service registration and discovery quite 
tricky, especially when there is no central 
registration point for an ad hoc or unreliable 
system deployment. Multi-tier architectures may 
help shield away local service dynamics from 
high-level query planners. In these architectures, 
high-level nodes become proxies for low-level 
nodes, and service descriptions are aggregated 
spatially and temporally to improve scalability. 
We also expect distributed data structures such as 
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distributed hash table [DHT] to play an important 
role in service registration and discovery.  

One of the key components in a resource-
aware execution environment is the capability of 
optimizing resource uses by reducing duplicate 
service instantiations. This can be done 
syntactically by comparing the service 
composition graphs, or based on data semantics. 
For example, if there is already a car detection 
service running, a new task that needs car 
detection event can directly subscribes to the 
existing detection service without reinitiating 
another car detection process. This problem gets 
more interesting when taking quality of 
information, cost for producing data, and the 
nature of events into consideration. Take sampling 
as an example, if one task requires sampling at 
20Hz and another requires sampling the same 
sensor at 50Hz, a 100Hz sampling can satisfy both 
requirements, but 40% of the samples are useless. 
On the other hand, given the continuity of the 
underlying signal, the 20Hz stream can be 
constructed from the 50Hz stream with limited 
error. Many examples like this exist, motivating 
us to take advantage of the physicality of real 
world data.   

A resource-aware service execution 
framework needs to monitor itself and to deal 
with uncertainties in the system. This is 
particularly challenging given unreliable wireless 
links, low power devices, and sometimes harsh 
physical environment. Fault tolerance and load 
balancing under these uncertainties becomes 
extremely important for keeping the system 
functioning. 

Application Programming Model 
There are many ways to provide a 

programming interface in SONGS. A 
straightforward approach is to design imperative 
or visual languages that directly address services 
and their composition. However, since networked 
embedded computing programs are usually tied 
into specific application domains, it is more user-
friendly and powerful to provide high-level 
domain-specific languages. 

Service-oriented architectures are desirable for 
application programmer and end users to program 
and interact with the entire network as a whole 
rather than programming each individual node. 
They are not intended to address tightly-coupled 
node level interactions such as network protocols.  
An ideal programming interface for these 
architectures then should allow programmers to 
directly specify system behaviors in terms of their 
domain knowledge, such as physical phenomena 
of interests. For example, a collaboration group is 
an abstraction of nodes that share common 
application states [State]. Given that the program 
does not address individual nodes, it is possible 
for compilers and run-time systems to preserve 
the specified behavior against the uncertainties in 
system topology, signal noise, and node 
capabilities. Since physical phenomena will be 
first class citizens in these programming models, 
the notion of space, time, sampling, and 
information quality must be rigorously introduced 
into the languages. Extensions to spreadsheet 
programming such as Excel, functional/reactive 
programming such as Regiment [Regiment], or 
logic programming such as Datalog [Datalog] are 
particularly promising.  

Conclusion 
We have developed a service-oriented 

architecture SONGS for open, retaskable, and 
scalable networked embedded computing. The 
service model simplifies user programming and 
interaction with such complex systems, and 
enables resource sharing among uncoordinated 
concurrent user queries. We have also presented a 
prototype implementation of the service model for 
a parking garage monitoring application. 
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